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Outline
1. Introduction

2. Characterization of conditional independence with kernels

3. Conditional dependence measure with normalized operators and 
its kernel-free expression.
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Introduction
“Kernel methods” for nonlinear relations
– Positive definite kernels have been used for capturing nonlinearity 

of original data.     e.g. Support vector machine. 
– Kernelization:  mapping data into a functional space (RKHS) and 

apply linear methods on RKHS.

– Consider linear statistics (mean, variance, …) on RKHS, and their 
meaning on the original space. 

Ω (original space)
Φ 

feature map H (RKHS)

X
Φ (X) = k(  , X)
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Representing probabilities
– Determining probabilities   (Arthur Gretton’s talk)
– Characterizing independence   (Arthur Gretton’s talk)
– Characterizing conditional independence

Motivation
– Dependence among many variables
– Conditional independence is essential for many probabilistic 

modeling 
e.g.  graphical modeling 
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Positive Definite Kernel and RKHS
Positive definite kernel (p.d. kernel)
Ω: set.
k is positive definite if  k(x,y) = k(y,x) and for any
the matrix                       (Gram matrix) is positive semidefinite.  

– Example: Gaussian RBF kernel

Reproducing kernel Hilbert space (RKHS)
k: p.d. kernel on Ω.     

H :  reproducing kernel Hilbert space  (RKHS)
1)
2)                                     is dense in H. 
3)

R→Ω×Ω:k
Ω∈∈ nxx,n K,1N

( )
jiji xxk

,
),(

Hxk ∈⋅ ),( for all .Ω∈x

)(),,( xffxk H =⋅ (reproducing property)
{ }Ω∈⋅ xxk |),(Span

1∃

( )22exp),( σyxyxk −−=
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Functional data (feature map)

Data:  X1, …, XN ΦX(X1),…, ΦX(XN) : functional data

Why RKHS?
– By the reproducing property, computation of the inner product on

RKHS does not need expansion by basis functions.

Advantageous for high-dimensional data of small sample size. 

),(,: xkxH ⋅→ΩΦ a

)(),( xffx =Φ (reproducing property)

),()(.. xkxei ⋅=Φ

,),()( ∑ ⋅=⋅ i ii xkaf ∑ ⋅=⋅ j jj xkbg ),()(

∑= ji jiji xxkbagf , ),(,
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Representing Nonlinear Dependence
Kernel Statistics:  linear statistics on RKHS
X , Y : general random variables on ΩX and ΩY , resp. 
Prepare RKHS (HX, kX) and (HX , kX) defined on ΩX and ΩY, resp
Define random variables on the RKHS HX and HY by

– Covariance

– Conditional covariance

– c.f.  Gaussian variables

),()( XkX XX ⋅=Φ ),()( YkY YY ⋅=Φ

]))()()([( T
YXXYYX XYE μμ −Φ−Φ≡Σ

ZXZZYZYXZYX ΣΣΣ−Σ≡Σ −1
|

⇔= OVXY X Y
⇔= OV ZYX | | ZX Y

⇔=Σ OXY X Y

⇔=Σ OZYX | | ZX Y
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Richness Assumption on RKHS
k: kernel on a measurable space (Ω, B).   H: associated RKHS.  

Assumption (A):
H + R is dense in Lq(P) for any probability P on (Ω, B), 

– RKHS can approximates various functions such as the index 
function of a measurable set, polynomials, and            .

– Example:    Gaussian kernel on the entire Rm

Laplacian kernel on the entire Rm

.1≥∃q

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−= 2

2

2
exp),(

σ
yx

yxkG

( )∑ = −−= m
i iiL yxyxk 1exp),( λ

xT

e ω1−
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Covariance on RKHS
– Definition: cross-covariance operator

X , Y : general random variables on ΩX and ΩY , resp. 
Prepare RKHS (HX, kX) and (HX , kX) defined on ΩX and ΩY, resp.

There is a unique operator                         such that  

– Independence by cross-covariance operator
Under (A),

• c.f. Characteristic function

)])(),([Cov()]([)]([)]()([, YgXfXfEYgEXfYgEfg YX =−=Σ
for all YX HgHf ∈∈ ,

YXYX HH →Σ :

OXY =Σ⇔X and Y are independent 
)]([)]([)]()([ XfEYgEXfYgE =

X Y ][][][ 11)(1 vYuX
YX

vYuX
XY eEeEeE −−+− =⇔
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Conditional Covariance on RKHS
Conditional Cross-covariance operator
X, Y, Z : random variables on ΩX, ΩY, ΩZ (resp.).
(HX, kX), (HY , kY),  (HZ , kZ) : RKHS defined on ΩX, ΩY, ΩZ (resp.).

– Conditional cross-covariance operator

– Conditional covariance operator

– Note:          may not exist.  But, we have the decomposition 

Rigorously, define

ZXZZYZYXZYX ΣΣΣ−Σ≡Σ −1
|

2/12/1
XXYXYYYX W ΣΣ=Σ

2/12/1
| XXZXYZYYYXZYX WW ΣΣ−Σ≡Σ

1−ΣZZ

YX HH →

ZYZZYZYYZYY ΣΣΣ−Σ≡Σ −1
|

1|||| ≤YXWwith operator norm
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Relation with regression error
Theorem (FBJ’06)

Y, Z : random variables on ΩY, ΩZ (resp.).
(HY , kY), (HZ , kZ) : RKHS defined on ΩY, ΩZ (resp.).

( ) ( )2
| )]([)()]([)(inf, ZfEZfYgEYgEfg

ZHfZYY −−−=Σ
∈

[ ])()(inf ZfYgVar
ZHf

−=
∈

2
|

~~min ZaYbbVb TT

aZYY
T −=

c.f. for Gaussian variables,

Residual error of linear regression is given by 
the conditional covariance matrix. 

])[~],[~( ZEZZYEYY −=−=

)( YHg ∈∀
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– Rough sketch of the proof

( ) ( )2)]([)()]([)( ZfEZfYgEYgE −−−

gggfff YYZYZZ Σ+Σ−Σ= ,,2,
22/12/12/122/1 ,2 ggWff YYYYZYZZZZ Σ+ΣΣ−Σ=

22/122/122/12/1 gWggWf YYZYYYYYZYZZ Σ−Σ+Σ−Σ=

This part can be arbitrary small
by choosing f. 

( )gWWggWf YYZYYZYYYYYYZYZZ
2/12/122/12/1 , ΣΣ−Σ+Σ−Σ=
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Relation with conditional covariance
Theorem (FBJ’06, Sun et al. ’07)

X, Y, Z : random variables on ΩX, ΩY, ΩZ (resp.).
(HX, kX), (HY , kY), (HZ , kZ) : RKHS defined on ΩX, ΩY, ΩZ (resp.).
Assume 

: dense in L2(PZ)
then,

– c.f. for Gaussian variable

[ ]]|)(),([, | ZXfYgCovEfg ZYX =Σ

R+ZH

]|,[| ZYbXaCovbVa TT
ZXY

T =

(not dependent on the value of z)

),( YX HgHf ∈∈∀
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– Sketch of the proof for the simpler case of X = Y and f = g, 
i.e.  

[ ])()(inf, | ZfYgVargg
ZHfZYY −=Σ

∈

[ ][ ] [ ][ ]{ }ZZfYgVarEZZfYgEVar
ZHf

|)()(|)()(inf −+−=
∈

[ ] [ ]]|[]|[][ || XYVarEXYEVarYVar XYXXYX +=Lemma

[ ][ ] [ ][ ]ZYgVarEZfZYgEVar
ZHf

|)()(|)(inf +−=
∈

const.

)(2
ZPL∈

[ ][ ]ZYgVarE |)(0 += (by denseness assumption)

[ ]]|)([, | ZYgVarEgg ZYY =Σ
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Conditional Independence
Theorem (FBJ04, Sun et al 07)

Under (A),
[ ]ZXZYZYXZYX PPEPO ||| ⊗=⇔=Σ

[ ] )()|()|()( |||| zdPzZAPzZBPABPPE ZZXZYZXZYZ ===×⊗ ∫
where                         is a probability on               defined by YX Ω×Ω[ ]ZXZYZ PPE || ⊗

Remark:    The assertion                                       is weaker than
the conditional independence

[ ]ZXZYZYX PPEP || ⊗=
ZXZYZYX PPP ||| ⊗=

)()()|()()|( 2|1| zdPydzypxdzxp ZB ZYA ZX∫ ∫∫= μμ[ ] )(|| BAPPE ZXZYZ ×⊗
With p.d.f. 

c.f. for Gaussian variables 
⇔= OV ZYX | | ZX Y
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– Proof of 

means

Under (A), by approximating the index function 

[ ] [ ]]|)([]|)([]|)()([ ZXfEZYgEEZXfYgEE =

OZYX =Σ |

)]()([)]()([ ][ ||
XfYgEXfYgE

ZXZYZXY PPEP ⊗=

[ ] 0]|)(),([ =ZXfYgCovE

YX HgHf ∈∈∀ ,

[ ]ZXZYZYX PPEP || ⊗=

⇒=Σ OZYX | [ ]ZXZYZYX PPEP || ⊗=

),( yxI BA×
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Characterization of conditional independence
Theorem

Define the augmented variable                    and define a kernel 
on                 by  

Under (A),  

ZX Ω×Ω
),(~ ZXX =

ZXX kkk =~

⇔=Σ OZXY |~ X Y | Z

dzzpzypzzxpzyxpOZZXY )()|()|',()',,(|],[ ∫=⇒=Σ

)'()|()|',( zzzxpzzxp −= δ

)'()'|()'|()',,( zpzypzxpzyxp =

where

i.e. )'|()'|()'|,( zypzxpzyxp =

proof)

⇔=Σ⇔=Σ⇔=Σ OOO ZXYZXYZXY |~~|~|~ X Y | Z
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Normalized Cond. Covariance
Normalized conditional cross-covariance operator

Definition

More rigorously,

– Conditional independence 
Under the assumption (A),

ZXYZYXZYX WWWW −≡| Recall: 2/12/1
XXYXYYYX W ΣΣ=Σ

( ) 2/112/12/1
|

2/1
|

−−−−− ΣΣΣΣ−ΣΣ=ΣΣΣ= XXZXZZYZYXYYXXZYXYYZYXW

OW ZXY =|~ X Y | Z⇔
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Conditional Dependence Measure
– HS Normalized Conditional Independence Criteria

– Hilbert-Schmidt norm of an operator

A is called Hilbert-Schmidt if for complete orthonormal systems 
of H1 and          of H2

Hilbert-Schmidt norm is defined by 

2

|~~
HSZYXWHSNCIC =

X Y | Z⇔= 0HSNCIC

21: HHA → operator on a Hilbert space

∑ ∑ ∞<j i ij A .,
2

ϕψ

{ }iϕ { }jψ

∑ ∑= j i ijHS AA
22 , ϕψ c.f. Frobenius norm of a matrix
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Kernel-free Expression
Theorem

Assume 
PXY and                       have density                 and     , resp.
HZ + R and                       are dense in L2(PZ) and                   , resp. 
WYX and WYZ WZX are Hilbert-Schmidt.

Then,

In the special case of 

2
| |||| HSZYXW dxdyypxp

ypxp
yxpyxp

YX
YX

ZYXXY )()(
)()(

),(),( 2
|∫∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
= ⊥

),( yxpXY ),(| yxp ZYX ⊥[ ]ZXZYZ PPE || ⊗
R+⊗ YX HH )(2

YX PPL ⊗

- Kernel-free expression, though the definitions are given by kernels!

2|||| HSYXW dxdyypxp
ypxp

yxp
YX

YX

XY )()(1
)()(

),(
2

∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

φ=Z
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– Kernel-free value is reasonable as a “measure” of dependence.
c.f.  If unnormalized operators are used, the measures do depend 
on the choice of kernel (HSIC, Gretton et al. ALT2005)

– In the unconditional case, 
HS-NIC =                  

is equal to the mean square contingency, which is one of the 
popular measures of dependence.  

– In the conditional case, if we use the augmented variables 
2

|~~ |||| HSZXYW

dxdydzzypzxp
zypzxp

zpzypzxpzyxp
YZXZ

YZXZ

ZZYZXXYZ ),(),(
),(),(

)()|()|(),,( 2
||∫∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

2|||| HSYXW

(conditional mean square contingency)
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– Key idea of the proof
By the eigendecomposition of ΣXX and ΣYY , we have CONS         

of HX and          of HY such that

Define

By the denseness assumption, is CONS of 

{ }iϕ
{ }jψ

)0,0(, ≥≥=Σ=Σ jijjjYYiiiXX νλψνψϕλϕ

i

jj
j

i

ii
i

EE
ν

ψψ
ψ

λ
ϕϕϕ

][~,][~ −
=

−
=

jiji ,}~~{}1{ ψϕU (2 )YX PPL ⊗

2
,

2/12/12
, ,, ∑∑ −− ΣΣΣ= ji iXXYXjYYji iYXj W ϕψϕψ

2

, ,∑ Σ= ji
i

i
YX

j

j

λ
ϕ

ν
ψ

[ ]
2

)(
,

2
,

2

),(~)(~)(~)(~
YX PPL

ji
YX

XY
ijijji XY pp

pXYXYE
⊗

∑∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== ϕψϕψ

1
2

)(2

−=
⊗ YX PPLYX

XY

pp
p

etc. 
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– Empirical estimation is straightforward with the kernel method.

– Inversion regularization: 

– Replace the covariances in                                by the empirical 
ones given by the data ΦX(X1),…, ΦX(XN) and ΦY(Y1),…, ΦY(YN) 

– HSNICemp and HSNCICemp give kernel estimates for the mean 
square contingency and conditional mean square contingency, resp.

[ ]ZYZXZYXYXemp RRRRRRRRRHSNCIC ~~~~~~ 2Tr +−=

( ) 1
~~~

−+≡ NNXXX INGGR ε etc. 

[ ]YXemp RRHSNIC Tr=

2/12/1 −− ΣΣΣ= XXYXYYYXW

(dependence measure)

(conditional dependence measure)

( ) 11 −− +Σ→Σ IXXXX ε

where

Empirical Measures



24

Relation with Other Measures
Mutual Information

MI and HSNIC

)()(1
)()(

),(),( 21 ydxd
ypxp

yxpyxpHSNIC
YX

XY
XY μμ∫∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

∫∫= )()(
)()(

),(log),(),( ydxd
ypxp

yxpyxpYXMI YX
YX

XY
XY μμ

),(),( YXMIYXHSNIC ≤

MIydxd
ypxp

yxpyxp
YX

XY
XY =≤ ∫∫ )()(

)()(
),(log),( 21 μμ

)Q

( )1log −≤ zz
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– Mutual Information:  
• Information-theoretic meaning.
• Estimation is not straightforward for continuous variables.

Explicit estimation of p.d.f. is difficult for high-dimensional data. 
– Parzen-window is sensitive to the band-width. 
– Partitioning may cause a large number of bins.

• Some advanced methods: e.g. k-NN approach (Kraskov et al. 
2004, Ku&Fine 2005).

– Kernel method:
• Explicit estimation of p.d.f. is not required;

the dimension of data does not appear explicitly, but it is 
influential in practice. 

• Kernel / kernel parameters must be chosen. 



26

Theorem (FGSS2007)
Assume that             is Hilbert-Schmidt, and the regularization 

coefficient satisfies 

Then, 

In particular,  

)(0ˆ
|

)(
| ∞→→− NWW

HSZYX
N

ZYX

0→Nε .3/1 ∞→NN ε

)(ˆ
|

)(
| ∞→→ NWW

HSZYXHS
N

ZYX

i.e. HSNCICemp (HSNICemp) converges to the population value 
HSNCIC (HSNIC, resp).

ZYXW |

Statistical Consistency
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Choice of Kernel
How to choose a kernel?
– Empirical estimates still depend on the choice of kernels. 
– For unsupervised problems, such as independence measures, 

there are no theoretically reasonable methods. 

– Some heuristic methods which work:
• Heuristics for Gaussian kernels

• Speed of asymptotic convergence 

Compare the bootstrapped variance and the theoretical one, 
and choose the parameter to give the minimum discrepancy. 

{ }jiXX ji ≠− |σ =   median

[ ] 22)( 2lim HSYYHSXX
N

empN
HSNICNVar ΣΣ=×

∞→
under independence
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Application to Independence Test
Toy example

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

X1

Y1 Y2

independent

θ = 0

X2
dependent

θ = π/4

X3

Y3

independent

θ = π/2

They are all uncorrelated, but dependent for 0 < θ < π/2
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Angle 0.0    4.5   9.0  13.5 18.0 22.5
HSIC (Median) 93 92    63     5     0     0
HSIC (Asymp. Var.) 93 44      1     0     0     0
HSNIC (ε = 104, Median) 94 23      0     0     0     0
HSNIC (ε = 106, Median) 92 20      1     0     0 0
HSNIC (ε = 108, Median) 93 15      0     0     0     0
HSNIC (Asymp. Var.) 94 11      0     0     0     0
MI (#NN = 1) 93 62    11     0     0     0
MI (#NN = 3) 96 43      0     0     0     0
MI (#NN = 5) 97 49      0     0     0     0

indep. more dependent

N = 200. 
Permutation test is used. 

# acceptance of independence out of 100 tests (significance level = 5%)
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Permutation test with the kernel measure

– If Z takes values in a finite set {1, …, L},
set 

otherwise, partition the values of Z into 
L subsets C1, …, CL, and set  

– Repeat the following process B times: (b = 1, …, B)
1. Generate pseudo cond. independent 

data D(b) by permuting  X data within each 
2. Compute TN

(b) for the data D(b) .

– Set the threshold by the (1-α)-percentile of 
the empirical distributions of TN

(b).

2)(
|

ˆ
HS

N
ZYXNT Σ=

2)(
|

ˆ
HS

N
ZYXN WT =or 

),,...,1(}|{ LZiA i === lll

).,...,1(}|{ LCZiA i =∈= lll

.lA

11 ,1,1 ii YX

22 ,1,1 ii YX

33 ,1,1 ii YX

44 ,2,2 ii YX
22 ,2,2 ii YX

66 ,2,2 ii YX

77 ,, iLiL YX

88 ,, iLiL YX

99 ,, iLiL YX

…

1C

2C

LC

pe
rm

ut
e

pe
rm

ut
e

pe
rm

ut
e

{
{
{

Cond. Independence Test

Approximate null distribution 
under cond. indep. assumption
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Kernel Method for Causality of 
Time Series

Causality by conditional independence
– Nonlinear extension of Granger causality

X is NOT a cause of Y if 

– Kernel measures for causality

),...,|(),...,,,...,|( 111 ptttpttpttt YYYpXXYYYp −−−−−− =

ptt XX −− ,...,1 ptt YY −− ,...,| 1tY

2
)1(

~ˆ
HS

pN
YWHSNCIC +−=

pp |YX

},...,1|),,{( 2,1p NptXXX p
pttt +=∈= −−− RX L

},...,1|),,{( 2,1p NptYYY p
pttt +=∈= −−− RY L
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Example: Causality of Time-Series
Coupled Hénon map
– X, Y:

{ }

2
1 1 2

2 1

2
1 1 1 1 2

2 1

( 1) 1.4 ( ) 0.3 ( )
( 1) ( )

( 1) 1.4 ( ) ( ) (1 ) ( ) 0.1 ( )

( 1) ( )

x t x t x t
x t x t

y t x t y t y t y t

y t y t

γ γ

⎧ + = − +
⎨

+ =⎩
⎧ + = − + − +⎪
⎨

+ =⎪⎩

-2 -1 0 1 2
-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x1-y1

γ = 0 γ = 0.25 γ = 0.8

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x1

x2
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Causality of coupled Hénon map
– X is a cause of Y if γ > 0. 

– Y is not a cause of X for all γ. 

– Permutation tests for non-causality with

ptt XX −− ,...,1 ptt YY −− ,...,| 1tY

ptt YY −− ,...,1 ptt XX −− ,...,| 1tX

x1 – y1 H0: Yt is not a cause of Xt+1 H0: Xt is not a cause of Yt+1

γ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6

0 0

32

0

13

0

45

0

85

0

92

62

93

77

94

86

90

63

90

81

95

88

96

0.0

HSNCIC 94 97

Granger 92 96

2
)1(ˆ

HS

pN
YWHSNCIC +−=

pp Y|X&&

Number of times accepting H0 among 100 datasets (α = 5%)

N = 100

000000756881859396 9697HSNCIC
1-dimensional independent noise is added to X(t) and Y(t).
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Concluding Remarks

Kernel dependence measures
– The normalized (conditional) covariance on RKHS gives kernel-free 

measures of dependence in population. 
– The Gram matrix expression gives the p.d.-kernel estimate of the 

(conditional) mean square contingency. 
– Comparably reliable methods for conditional independence test. 

Future directions
– More empirical studies
– More theory on kernel choice
– Application to causal inference (Sun et al., 2007). 
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