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Abstract

One important idea for the multi-class classification problem is to combine binary classifiers

(base classifiers), which is summarized as error correcting output codes (ECOC), and the gener-

alized Bradley-Terry (GBT) model gives a method to estimate the multi-class probability. In this

memo, we review the multi-class problem with the GBT model and discuss two issues. First, a

new estimation algorithm of the GBT model associated with α–divergence is proposed. Secondly,

the maximum likelihood estimation (MLE) algorithm of each base classifier based on the combined

multi-class probability is derived.

1 Introduction

The idea of ECOC [5] is to combine the outputs of base classifiers for multi-class classification problems,

where each base classifier is prepared to separate two disjoint subsets of classes. Many studies have

appeared on this subject [1, 9, 10]. One of the reasons of the interests is the developments of SVM and

AdaBoost. These classifiers work surprisingly well for binary classification problems but its extension to

multi-class is not necessarily straightforward.

The basic approach of ECOC is to compute the Hamming distances between the binary outputs of

base classifiers and each desired codewords. Although it is sufficient for classification, let us assume

that the output of each base classifier is not binary but a probability prediction. Now our problem is to

combine the predictions for multi-class probability estimation. One interesting proposal [6] was to use the

Bradley-Terry (BT) model [3]. In the original proposal, 1-vs-1 classifiers were used as the base classifiers.

Then, it has been generalized to wider class of base classifiers, and the BT model is generalized to the

GBT (generalized Bradley-Terry) models [8].
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In this article, we first review the GBT model for multi-class probability estimation and propose two

extensions. One is concerning the estimation of the GBT model. For combining classifiers, it is not

necessary to use the likelihood function, which gives the MLE for the original BT model. We propose a

new estimation algorithm associated with α-divergence [2]. The algorithm is similar to the EM algorithm

[4]. The other extension is the parameter estimation of each base classifier. In ECOC, each base classifier

is prepared beforehand. But it is better to tune them to make the combined outputs better. We derive

a MLE method for the base classifiers based on the combined multi-class probability. The algorithm can

be applied to any differentiable model. We first consider the logistic regressions (LRs), and then extend

it to the kernel logistic regressions (KLRs) [11].

2 Generalized Bradley-Terry Model and Multi-class Probability

Estimation

2.1 Original Bradley-Terry Model

We briefly review the BT and GBT models which will be used to combine base classifiers’ outputs. We

start with the BT model [3]. Let us assume there are K players and each plays games against another.

The BT model assumes the probability of player i to beat player j is given by

P (i beats j) =
pi

pi + pj
, pi, pj > 0, i �= j, i, j = 1, · · · , K.

This is scale invariant, and we assume
∑

j pj = 1. When we observe independent results of games

nij = #(games between i and j), rij =
#( i beats j)

nij
, rij + rji = 1,

the likelihood function is given as

l(p) =
∑
i<j

nij

(
rij log

pi

pi + pj
+ rji log

pj

pi + pj

)
,

where p = (p1, · · · , pK), and the MLE is the maximizer of l(p).

2.2 Generalized Bradley-Terry Models

In the GBT model, we assume two teams, I+
a and I−a , play games. Teams are defined as

I+
a , I−a ⊂ {1, · · · , K}, I+

a , I−a �= ∅, I+
a ∩ I−a = ∅, Ia = I+

a ∪ I−a .

The GBT model assumes the probability of I+
a to beat I−a is given by

P (I+
a beats I−a ) =

∑
j∈I+

a
pj∑

j∈Ia
pj

, a = 1, · · · , M,
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where pi’s are the same as those in the original BT model. The observed results of games are

na = #(games between I+
a and I−a ), ra =

#(I+
a beats I−a )

na
, r′a =

#(I−a beats I+
a )

na
,

where ra + r′a = 1. The likelihood function is the following l(p), and the maximizer is the MLE.

l(p) =
M∑

a=1

na

(
ra log

q+
a

qa
+ r′a log

q−a
qa

)
, q+

a =
∑

j∈I+
a

pj , q−a =
∑

j∈I−
a

pj , qa = q+
a + q−a .

2.3 Estimation Algorithm and Convergence

Huang et al.[8] discussed the MLE algorithm and its convergence. We show their results briefly.

Algorithm 1(Algorithm 2 in [8])

1. initialize {p0
i } and compute {q0,+

a }, {q0,−
a } and {q0

a}.

2. repeat the following by increasing t = 0, 1, · · · , until convergence

(a) i = (t mod K) + 1.

pt+1
i =

∑
a:i∈I+

a

ra

qt,+
a

+
∑

a:i∈I−
a

r′
a

qt,−
a∑

a:i∈Ia

ra+r′
a

qt
a

pt
i, pt+1

j = pt
j , ∀j �= i

(b) normalize pt+1 and update {qt+1,+
a }, {qt+1,−

a } and {qt+1
a }.

They have discussed the condition of the algorithm to increase the likelihood function (Theorem 1 in

[8]), and make the following assumption

Assumption 1. For any i, j ∈ {1, · · · , K}, i �= j, there are Ia0 , · · · , Iat such that either
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1. ra0 > 0, ra1 > 0, · · · , rat > 0,

2. I+
a0

= {i}; I+
ar

⊂ Iar−1 , r = 1, · · · , t;

j ∈ I−at

or

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1. r′a0
> 0, r′a1

> 0, · · · , r′at
> 0,

2. I−a0
= {i}; I−ar

⊂ Iar−1 , r = 1, · · · , t;

j ∈ I+
at

.

And further they derived the following theorem (Theorem 4 in [8]).

Theorem 1. Under the Assumption 1, if either |I+
a | = |I−a |, ∀a or |Ia| = K, ∀a then the algorithm

converges to a unique MLE.

We omit the details which can be found in [8]. In section 3, we will propose a new algorithm and will

use these results.

3



2.4 Multi-class Probability Estimation

Let X = 	n be the feature space, Y = {1, · · · , K} be the labels, and (X, Y ) ∈ (X ,Y) be the random

variables. Our problem is to estimate the probability of Y = y when X = x is given, that is, P (y|x).

We assume data follows P (y, x) = P (y|x)P (x) and P (y|x) > 0 if P (x) > 0.

Let us consider the case we have M base classifiers, each of which predicts P (y ∈ I+
a | y ∈ Ia, x).

In the following, we assume |Ia| = K, that is, Ia = Y. This is not common in ECOC, but we employ

this from the following reason: Although our problem is to estimate the multi-class probability when

x ∼ P (x) is given, the training data distribution of a base classifier is usually P (x|y ∈ Ia). Thus,

outputs of base classifiers would be biased for x ∼ P (x). These biases might be canceled when we use

many base classifiers, and this is what we expect in ECOC. However, it may not work when M is small.

Instead of relying on the random effect, we assume |Ia| = K. Under this assumption y ∈ Ia is always

true, and each base classifier predicts P (y ∈ I+
a |x). The base classifiers are defined as

ra|x(θa) = ra(y ∈ I+
a | x; θa), a = 1, · · · , M, θa ∈ Θ, where 0 < ra|x(θa) < 1,

here θa is the parameter and we assume ra|x(θa) is differentiable. Note that 1− ra|x(θa) is the prediction

of (1 − P (y ∈ I+
a | x)) = P (y ∈ I−a | x).

When a data x is given, ra|x(θa), a = 1, · · · , M , are computed. Then we combine them as py|x =

p(y|x),
∑K

y=1 py|x = 1, which is computed by maximizing

l(p|x) =
M∑
a

(
ra|x(θa) log q+

a|x + (1 − ra|x(θa)) log (1 − q+
a|x)

)
, q+

a|x =
∑

y∈I+
a

py|x,

where, p|x = (p1|x, · · · , pK|x). This can be reformulated as minimizing the following function

D(p|x) =
M∑

a=1

(
ra|x(θa) log ra|x(θa) + (1 − ra|x(θa)) log (1 − ra|x(θa))

)
− l(p|x)

=
M∑

a=1

DKL,a

[
ra|x(θa); q+

a|x
]
,

(1)

where DKL,a[ra|x(θa); q+
a|x] is the Kullback-Leibler (KL) divergence defined as

DKL,a

[
ra|x(θa); q+

a|x
]

= ra|x(θa) log
ra|x(θa)

q+
a|x

+ (1 − ra|x(θa)) log
(1 − ra|x(θa))

(1 − q+
a|x)

.

Note DKL,a[ra|x(θa); q+
a|x] ≥ 0 and equality holds iff ra|x(θa) = q+

a|x. We choose the set of base classifiers

to satisfy Assumption 1. Since |Ia| = K holds, theorem 1 shows there is a unique p|x which minimizes

eq.(1). Note that p|x is computed for each x separately.

Figure 1(a) is an example where K = 4. The data and the optimal decision boundary are shown. Each

class of the data is drawn from a 2 dimensional normal distribution with the same variance-covariance
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matrix, therefore optimal decision boundary is a collection of line segments. There are (2(K−1) − 1)

possible binary classifiers, which is 7 in this case. We estimated those 7 classifiers with LRs shown in

Fig. 2. The decision boundary based on the combined estimate is shown in Fig. 1(b). The boundaries of

a binary LR and that of a multi-class LR (see for example [7]) are affine planes. But obviously Fig. 1(b)

gives a different boundary. This is similar to the results in [6].
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Figure 1: (a) 4 classes data. The distribution of each class is a 2-dimensional normal distribution. The

variance-covariance matrices are the same as 0.3 times identity matrix. Mean vectors are (2, 0) for class

1, (1,−0.5) for class 2, (0, 0) for class 3, and (−1,−0.5) for class 4. For training, 25 data are drawn from

each class. The optimal decision boundary is computed from the true distribution. (b) Training data

and the decision boundaries obtained by combining 7 classifiers given in Fig. 2.

Figure 2: 7 base classifiers: 7 logistic regressions trained with the data in Fig. 1(a). I+
a is shown on the

top. Colors show the output ra|x(θa), where red is close to 1 and blue is close to 0.
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3 Extensions

3.1 Modified Algorithm

The base classifiers are combined to p|x by minimizing eq.(1). We propose a slightly modified version of

Algorithm 1. Let us start by defining the following set of conditional distributions.

S =
{
u(y|x)

∣∣ ∑
y∈Y

u(y|x) = 1, u(y|x) > 0
}
.

And let us consider the following subset Ma ⊂ S, a = 1, · · · , M .

Ma =
{

u(y|x)
∣∣ u(y|x) ∈ S,

∑

y∈I+
a

u(y|x) = ra|x(θa),
}

.

Let the current estimate be p|x, and let us consider the following problem,

ua
|x = argmin

u|x∈Ma

DKL,y[u|x; p|x], (2)

where DKL,y[u|x; p|x] =
∑K

y=1 uy|x(log uy|x − log py|x). This is called e–projection from p|x ∈ S to Ma

in the information geometry [2]. The optimization in eq.(2) is equivalent to minimize DKL,y[u|x; p|x],

subject to
∑

y∈I+
a

uy|x = ra|x(θa). This minimization is simply solved by introducing Lagrange multipliers

and the minimizer becomes

ua
y|x =

⎧⎪⎪⎨
⎪⎪⎩

ra|x(θa)
py|x∑

y′∈I+
a

py′|x
, y ∈ I+

a

(1 − ra|x(θa))
py|x

1 − ∑
y′∈I+

a
py′|x

, y /∈ I+
a

(3)

Interestingly, DKL,y[ua
|x; p|x] = DKL,a[ra|x(θa); q+

a|x] holds. Now we propose the following algorithm.

Algorithm 2

1. initialize p0
|x

2. repeat the following by increasing t = 0, 1, · · · , until convergence

(a) compute ua,t
|x , a = 1, · · · , M (practical computation is eq.(3)),

ua,t
|x = argmin

u|x∈Ma

DKL,y[u|x; pt
|x].

(b) compute pt+1
|x which minimizes

pt+1
|x = argmin

p|x∈S

M∑
a=1

DKL,y[u
a,t
|x ; p|x].
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The minimization of step 2(b) is also solved by introducing Lagrange multipliers as follows

pt+1
|x =

1
M

M∑
a=1

ua,t
|x , (4)

which is called m–mixture. Now we see that the cost function in eq.(1) decreases at each step,

D(pt
|x) =

M∑
a=1

DKL,a[ra|x(θa); q+,t
a|x] =

M∑
a=1

DKL,y[u
a,t
|x ; pt

|x] ≥
M∑

a=1

DKL,y[u
a,t
|x ; pt+1

|x ]

≥
M∑

a=1

DKL,y[u
a,t+1
|x ; pt+1

|x ] = D(pt+1
|x ), where q+,t

a|x =
∑

y∈I+
a

pt
y|x.

The idea of the proof is similar to that of the EM algorithm [4]. Moreover if pt+1
|x �= pt

|x, D(p|x) strictly

decreases and since we assume there is a unique minimum, this algorithm always converges to the global

minimum.

3.2 New Cost Function and Algorithm

The cost in eq.(1) is inspired by the likelihood function of BT model. But we do not need to be restricted

to it for combining base classifiers. Let us use the α-divergence defined as follows [2] which includes KL

divergence as special cases.

Dα,y[p; q] =
4

1 − α2

(
1 −

∑
y

p(y)
1−α

2 q(y)
1+α

2
)
, − 1 < α < 1,

D−1,y[p; q] = DKL,y[p; q], D1,y[p; q] = DKL,y[q; p].

Note that α-divergence is nonnegative and is 0 iff p(y) = q(y), ∀y. Now, let us consider minimizing

Dα(p|x) =
M∑

a=1

Dα,a[ra|x(θa); q+
a|x].

The cost function in eq.(1) is a special case D−1(p|x). We can derive a new algorithm easily.

Algorithm 3

1. initialize p0
|x

2. repeat the following by increasing t = 0, 1, · · · , until convergence

(a) compute ua,t
|x , a = 1, · · · , M ,

ua,t
|x = argmin

u|x∈Ma

Dα,y[u|x; pt
|x].

(b) compute pt+1
|x which minimizes

pt+1
|x = argmin

p|x∈S

M∑
a=1

Dα,y[ua,t
|x ; p|x].
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It is easy to check that the minimization of step 2.(a), results in (3) for every α and Dα,y[u
a,t
|x ; pt

|x] =

Dα,a[ra|x(θa); q+,t
a|x]. The minimizer of step 2.(b) is also simply calculated which results in

pt+1
y|x =

1
C

( M∑
a=1

(
ua,t

y|x
) 1−α

2
) 2

1−α

, C =
K∑

y=1

( M∑
a=1

(
ua,t

y|x
) 1−α

2
) 2

1−α

, − 1 ≤ α < 1

pt+1
y|x =

1
C

( M∏
a=1

ua,t
y|x

) 1
M

, C =
K∑

y=1

( M∏
a=1

ua,t
y|x

) 1
M

, α = 1.

(5)

Dα(p|x) decreases at each step and converges to a unique minimum as Algorithm 2. Resulting p|x

depends on α, and how to choose α is one of our future works.

3.3 Maximum Likelihood Estimation of Base Classifiers

So far, we have discussed how to combine base classifiers {ra|x(θa)} “when they are available.” Let us

denote the combined estimate based on Dα(p|x) as pα(y|x). Since it is a unique function of {ra|x(θa)}
we can rewrite it as pα(y|x; {θa}), which shows it is a function of {θa}.

Suppose we observe data (Xt, Yt), t = 1, · · · , N . One natural question is if we can compute the MLE

of pα(y|x; {θa}), more precisely, maximizer of the following function

L({θa}) =
1
N

N∑
t=1

log pα(Yt|Xt; {θa}). (6)

In most of the works of ECOC, we train each classifier separately, but here, we consider if we can train

them jointly. Unfortunately it is not easy in general, since pα(y|x; {θa}) is not an exponential nor a

mixture family and the explicit form is not evident. But we found it is possible when we set α = 1 and

combining only “1-against-the rest” base classifiers, that is, I+
a = {y = a}, a = 1, · · · , K. In that case,

we can compute the gradient of L({θa}) with θa. We show the details below. Let p1(a′|x) = p1(y =

a′|x; {θa}) and l1(a′|x) = log p1(a′|x). At the convergent point of Algorithm 3, pt
y|x = pt+1

y|x and from

eqs.(3) and (5),

l1(a|x) =
1
K

[
log ra|x(θa) +

∑
a′ �=a

log
{
(1 − ra′|x(θa′))

p1(a|x)
1 − p1(a′|x)

}]
− log C

l1(a|x) +
∑
a′ �=a

log (1 − p1(a′|x)) + K log C = log ra|x(θa) +
∑
a′ �=a

log(1 − ra′|x(θa′)).

Taking the derivative with respect to θa′ , we have

∂θa′ l1(a|x) −
∑

a′′ �=a

p1(a′′|x)
1 − p1(a′′|x)

∂θa′ l1(a′′|x) + K∂θa′ log C

=

⎧⎪⎨
⎪⎩

∂θa′ log ra′|x(θa′), a′ = a

− ra′|x(θa′)
1 − ra′|x(θa′)

∂θa′ log ra′|x(θa′), a′ �= a
(7)

∑
a

p1(a|x)∂θa′ l1(a|x) = 0. (8)
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Equation (8) is derived from
∑

a p1(a|x) = 1, and we have assumed ra|x(θa) is differentiable. For each

parameters of {θa}, eqs.(7) and (8) provides K + 1 equations, concerning K + 1 functions, ∂θa′ l1(a|x),

a = 1, · · · , K and ∂θa′ log C. This linear system of equations can be solved for each parameter, and

∂θa l1(y|x) for every (x, y) ∈ (X ,Y) can be computed. With this gradient, we can use the gradient

descent algorithm to compute the MLE.

We show some numerical experiments with the data shown in Fig. 1. Figure 3 shows the base LRs

trained separately(left) or jointly using above method (right). The log likelihood function in eq.(6)

increased from −0.6137 to −0.4964. By comparing the combined boundaries in Fig. 4, we see that the

boundary is closer to the optimal boundary, and each base classifier becomes different from separately

trained ones.

Figure 3: 4 base logistic regressions (left: trained separately, right: trained jointly)
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Figure 4: Decision boundary of combined estimates (left: separately trained LRs, right: jointly trained

LRs)

For the base classifiers, we can use KLRs [11]. We define the base classifiers and regularized maximum
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likelihood problem as follows,

ra|x(θa,0, fa) =
1

1 + exp(−fa(x) + θa,0)
,

min
fa(x)

− 1
N

N∑
t=1

log p1(Yt|Xt; {fa(x)}) +
λ

2

∑
a

‖fa(x)‖HK . (9)

Where HK is the RKHS generated by the kernel K(·, ·). From the representer theorem, the minimizer

of eq.(9) is expressed as fa(x) =
∑N

t=1 θa,tK(x, Xt) and we can rewrite ra|x(θa,0, fa) = ra|x(θa). The

derivative of eq.(9) w.r.t. θa can be computed by solving a linear system equations derived from eqs.(7)

and (8), and {θa} can be estimated. Figures 5 and 6 shows the results of separately trained KLRs

(left) and proposed method (right). Since the original KLRs are quite efficient, there is no room for

improvement, but the value of eq.(9) decreased from 0.5602 to 0.5509 by our method.

Figure 5: 4 base KLRs (left: trained separately, right: trained jointly), kernel function is K(x, x′) =

exp(−‖x − x′‖2/2σ2) with σ2 = 0.5, and λ = 0.001 in (9).
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Figure 6: Decision boundary of combined estimates (left: separately trained KLRs, right: jointly trained

KLRs)
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4 Conclusion

Combining base classifiers is a promising idea for multi-class problems. When we use the GBT model,

the combined output gives an interesting family of distribution, which is different from an exponential

family nor a mixture family even if the base classifiers are simple. Two extensions were proposed in

this paper, the estimation algorithm for the GBT model with the associated divergence and the base

classifiers’ learning algorithm.

The algorithm for the GBT model has a good property for the α–divergence. A different α will yield a

different estimation and further study is necessary. Learning base classifiers is an important idea. In the

framework of the error correction codes, the noisy channel is a stochastic process. In ECOC, although

base classifiers gives probability as their outputs, they act in a deterministic way, and we can train them

to make the combined prediction better. We have shown the gradient of the likelihood can be computed

when α = 1 and base classifiers are “1-vs-the rests.” The computational cost of the gradient is rather

large. We need to combine base classifiers (with Algorithm 3) and then solve a linear system of equations

with K + 1 variables for each data point and for every parameter of every base classifier. We are now

trying to apply quadratic methods for the learning, and also trying to extend the results to wider α and

combination of classifiers.
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