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The direct sampling algorithm

Definition 1. Let A = (ai j) ∈ Zd×m be a matrix of integers such that no
row or column is zero vector and (1, . . . , 1) ∈ rowspan(A). Let x ∈ Rm

>0.
The log-affine model associated with the configuration matrix A is the set of
probability distributions

MA := cl{p ∈ int(∆m−1) : log p ∈ log x + rowspan(A)},

where ∆m−1 is the standard m-dimensional simplex. If x = 1, the model is
called the log-linear model.

Consider a sample consisting of observations in which counts of the j-th
state is u j, j ∈ [m]. The conditional distribution given the complete minimal
sufficient statistics b in the affine semigroup NA := {Av : v ∈ Nm}, where N
is the set of non-negative integers, is

P(U = u|AU = b) =
1

ZA(b; x)
xu

u!
, xu :=

∏
j∈[m]

x
u j

j , u! :=
∏
j∈[m]

u j!.

The support FA(b) := {v ∈ Nm : Av = b} is called the fiber. The normal-
ization constant ZA(b; x) :=

∑
v∈FA(b) xv/v! is called the A-hypergeometric

polynomial defined by Gel’fand, Kapranov, and Zelevinsky in the 1980’s.
We adopt the convention ZA(b; x) = 0 if b < NA.

The direct sampling algorithm [2017, EJS] is a Markov chain on
Definition 2. The Markov latticeLA(b) is the bounded integer lattice embed-
ded in NA equipped with the partial order

β ∈ NA and β − a j ∈ NA ⇒ β − a j ≺ β,

and the maximum and the minimum are b and 0, respectively. Here, a j de-
notes the j-th column vector of A.
Example 1 (2 × 2 contingency table).

u11 u12 u1·
u21 u22 u2·
u·1 u·2 |u|

, A=


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

 , u=


u11
u12
u21
u22

 , and b =


u1·
u2·
u·1
u·2

 ,

Figure 1: The Hasse diagram of
the Markov lattice LA(b) for the
maximum b = t(1, 2, 2, 1).

The Markov kernel is represented by the transition probability

P(β, β − a j; x) :=
ZA(β − a j; x)

ZA(β; x)
x j

deg(β)
, j ∈ [m] (1)

for the transition from β to β−a j, where deg(β) is the degree of ZA(β; x). The
computation of (1) dominates the computational cost. (1) is the ratio of the
UMVUE (uniform minimum variance unbiased estimator) of the expected
counts to the total number of counts if β = b.

The UMVUE and the rational MLE

The number of critical points of the likelihood over the complex space
is one if and only if the MLE admits a specific form called the Horn uni-
formization of the A-discriminant [Huh 2014, J. Alg. Stat]. Moreover,
Theorem 1. [Duarte et al. 2021, Bernoulli] A sample has the rational MLE
if and only if there is a vector λ ∈ Rm and a matrix H = (hi j) ∈ Zl×m such
thatMA is the image of the rational map Φ : Rm

>0 d R
m
>0:

Φ j(u1, . . . , um) = λ j

l∏
i=1

(
m∑

k=1
hikuk)hi j with

∑
j∈[m]

Φ j(u) = 1.

Remark 1. [+Takayama, arXiv: 2110.14922] The rational MLE is an ana-
logue of the Gauss hypergeometric theorem for A-hypergeom. polynomials.

Example 2 (2 × 2 contingency table, cont.). We know the rational MLE of
the expected count µ̂(b; 1) = |u|Φ(u) with

Φ(u) =
(
u1·u·1
|u|2
,
u1·u·2
|u|2
,
u2·u·1
|u|2
,
u2·u·2
|u|2

)
,

and we can read off

λ = (4, 4, 4, 4), and H =


1 1 0 0
0 0 1 1
−2 −2 −2 −2
1 0 1 0
0 1 0 1


.

If we replace the UMVUE with the MLE, the transition probability becomes
µ̂(b;1)
|u| =

ui·
|u|

u· j
|u| , where ai j denotes the column vector of A cording the (i, j)-cell.

Theorem 2. [1] The UMVUE and the MLE of a log-linear graphical model
coincide if and only if the model is decomposable. Moreover, the MLE is
rational.

The approximate algorithm
Corollary 1. For a log-linear model, the approximate algorithm obtained by
replacing the UMVUE with the MLE becomes exact if and only if the model
is a decomposable graphical model.

Nevertheless, if β lie in the boundary of NA and β − a j < NA, the MLE
µ̂ j(β; x) coincides with the UMVUE and vanishes exactly without bias for
any log-linear model. In practical terms, we have

Proposition 1. The approximate algorithm is a Markov chain on LA(b).

Please see [1] why we can avoid computation of the Gröbner bases.

Ideal Algorithm States Investigate Reference

IA ⊂ k[p] Metropolis FA(b) Markov basis Diaconis–Sturmfels†1998, AS
HA(b)⊂C(p)⟨∂⟩ Direct LA(b) Connection matrix 2017, EJS

Approx.-Direct LA(b) None [1]

Table 1: Summary of sampling algorithms.

Numerical experiments
For a no-three-way interaction model of three-way table of rank 81, the

exact direct sampling was prohibitive [+Takayama, arXiv: 2110.14922].

|u| (burn-in,length)= (103, 104) (104, 104) (105, 104) (105, 105)

36 0.037 0.027 0.034 0.029
90 0.030 0.039 0.036 0.017

180 0.035 0.031 0.031 0.013

Table 2: The total variation distances between the empirical distributions of
chi-square values generated by the Metropolis algorithm and that by the ap-
proximate direct sampling algorithm with 106 tables. 10-trials average.

|u| ESS Metropolis (sec.) Approx.-Direct (sec.)

36 844 4.012 83.7
90 717 4.241 130.3
180 544 4.574 165.0

Table 3: The times to draw 104 tables by the Metropolis algorithm, the effec-
tive sample sizes (ESS) of the 104 tables, the times to draw the same number
of tables by the approximate direct sampling algorithm. 100-trials average.
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