第59回統計的機械学習セミナー / The 59th Statistical Machine Learning Seminar

【日時】
2024年6月7日(金) 10:30-12:00

参加無料 / Admission Free

【場所】
統計数理研究所・D棟3階セミナー室5 (ハイブリッド)

オンライン参加を希望される場合は、以下の google form に登録し、Zoom情報をお受け取りください. https://forms.gle/t1wBAT2Kvh5VZf2h8
(現地参加の場合は登録不要です)
【Speaker】
François-Xavier Briol (University College London)
【Title】
Robust and conjugate Gaussian process regression
【Abstract】
To enable closed form conditioning, a common assumption in Gaussian process (GP) regression is independent and identically distributed Gaussian observation noise. This strong and simplistic assumption is often violated in practice, which leads to unreliable inferences and uncertainty quantification. Unfortunately, existing methods for robustifying GPs break closed-form conditioning, which makes them less attractive to practitioners and significantly more computationally expensive. In this paper, we demonstrate how to perform provably robust and conjugate Gaussian process (RCGP) regression at virtually no additional cost using generalised Bayesian inference. RCGP is particularly versatile as it enables exact conjugate closed form updates in all settings where standard GPs admit them. To demonstrate its strong empirical performance, we deploy RCGP for problems ranging from Bayesian optimisation to sparse variational Gaussian processes. This is joint work with Matias Altamirano and Jeremias Knoblauch.
【主催】
統計数理研究所・先端データサイエンス研究系・統計的機械学習研究センター
【連絡先】
福水健次
E-mail: fukumizuism.ac.jp