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Abstract

Since the proposal of turbo codes in 1993, many studies have appeared on this simple and new type of codes

which give a powerful and practical performance of error correction. Although experimental results strongly support

the efficiency of turbo codes, further theoretical analysis is necessary, which is not straightforward. It is pointed out

that turbo codes share essentially similar structure with low-density parity-check (LDPC) codes, with Pearl’s belief

propagation in a belief diagram, and with the Bethé approximation in statistical physics. Therefore, the mathematical

structure, which lies behind turbo codes, will reveal the mystery of those similar iterative methods. In this paper, we

recapture and extend the geometrical theory by Richardson in a more sophisticated framework of information geometry

of dual affine connections, focusing on turbo and LDPC decoding. It gives a new approach to further analysis, and

helps their intuitive understanding. We reveal some properties of these codes in the proposed framework, including

the stability and error analysis. Based on the error analysis, we finally propose a correction term for improving the

approximation.

Index Terms

turbo codes, low-density parity-check (LDPC) codes, information geometry, belief propagation

I. INTRODUCTION

The idea of turbo codes has been extensively studied since it was introduced in 1993[1]. The simple iterative

decoding algorithm of turbo codes performs close to the optimum theoretical bound of error correction. However,

the main properties so far obtained are mostly empirical, except for Richardson’s geometrical framework[2]. The

essence of turbo codes is not yet fully understood theoretically.

In addition to the experimental studies, clues to their essence have been sought in other methods. Since there are

some iterative methods, which are closely related to turbo codes, theoretical results of those methods were expected

to give further understanding of turbo codes. One of such methods is another class of error correcting codes called

the low-density parity-check (LDPC) codes, which was originally proposed by Gallager[3] and rediscovered by

MacKay[4]. Other methods related to turbo codes have been found in various fields, such as artificial intelligence and

statistical physics. McEliece et al. showed that the turbo decoding algorithm is equivalent to the belief propagation

algorithm[5], applied to a belief diagram with loops[6], [7]. MacKay demonstrated that the LDPC decoding algorithm

is also equivalent to the belief propagation algorithm[4], while Kabashima and Saad pointed out that the iterative

process of Bethé approximation in statistical physics is the same as that of the belief propagation algorithm [8],

[9]. However, the efficacy of these methods is also a sort of mystery, and their findings do not help us clarify the

mathematical structure of turbo codes.

Richardson[2] initiated a geometrical theory of turbo decoding. In this framework, he proved the existence of a

fixed point by utilizing Brouwer’s fixed point theorem, gave a condition for the fixed point to be unique, and analyzed

when the fixed point is locally stable. This is good start but still many properties are not fully understood. Another

theoretical approach is the density evolution[10], which describes the time evolution of message distribution. This

is a powerful tool providing quantitative prediction of performance of codes, but it is not easy to have insights
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for the mathematical structure of the codes. Therefore, further intuitive understanding of the iterative decoding

algorithms is necessary. A hope will be found in information geometry[11], [12] which studies intrinsic geometrical

structures existing in families of probability distributions. Along this line we extended the geometrical framework

of Richardson to analyze iterative decoding algorithms, especially those for turbo and LDPC codes in a unified

framework, and help their intuitive understanding. The framework is general so that main results are applicable to

related iterative algorithms.

The ideal goal of iterative decoding algorithms is the maximization of the posterior marginals (MPM). However,

since exact MPM decoding is usually computationally intractable, it is approximated using iterative algorithms.

The algorithms are elucidated by using the e–projection and m–projection in information geometry together with

the generalized Pythagorean theorem. Here, the Kullback-Leibler divergence, Fisher information, and the skewness

tensor play fundamental roles. The equilibrium of the iterative algorithms is analyzed and its local stability condition

is given in geometrical terms. These are regarded as a new formulation and elucidation of Richardson’s framework.

We further analyze the accuracy of approximation or the decoding error in terms of e– and m–curvatures. The

error term is given in an explicit form, so that the terms can be used to improve the decoding results. We give

an explicit algorithm for the improvement. This is also used as a design principle of LDPC codes, and show why

LDPC codes work so well. We finally touch upon the “free energy” in the statistical physics approach[9], [13].

The outline of the paper is as follows. In section II, we give the original schemes of turbo and LDPC codes. The

basic strategy of MPM decoding is given in section III. Section IV introduces the information geometry. Sections V

and VI describe the information geometry of turbo and LDPC decoding, respectively. Decoding errors are analyzed

in section VII, and finally conclusion is given with some discussions for future perspectives in section IX.

II. ORIGINAL DEFINITIONS OF TURBO AND LDPC CODES

A. Turbo Codes

1) Encoding: The idea of turbo codes is illustrated in Fig.1. Let x = (x1, · · · , xN)T , xi ∈ {−1,+1} be the

information bits to be transmitted. We assume a binary symmetric channel (BSC) with bit-error rate σ, and it

is easy to generalize the results to any memoryless channel (see Appendix I). Turbo codes use two encoders,

Encoders 1 and 2 in the figure, which generate two sets of parity bits in the encoding process. We denote them by

y1 = (y11, · · · , y1L)T and y2 = (y21, · · · , y2L)T , y1j , y2j ∈ {−1,+1}. Each set of parity bits yr, r = 1, 2, is a

function of x and is represented as yr(x) when an explicit expression is necessary. The set of these codes (x,y1, y2)

are transmitted through the BSC, and a receiver observes their noisy version, (x̃, ỹ1, ỹ2), x̃i, ỹ1j , ỹ2j ∈ {−1,+1}.

2) Decoding: Turbo codes handle the case where direct decoding with (ỹ1, ỹ2) as a single set of parity bits is

intractable, while soft decoding with each of ỹ1, ỹ2 is tractable. Two decoders are used for the decoding, Decoders

1 and 2 in the figure. Decoder 1 infers the original information bits, x, from (x̃, ỹ1), and Decoder 2 does the

same from (x̃, ỹ2). The inferences of these two decoders may differ initially, and a better inference is searched for

through iterative information exchange.
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Let us define the following variables (see [2]) with the use of the conditional probabilities p(x̃|x) and p(ỹr|x),

r = 1, 2,

lxi
def= ln

∑
{x:xi=+1} p(x̃|x)∑
{x:xi=−1} p(x̃|x)

= ln
p(x̃i|xi = +1)
p(x̃i|xi = −1)

,

lyrj
def= ln

∑
{x:yrj=+1} p(ỹr|x)∑
{x:yrj=−1} p(ỹr|x)

= ln
p(ỹrj |yrj = +1)
p(ỹrj |yrj = −1)

,

Lrx
def= F (lx, lyr) =

{
ln

∑
{x:xi=+1} p(x̃|x)p(ỹr|x)∑
{x:xi=−1} p(x̃|x)p(ỹr|x)

}
. (1)

The turbo decoding algorithm makes use of two slack variables, ξ1, ξ2∈RN , called “extrinsic variables,” for

exchanging information between the decoders. The algorithm is given as follows.

Turbo decoding (Original)

1) Let ξ1 = 0 and set t = 1.

2) Calculate L1x
(t) = F ((lx + ξ1), ly1) from eq.(1) and update ξ2:

ξ2 = L1x
(t) − (lx + ξ1).

3) Calculate L2x
(t) = F ((lx + ξ2), ly2) from eq.(1) and update ξ1:

ξ1 = L2x
(t) − (lx + ξ2).

4) Iterate 2 and 3 by incrementing t by one, until L1x
(t) = L2x

(t) = L1x
(t+1) = L2x

(t+1).

Ideally, steps 2 and step 3 would be iterated until convergence is achieved, but in practice, the number of iterations

is fixed at less than 20.

B. LDPC Codes

1) Encoding: Figure 2 illustrates the structure of LDPC codes. Let s = (s1, · · · , sM)T , si ∈ {0, 1}, be the

information bits. Although we use different notations than for turbo codes, it will soon become clear that the

problems are formulated in the unified view, i.e., estimating x from an observed ỹ. To compose the generator

and parity check matrices, two sparse matrices, C1∈{0, 1}K×M and C2∈{0, 1}K×K are prepared, where C2 is

invertible in the modulo 2 arithmetic. They are shared by the sender and the receiver. The parity check matrix is

H = (C1 C2), H ∈ {0, 1}K×N ,

where N = M +K. The generator matrix, GT ∈ {0, 1}N×M , is given by

GT =

⎛
⎝ EM

C−1
2 C1

⎞
⎠ mod 2,
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where EM is an identity matrix of size M . The codeword, u = (u1, · · · , uN)T , is generated from s:

u = GT s mod 2.

From the definition of GT , the first M bits of u are identical to s, and u is sent through the channel. We also assume

a BSC with bit-error rate σ. Codeword u is disturbed and received as ũ. Let the noise vector be x = (x1, · · · , xN)T ,

xi ∈ {0, 1}, and received bits ũ are

ũ = u + x mod 2.

LDPC decoding estimates s from ũ, which is equivalent to estimating noise vector x, since s is given by the first

M bits of ũ + x (mod 2). In the decoding process, parity check matrix H = {hij} = (C1 C2) ∈ {0, 1}K×N is

used; it satisfies the equality HGT = O. Syndrome vector y = (y1 , · · · , yK)T is calculated using y = Hũ. When

noise is x, the syndrome y is

y(x) = Hũ = H(u + x) = HGT s +Hx = Hx mod 2.

When ỹ is the observed syndrome, the decoding problem is to estimate x that satisfies ỹ = y(x).

2) Decoding: The iterative decoding algorithm for LDPC codes is described elsewhere [3], [4], [9]. It consists of

two steps: the “horizontal step” and the “vertical step.” We describe them using the following two sets of probability

distributions,

{q(0)ri , q
(1)
ri }, {p(0)

ri , p
(1)
ri }, q

(0)
ri + q

(1)
ri = 1, p

(0)
ri + p

(1)
ri = 1,

for pairs of indices (r, i), r = 1, · · · , K, i = 1, · · · , N , such that hri = 1.

LDPC decoding (Original)

Initialization: Set p(0)
ri = 1 − σ and p(1)

ri = σ for pairs of indices (r, i) such that hri = 1.

Horizontal step: Update {q(0)ri , q
(1)
ri } as follows. Note that the terms indexed by pairs of (r, i) appear in the

summations and products only if hri = 1.

lqri = ln

∑
x:xi=1

{
p(ỹr |x)

∏
i′:i′ �=i,hri′=1 p

(xi′)
ri′

}
∑

x:xi=0

{
p(ỹr |x)

∏
i′:i′ �=i,hri′=1 p

(xi′)
ri′

} ,
q
(0)
ri =

1
elqri + 1

, q
(1)
ri =

elqri

elqri + 1
.

Vertical step: Update {p(0)
ri , p

(1)
ri } as follows.

lpri = ln
σ

1− σ
+ ln

∏
r′:r′ �=r,hr′i=1 q

(1)
r′i∏

r′:r′ �=r,hr′i=1 q
(0)
r′i

,

p
(0)
ri =

1
elpri + 1

, p
(1)
ri =

elpri

elpri + 1
.
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Convergence: Stop when

lpi = ln
σ

1 − σ
+ ln

∏
r′ :hr′i=1 q

(1)
r′i∏

r′ :hr′i=1 q
(0)
r′i

.

When the algorithm achieves convergence, the estimate of x is obtained as,

x̂i =

⎧⎨
⎩ 1, lpi ≥ 0,

0, lpi < 0,
i = 1, · · · , N.

III. FORMULATION OF MPM DECODING

A. Unified View of Turbo and LDPC Decoding

The ideal goal of either turbo and LDPC decoding is MPM decoding. We first define MPM decoding in a

unified setting of turbo and LDPC decoding, and its specific form in each decoding is explained in the following

subsections. For the rest of the paper, we use the bipolar, i.e., {−1,+1}, expression for each bit xi, yi, x̃i, and ỹi .

The decoding problem is generally solved based on the posterior distribution of x conditioned on the observed

codeword or syndrome vector, i.e., p(x|x̃, ỹ1, ỹ2) in turbo codes and p(x|ỹ) in LDPC codes. The posterior

distribution of x is expressed as

q(x) = C exp(c0(x) + c1(x) + · · ·+ cK(x)), (2)

where c0(x) consists of the linear terms of {xi}; cr(x), r = 1, · · · , K, contains higher order interactions of {xi},

and the terms depend on the observed information, x̃, ỹ. We assume cr(x) �= cr′(x) for r �= r′. Decoding is

to estimate the information bits, x, based on q(x). One natural approach is MPM decoding. The MPM estimator

minimizes the expected number of wrong bits in the decoded word. MPM decoding in the bipolar case is achieved

by taking the expectation of x with respect to q(x). Let η = (η1, · · · , ηN)T be the expectation of x, and x̂ be the

decoded MPM estimator. Then

η =
∑

x

q(x)x, x̂ = sgn(η), (3)

where sgn(·) works in a bitwise manner. The η gives the “soft decoding,” and the sign of each soft bit ηi gives

the final result, x̂i.

Let q(xi) be the marginal distribution of one component xi in q(x), and let Π denote the operator of

marginalization, which maps q(x) to an independent distribution having the same marginal distributions:

Π◦q(x) def=
N∏

i=1

q(xi).

The soft bit ηi depends only on the marginal distribution q(xi). Since q(xi) is a binary distribution, ηi has a

one-to-one correspondence to q(xi). Therefore, soft decoding is equivalent to the marginalization of q(x). The

marginalization of q(x) generally needs summation over all possible x but one xi, and it is computationally not
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tractable in the case of turbo and LDPC decoding, where the length of x is more than a few hundred. Instead of

marginalizing the entire q(x) in (2), we decompose it into simple submodels, pr(x; ζr), r = 1, · · · , K,

pr(x; ζr) = exp(c0(x) + ζr · x + cr(x)− ϕr(ζr)), (4)

where ϕr(ζr) is the normalization factor. Each pr(x; ζr) includes only one nonlinear term cr(x), and the linear part

c0(x) of x is adjusted further through ζr, which we intend to approximate the effect of the other cr′(x), r′ �= r.

We thus have K component decoders, each of which decodes pr(x; ζr), r = 1, · · · , K. The parameter ζr plays the

role of a window through which information from the other decoders, r′ �=r, is exchanged. The idea is to adjust

{ζr} through iterative information exchange to approximate the overall Π◦q(x) with Π◦pr(x; ζr). We assume that

the marginalization or soft decoding is tractable for any pr(x; ζr).

B. Turbo Decoding

In this subsection, the concrete forms of eqs.(2) and (4) for turbo codes are derived. In turbo codes, the

receiver observes a noisy version of (x,y1, y2) as (x̃, ỹ1, ỹ2). We can easily derive the following relation from the

assumption of a memoryless channel,

p(x̃, ỹ1, ỹ2|x) = p(x̃|x)p(ỹ1|x)p(ỹ2|x).

The Bayes posterior distribution p(x|x̃, ỹ1, ỹ2) is defined with a prior distribution ω(x) of x. In this paper, we

consider the uniform prior, where ω(x) = 1/2N , and the Bayes posterior distribution is derived as,

p(x|x̃, ỹ1, ỹ2) =
p(x̃, ỹ1, ỹ2|x)ω(x)∑
x p(x̃, ỹ1, ỹ2|x)ω(x)

=
p(x̃, ỹ1, ỹ2|x)∑
x p(x̃, ỹ1, ỹ2|x)

. (5)

Since we consider BSC, where each bit is flipped independently with the same probability, p(x̃|x) and p(ỹr|x)

have the form of

p(x̃|x) = exp(βx̃ · x −Nψ(β)), ψ(β) = ln
(
e−β + eβ

)
p(ỹr|x) = exp(βỹr · yr(x) − Lψ(β)), r = 1, 2.

Positive real number β is called the inverse temperature in statistical physics and is related to σ by

σ =
1
2
(1 − tanhβ),

β → 0 as σ → 1/2, and β → ∞ as σ → 0. Let us define

c0(x) def= βx̃ · x, cr(x) def= βỹr · yr(x), r = 1, 2,

where c0(x) is linear in x, and ỹr ·yr(x) are polynomials in x, representing higher order correlational components

of many xi’s. The Bayes posterior distribution eq.(5) is rewritten as

p(x|x̃, ỹ1, ỹ2) = C exp(c0(x) + βỹ1 · y1(x) + βỹ2 · y2(x))

= C exp(c0(x) + c1(x) + c2(x)),

C
def=

1∑
x exp(c0(x) + c1(x) + c2(x))

.
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This distribution corresponds to q(x) in eq.(2), when K = 2.

In turbo decoding, each of the two constituent decoders marginalizes its own posterior distribution of x derived

from p(x̃, ỹr|x) = p(x̃|x)p(ỹr|x), where a prior distribution of the form

ω(x; ζr) = exp(ζr · x− ψ(ζr)), ζr ∈ RN , ψ(ζr) =
∑

i

ln
(
e−ζi

r + eζi
r
)

is used for taking information from the other decoder in the form of ζr. This is an independent distribution in

which the guess of the other decoder is used. The posterior distribution of decoder r is defined as

pr(x; ζr)
def= p(x|x̃, ỹr; ζr) =

p(x̃, ỹr|x)ω(x; ζr)∑
x p(x̃, ỹr|x)ω(x; ζr)

= exp(c0(x) + cr(x) + ζr · x − ϕr(ζr)),

ϕr(ζr)
def= ln

∑
x

exp(c0(x) + cr(x) + ζr · x), r = 1, 2.

It is clear that ζr plays the role of the window of information exchange, and that the information is used as a prior.

This distribution is of the form of eq.(4).

C. LDPC Decoding

We reformulate the LDPC decoding in this subsection. The vectors s, u, ũ, ỹ, and x are treated in the bipolar

form, while GT and H are still in the binary, i.e., {0, 1}, form. Note that 0 in the binary form corresponds to +1

in the bipolar form, and vice versa. Each bit yr of syndrome vector y(x) is written as a higher order correlational

product of {xi} in the bipolar form, that is, as a monomial in x:

yr(x) =
∏

j∈Lr

xj, Lr
def= {j | hjr = 1},

where hjr are elements of the parity-check matrix H .

We now consider the probability distribution of ỹ conditioned on x:

p(ỹ|x) = exp(ρỹ · y(x)−Kψ(ρ))

= exp(c1(x) + · · ·+ cK(x) −Kψ(ρ)),

cr(x) def= ρỹryr(x).

(6)

When ρ is large, the probability of ỹ is concentrated in the subset satisfying ỹ = y(x) because ỹ ·y(x) is maximized

in the set. “Hard inference” of LDPC codes is to search for the x that exactly satisfies the parity check equations:

ỹ = y(x).

This is the maximum likelihood decoding. However, the procedure is intractable for large K, and we use “soft

inference” which searches for the x that maximizes probability distribution p(ỹ|x) in eq.(6) with a moderate ρ

when syndrome ỹ is observed. This is convenient for MPM decoding, which minimizes the bitwise error rate.

Although “soft inference” approaches “hard inference” as ρ becomes larger, probability distribution p(ỹ|x) is not

smooth for a large ρ, and iteration is difficult. One approach is to begin with a moderate ρ, say ρ = 1 or 2, and to
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increase it (annealing). Empirical studies has shown that the “soft inference” with a fixed ρ has sufficiently good

performance[4].

Note that noise x is bitwise independent, and its error rate is given by σ = (1/2)(1− tanhβ). Consequently, we

have the prior distribution ω(x):

ω(x) = exp(β1N · x−Nψ(β)) = exp(c0(x) −Nψ(β))

c0(x) def= β
∑N

i=1 xi, 1N = (1, · · · , 1︸ ︷︷ ︸
N

)T .

As a result, the Bayes posterior distribution becomes

p(x|ỹ) =
p(ỹ|x)ω(x)∑
x p(ỹ|x)ω(x)

= C exp(c0(x) + c1(x) + · · ·+ cK(x)).

This is equivalent to q(x) in eq.(2).

In the horizontal and vertical steps of LDPC decoding, marginalization is carried out based on distribution

pr(x; ζr), which is calculated from p(ỹr |x) and prior ω(x; ζr). The parameter specifying the prior ζr is obtained

through the window for taking information from the other decoders’ r’s. We have

p(ỹr|x) = exp(cr(x) − ψ(β))

ω(x; ζr) = exp((β1N + ζr) · x− ψ(β1N + ζr)), ζr ∈ RN ,

pr(x; ζr) = p(x|ỹr; ζr) =
p(ỹr |x)ω(x; ζr)∑
x p(ỹr |x)ω(x; ζr)

= exp(c0(x) + cr(x) + ζr · x− ϕr(ζr))

ϕr(ζr)
def= ln

∑
x

exp(c0(x) + cr(x) + ζr · x), r = 1, 2, · · · , K.

This coincides with the formulation in eq.(4). The above argument shows that the LDPC decoding falls into the

general framework given in section III-A.

IV. INFORMATION GEOMETRY OF PROBABILITY DISTRIBUTIONS

The preliminaries from information geometry[11], [12] are given in this section.

A. Manifolds of Probability Distributions and e–flat, m–flat Submanifolds

Consider the family of all the probability distributions over x. We denote it by S:

S =

{
p(x)

∣∣∣ p(x) > 0,x ∈ {−1,+1}N ,
∑
x

p(x) = 1

}
.

This is the set of all distributions over 2N atoms x. The family S has (2N − 1) degrees of freedom and is a

(2N − 1)–dimensional manifold belonging to the exponential family[12], [14].

In order to prove this, we introduce random variables

δi1···iN (x) =

⎧⎨
⎩ 1, when x = (i1, · · · , iN)T , where ik ∈ {−1,+1}, k = 1, · · · , N

0, otherwise,
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Any p(x) ∈ S is expanded in the following form:

p(x) =
∑

pi1···iN δi1···iN (x), (7)

where pi1···iN = Pr{x1 = i1, · · · , xN = iN}, which shows p(x) ∈ S is parameterized by 2N variables {pi1···iN }.

Since
∑
p(x) = 1, the family S has (2N − 1) degrees of freedom.

Similarly, ln p(x) is expanded:

ln p(x) =
∑

i1···iN

(ln pi1···iN )δi1···iN (x).

Since the degrees of freedom are (2N − 1), we set θ = {θi1···iN | (i1 · · · iN) �= (−1 · · · − 1)},

θi1···iN = ln
pi1···iN

p−1···−1
.

and rewrite eq.(7) as

p(x; θ) = exp
( ∑

i1···iN

θi1···iN δi1···iN (x)− ϕ(θ)
)
,

where

ϕ(θ) = − ln Pr{x1 = · · · = xN = −1}.

This shows S is an exponential family whose natural, or canonical, coordinate system is θ.

The expectations of random variables δi1···iN (x) are

ηi1···iN = Ep[δi1···iN (x)] = pi1···iN .

They form another coordinate system of S that specifies p(x),

η = {ηi1···iN }, (i1 · · · iN) �= (−1 · · · − 1).

Since S is an exponential family, it naturally has two affine structures: the exponential– or e–affine structure and

the mixture– or m–affine structure. Equivalent structures were also used by Richardson[2]. When manifold S is

regarded as an affine space in ln p(x), it is e–affine, and θ gives the e–affine coordinate system. Similarly, when

manifold S is regarded as an affine space in p(x), it is m–affine, and η gives the m–affine coordinate system. They

are dually coupled with respect to the Riemannian structure given by the Fisher information matrix, which will be

introduced below.

First we define the e–flat and m–flat submanifolds of S.

e–flat submanifold: Submanifold M⊂S is said to be e–flat, when the following r(x; t) belongs to M for all

t ∈ [0, 1], q(x), p(x) ∈M .

ln r(x; t) = (1 − t) ln q(x) + t ln p(x) + c(t), t∈R,

where c(t) is the normalization factor. Obviously, {r(x; t)|t ∈ [0, 1]} is an exponential family connecting

two distributions, p(x) and q(x). In particular, when an e–flat submanifold is a one–dimensional curve,
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it is called an e–geodesic. The above {r(x; t)|t ∈ [0, 1]} is the e–geodesic connecting p(x) and q(x). In

terms of the e–affine coordinates, θ, a submanifold M is e–flat when it is linear in θ.

m–flat submanifold: Submanifold M⊂S is said to be m–flat when the following mixture r(x; t) belongs to M

for all t ∈ [0, 1], q(x), p(x) ∈M .

r(x; t) = (1 − t)q(x) + tp(x), t∈[0, 1].

When an m–flat submanifold is a one–dimensional curve, it is called an m–geodesic. Hence, the above

mixture family is the m–geodesic connecting them. In terms of the m–affine coordinates, η, a submanifold

M is m–flat when it is linear in η.

B. KL–divergence, Fisher Metric, and Generalized Pythagorean Theorem

Manifold S has a Riemannian metric given by the Fisher information matrix I. We begin with the Kullback-

Leibler divergence, D[·; ·], defined by

D[q(x); p(x)] =
∑
x

q(x) ln
q(x)
p(x)

.

The KL–divergence satisfies D[q(x); p(x)]≥0, and D[q(x); p(x)] = 0 when and only when q(x) = p(x) holds for

every x. Although symmetry D[q; p] = D[p; q] does not hold generally, it is regarded as an asymmetric squared

distance.

Consider two nearby distributions p(x; θ) and p(x; θ + dθ), specified by coordinates θ and θ + dθ in any

coordinate system. From Taylor expansion, their KL–divergence is given by the quadratic form

D[p(x; θ); p(x; θ + dθ)] =
1
2
dθT I(θ)dθ,

where I(θ) is the Fisher information matrix defined by

I(θ) =
∑

x

p(x; θ)∂θ ln p(x; θ)(∂θ ln p(x; θ))T = −
∑
x

p(x; θ)∂θθ ln p(x; θ),

where ∂θ represents the gradient operator (differentiation with respect to the components of θ). When the squared

distance of a small line element dθ starting from θ is given by the quadratic form

ds2 = dθTG(θ)dθ,

the space is called a Riemannian manifold with the Riemannian metric tensor G(θ), which is a positive-definite

matrix depending on θ. In the present case, the Fisher information matrix I(θ) plays the role of the Riemannian

metric G(θ). Hence, the infinitesimal KL-divergence is regarded as half the square of the Riemannian distance.

The Riemannian metric also defines the orthogonality of two intersecting curves. Let p(x; θ1(t)) and p(x; θ2(t))

be two curves intersecting at t = 0; that is, θ1(0) = θ2(0). The tangent vectors of the curves at t = 0 are represented

by θ̇1(t) and θ̇2(t) by using the coordinates, where θ̇i(t) = dθi(t)/dt. The two curves are said to be orthogonal

at their intersection t = 0, when their inner product with respect to the Riemannian metric vanishes:

〈θ̇1(0), θ̇2(0)〉 = θ̇1(0)T I(θ)θ̇2(0) = 0.
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Now we state the generalized Pythagoras theorem and projection theorem, which holds in a general dually flat

manifold[12], and show the dual nature of the e– and m–structures with the Riemannian metric.

Theorem 1: Let p(x), q(x), and r(x) be three distributions in S. When the m–geodesic connecting p(x) and

q(x) is orthogonal at q(x) to the e–geodesic connecting q(x) and r(x), the following relation holds

D[p(x); r(x)] = D[p(x); q(x)] +D[q(x); r(x)].

Next we define m–projection.

Definition 1: Let M be an e–flat submanifold in S, and let q(x)∈S. The point in M that minimizes the KL–

divergence from q(x) to M is denoted by

ΠM◦q(x) = argmin
p(x)∈M

D[q(x); p(x)]

and is called the m–projection of q(x) to M .

Finally, the m–projection theorem follows.

Theorem 2: Let M be an e–flat submanifold in S, and let q(x)∈S. The m–projection of q(x) to M is unique

and given by a point in M such that the m–geodesic connecting q(x) and ΠM◦q is orthogonal to M at this point.

C. Legendre Transformation and Local Structure

Let θ be the e–affine coordinate system of S. Every exponential family has the form

p(x; θ) = exp(c(x) + θ · x− ϕ(θ)).

The function ϕ(θ) is a convex function which is called the cumulant generating function in statistics, and the free

energy function in statistical physics. The m–affine coordinate system η is given by its gradient.

η = ∂θϕ(θ),

where ∂θ = ∂/∂θ is the gradient. This is the Legendre transformation; the dual potential, φ(η) is given

ϕ(θ) + φ(η)− θ · η = 0

and is the negative of the Shannon entropy,

φ(η) =
∑
x

p(x; η) ln p(x; η).

The Fisher information matrix is given by the second derivative of ϕ,

I(θ) = ∂θθϕ(θ),

which is positive-definite. We have shown that the square of the local distance is given by

D[p(x; θ); p(x; θ + dθ)] = D[p(x; θ + dθ); dθ] =
1
2
dθT I(θ)dθ.

The third derivative of potential ϕ,

T = ∂θθθϕ(θ),
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is called the skewness tensor. It is a symmetric tensor of order three, and its components are calculated as

Tijk = Ep[(xi − ηi)(xj − ηj)(xk − ηk)],

where Ep[·] denotes expectation with respect to p(x). The KL–divergence is expanded as

D[p(x; θ); p(x; θ + dθ)] =
1
2
dθT I(θ)dθ +

1
6
(dθ)3 ◦ T (θ),

where

(dθ)3 ◦ T (θ) def=
∑
i,j,k

dθidθjdθkTijk(θ)

in the component form. This shows the local asymmetry of the KL–divergence:

D[p(x; θ); p(x; θ + dθ)] −D[p(x; θ + dθ); p(x; θ)] =
1
3
(dθ)3 ◦ T (θ).

The skewness tensor plays a fundamental role in the analysis of decoding error.

D. Important Submanifolds and Marginalization

Now, we consider a submanifold, MD, in which every joint distribution is decomposed as

p(x) =
N∏

i=1

p(xi), p(x)∈MD.

All the bits of x are independent for a distribution in MD. Since each bit takes one of {−1,+1}, p(xi) is a binomial

distribution, and p(x) belongs to an exponential family of the form

p(x; θ) =
N∏

i=1

p(xi; θi) =
N∏

i=1

exp(θixi − ϕ(θi)) = exp(θ · x− ϕ(θ))

ϕ(θ) =
N∑

i=1

ϕ(θi) = ln
N∑

i=1

(
e−θi + eθi

)
, θ ∈ RN .

(8)

The submanifold MD is N -dimensional, with its e–affine coordinate system θ = (θ1, · · · , θN)T , which are the

natural or canonical parameters in MD. The other parameter (m–affine coordinate system) is the expectation

parameter η = (η1, · · · , ηN)T defined by

η = Ep[x] =
∑
x

p(x; θ)x.

This is equivalent to the soft decoding in eq.(3). There is a simple one-to-one correspondence between θ and η:

∂θϕ(θ) = η, ηi = tanh(θi), θi =
1
2

ln
1 + ηi

1 − ηi
, i = 1, · · · , N.

Proposition 1: MD is an e–flat submanifold of S.

Proof: MD is a submanifold of S. Let θ, θ′ ∈ RN and p(x; θ), p(x; θ′)∈MD . For any θ, θ′,

ln r(x; t) = (1 − t) ln p(x; θ) + t ln p(x; θ′) + c(θ, θ′; t)

= ((1 − t)θ + tθ′) · x + c(θ, θ′; t).
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Let u(t) def=(1 − t)θ + tθ′, and r(x; t) = exp(u(t) · x − ϕ(u(t))) belongs to MD .

We now define a number of e–flat submanifolds that play important roles in the decoding algorithms. The first

is the submanifold of p0(x; θ) defined by

M0 =
{
p0(x; θ) = exp(c0(x) + θ · x − ϕ0(θ))

∣∣∣ x ∈ {−1,+1}N , θ∈RN
}
.

Since c0(x) is linear in {xi}, M0 is identical to MD. Let c0(x) = α · x, where α = βx̃ for turbo codes and

α = β1N for LDPC codes. The new coordinate, θ is obtained by shifting the old one, θold, in eq.(8) by α:

θ = θold − α, ϕ0(θ) = ϕ(θ + α).

We use the coordinates θ as a coordinate system of M0, in which information from the constituent decoders is

integrated. We define the expectation parameter as η0(θ), which is another coordinate system of M0 and is dual

to θ:

η0(θ) def=
∑

x

p0(x; θ)x = ∂θϕ0(θ). (9)

Next, we consider the submanifold primarily responsible for only one cr(x). The submanifold, Mr, r = 1, · · · , K

(K = 2 for turbo codes), is defined by

Mr =
{
pr(x; ζr) = exp(c0(x) + cr(x) + ζr · x− ϕr(ζr))

∣∣∣ x ∈ {−1,+1}N , ζr∈RN
}
.

Here, ζr is the e–affine coordinate system or the natural parameters of Mr , through which information of the other

decoders is integrated. Mr is also an e–flat submanifold of S. However, Mr �= M0 and Mr �= Mr′ , r �= r′, because

cr(x) includes higher order correlations of {xi} and cr(x)�=cr′(x). The expectation parameter for Mr is defined

as

ηr(ζr)
def=

∑
x

pr(x; ζr)x = ∂ζrϕr(ζr). (10)

We show that the soft decoding is the m–projection to M0 of the posterior distribution. Let us consider the

m–projection of q(x) to M0. The derivative of D[q(x); p0(x; θ)] with respect to θ is

∂θD[q(x); p0(x; θ)] = ∂θϕ0(θ) −
∑

x

q(x)x = η0(θ) −
∑
x

q(x)x.

By the definition of the m–projection, this vanishes at the projected point. Hence, the m–affine coordinate of the

projected point θ∗ is given by η0(θ∗) =
∑

x q(x)x,

η0,i(θ∗i ) =
∑

x

q(x)xi =
∑
xi

q(xi)xi,

which shows that the m–projection of q(x) does not change the expectation of x. This is equivalent to the soft

decoding defined in eq.(3) (Fig.3).
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V. INFORMATION GEOMETRY OF TURBO DECODING

The goal of turbo decoding is to obtain a good approximation of MPM decoding for q(x) = p(x|x̃, ỹ1, ỹ2).

Although the m–projection of q(x) to M0 is not tractable, the m–projection of any distribution pr(x; ζr) ∈ Mr ,

r = 1, 2 to M0 is tractable with BCJR algorithm. Since each pr(x; ζr), r = 1, 2, is derived from p(x̃, ỹr|x) and

a prior ω(x; ζr) ∈ MD, we can describe turbo decoding as a method to approximate the m–projection of q(x) to

M0 by changing the prior of pr(x; ζr) iteratively and projecting pr(x; ζr) to M0.

A. Information Geometrical Definition of Turbo Decoding

The turbo decoding algorithm in subsection II-A is rewritten in the information geometrical framework. It is

convenient to use an adequate e–affine coordinate system of M for the m–projection of q(x) to M . Let πM◦q(x)

denote the coordinate θ of M corresponding to the m–projected distribution:

πM◦q(x) = argmin
θ∈RN

D[q(x); p(x; θ)].

Turbo decoding (information geometrical view)

1) Let ζt
2 = 0 for t = 0. For t = 0, 1, 2, · · · , compose p2(x; ζt

2)∈M2 with prior ζt
2.

2) Perform m–projection of p2(x; ζt
2) to M0 as πM0◦p2(x; ζt

2), and update ζt+1
1 using

ζt+1
1 = πM0◦p2(x; ζt

2) − ζt
2. (11)

3) Compose p1(x; ζt+1
1 )∈M1. Perform m–projection of p1(x; ζt+1

1 ) to M0 as πM0◦p1(x; ζt+1
1 ) and update ζt+1

2

using

ζt+1
2 = πM0◦p1(x; ζt+1

1 ) − ζt+1
1 . (12)

4) If πM0◦p1(x; ζt+1
1 ) �= πM0◦p2(x; ζt+1

2 ), go to step 1.

To clarify this procedure, we introduce three auxiliary parameters θ, ξ1, and ξ2:

θ
def= ζ1 + ζ2, ξ1

def= θ − ζ1 = ζ2, ξ2
def= θ − ζ2 = ζ1.

The intuition behind this framework is as follows. Each of the higher order correlation term, c1(x) or c2(x) is

included only in Decoder 1 or Decoder 2, respectively. Decoders 1 and 2 calculate, using the m–projection, the

linear approximations ξ1 · x and ξ2 · x of c1(x) and c2(x) and send messages ξ1 and ξ2 to the other decoders.

In the interactive procedures, Decoder 1 forms the distribution p1(x; ζ1), in which the nonlinear effect other than

c1(x) (that is, c2(x) in the turbo decoding case of K = 2) is replaced by the estimate ζ1(= ξ2), which is

equal to the message ζ1 sent from Decoder 2. In the general case of K > 2, ζ1 summarizes all the messages,

ξ2, · · · , ξK , from the other decoders. The same explanation holds for Decoder 2. The total linear estimate is given
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by θ · x = ξ1 · x + ξ2 · x. The idea of turbo decoding is schematically shown in Fig.4. The projected distribution

is written as

p0(x; θ) = exp(c0(x) + θ · x − ϕ0(θ)) = exp(c0(x) + ξ1 · x + ξ2 · x − ϕ0(θ)).

B. Equilibrium of Turbo Decoding

Assume that the decoding algorithm converges to a distribution p0(x; θ∗), where ∗ is used to denote the

equilibrium point. The distribution p0(x; θ∗) is the approximation of the m–projection of q(x) to M0. The estimated

parameter θ∗ satisfies θ∗ = πM0◦p1(x; ζ∗
1 ) = πM0◦p2(x; ζ∗

2) and θ∗ = ξ∗
1 + ξ∗

2 = ζ∗
1 + ζ∗

2 from the definition of

the algorithm.

The converged distributions p1(x; ζ∗
1), p2(x; ζ∗

2 ), and p0(x; θ∗) satisfy two conditions:

1) πM0◦p1(x; ζ∗
1 ) = πM0◦p2(x; ζ∗

2 ) = θ∗ (13)

2) θ∗ = ξ∗
1 + ξ∗

2 = ζ∗
1 + ζ∗

2 . (14)

The first condition can be rewritten with the expectation parameter defined in eqs.(9) and (10) as

η1(ζ∗
1 ) = η2(ζ∗

2 ) = η0(θ∗).

In order to give an information geometrical view of these conditions, we define two submanifolds in S. The first

is the m–flat submanifold, M(θ), which we call the equimarginal submanifold, attached to each p0(x; θ)∈M0. It

is defined by

M(θ) =

{
p(x)

∣∣∣ p(x) ∈ S,
∑
x

p(x)x =
∑
x

p0(x; θ)x = η0(θ)

}
.

The expectation of x is equal to η0(θ) for any p(x)∈M(θ). Hence, the m–projection of any p(x)∈M(θ) to M0

coincides with p0(x; θ). In other words, M(θ) is the inverse image of p0(x; θ) of the m-projection. For every θ,

there exist unique p1(x; ζ1) ∈ M1 and p2(x; ζ2) ∈ M2 such that the expectations of x with respect to pr(x; ζr)

and p0(x; θ) satisfy

η1(ζ1) = η2(ζ2) = η0(θ).

We denote the parameters that satisfy this equation by ζ1(θ) and ζ2(θ). In other words, we define ζ1(θ) def= πM1 ◦

p0(x; θ) and ζ2(θ) def= πM2 ◦ p0(x; θ). Obviously, p1(x; ζ1(θ)), p2(x; ζ2(θ)) ∈ M(θ), and πM0 ◦ p1(x; ζ1(θ)) =

πM0 ◦ p2(x; ζ2(θ))) = θ; however generally, ζ1(θ) + ζ2(θ) �= θ except for equilibrium point θ∗. The projection

theorem shows that M(θ) is orthogonal to M0, M1, and M2 (Fig.5), and that pr(x; ζr(θ)) is the intersection of

Mr and M(θ).

We next define an e–flat submanifold E(θ) connecting p0(x; θ), p1(x; ζ1(θ)), and p2(x; ζ2(θ)) in a log-linear

manner:

E(θ) =
{
p(x) = Cp0(x; θ)t0p1(x; ζ1(θ))t1p2(x; ζ2(θ))t2

∣∣∣ 2∑
r=0

tr = 1
}
, C : normalization factor.
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This manifold is a two-dimensional e–affine subspace of S. Apparently, p0(x; θ), p1(x; ζ1(θ)), and p2(x; ζ2(θ))

belongs to E(θ). Moreover, at equilibrium θ∗, q(x) is included in E(θ∗). This is easily proved by setting t0 = −1,

t1 = t2 = 1, and eq.(14)

C
p1(x; ζ∗

1)p2(x; ζ∗
2 )

p0(x; θ∗)
=C exp(2c0(x) + c1(x) + c2(x) + (ζ∗

1 + ζ∗
2 ) · x − (c0(x) + θ∗ · x))

=C exp(c0(x) + c1(x) + c2(x)) = q(x).

This discussion is summarized in the following theorem.

Theorem 3: At the equilibrium of the turbo decoding algorithm, p0(x; θ∗), p1(x; ζ∗
1 ), and p2(x; ζ∗

2 ) belong to

the equimarginal submanifold M(θ∗): its e–flat version, E(θ∗), includes p0(x; θ∗), p1(x; ζ∗
1 ), p2(x; ζ∗

2 ), and q(x).

The theorem shows the information geometrical structure of the equilibrium point. If M(θ∗) includes q(x),

p0(x; θ∗) gives MPM decoding based on q(x), since the soft decoding of q(x) is equivalent to the m–projection

of q(x) to M0, and M(θ∗) is orthogonal to M0 at p0(x; θ∗). However, since the m–flatness and the e–flatness do

not coincide in general, M(θ∗) does not necessarily include q(x), while its e–flat version, E(θ∗), includes q(x)

instead of M(θ∗). This shows that turbo decoding approximates MPM decoding by replacing the m–flat manifold

M(θ∗) with the e–flat manifold E(θ∗). It should be noted that p0(x; θ∗) is not the e–projection of q(x) to M0

either, because E(θ∗) is not necessarily orthogonal to M0. When it is orthogonal, it minimizes the KL–divergence

D[p0(x; θ); q(x)], θ ∈ RN , which gives the naive mean field approximation [15]. The replacement of m–projection

with e–projection shares the similar idea of the mean field approximation[9], [15], [16], [17], [18]. Generally, there

is a discrepancy between M(θ∗) and E(θ∗), which causes a decoding error (Fig.6). This suggests a possibility of

a new method to improve the iterative decoding. We will study this in section VII.

C. Local Stability Analysis of Equilibrium Point

We discuss the local stability condition in this subsection. Let I0(θ) be the Fisher information matrix of p0(x; θ),

and Ir(ζr) be that of pr(x; ζr), r = 1, 2. Since they belong to the exponential family, we have the following relations:

I0(θ) = ∂θθϕ0(θ) = ∂θη0(θ),

Ir(ζr) = ∂ζrζrϕr(ζr) = ∂ζrηr(ζr), r = 1, 2.

Note that I0(θ) is a diagonal matrix whose diagonal elements are

[I0(θ)]ii = 1 − η2
0,i.

In order to discuss the local stability, we give a sufficiently small perturbation, ∆ζ2, to ζ∗
2 and apply one step

of the decoding procedure. Let ζ ′
2 = ζ∗

2 +∆ζ ′
2 be the parameter after one step of turbo decoding. From step 2, we

have θ∗ +∆θ = πM0◦p2(x; ζ∗
2 +∆ζ2), such that

η0(θ∗ +∆θ) = η2(ζ∗
2 +∆ζ2).
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By simple expansion, we have

η0(θ∗) + I0(θ∗)∆θ = η2(ζ∗
2 ) + I2(ζ∗

2 )∆ζ2

∆θ = I0(θ∗)−1I2(ζ∗
2 )∆ζ2.

Thus, ζ1 in step 2 becomes

ζ1 = ζ∗
1 + (I0(θ∗)−1I2(ζ∗

2) −EN)∆ζ2.

Following the same line for step 3, ∆ζ ′
2 is given by

∆ζ ′
2 = (I0(θ∗)−1I1(ζ∗

1 ) − EN)(I0(θ∗)−1I2(ζ∗
2 ) −EN)∆ζ2 = Tturbo∆ζ2,

where

Tturbo = (I0(θ∗)−1I1(ζ∗
1 ) − EN)(I0(θ∗)−1I2(ζ∗

2 ) −EN).

This shows that original perturbation ∆ζ2 becomes Tturbo∆ζ2 after one iteration.

Theorem 4: When |λi| < 1 for all i, where λi are the eigenvalues of matrix Tturbo, the equilibrium point is

locally stable.

This theorem coincides with the result of Richardson[2], Sect. V-A.

VI. INFORMATION GEOMETRY OF LDPC DECODING

A. Information Geometry of Decoding Process

The LDPC decoding procedure in subsection II-B is rewritten in the information geometrical framework as

follows.

LDPC decoding (information geometrical view)

Initialization: For t = 0, set ζ0
r = 0 (r = 1, · · · , K). For t = 0, 1, 2, · · · , compose pr(x; ζt

r) ∈Mr .

Horizontal step: Calculate the m−projection of pr(x; ζt
r) to M0 and define ξt+1

r as

ξt+1
r = πM0◦pr(x; ζt

r) − ζt
r , r = 1, · · · , K. (15)

Vertical step: Update {ζt+1
r } and θt+1:

θt+1 =
K∑

r=1

ξt+1
r , ζt+1

r = θt+1 − ξt+1
r , r = 1, · · · , K.

Convergence: If θt does not converge, repeat the process by incrementing t by 1.

Here, ξr is a message from each decoder that expresses the contribution of cr(x), and θ integrates all the messages.

Each decoder summarizes the information from all the other decoders in the form of the prior ω(x; ζr). For turbo
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decoding, K is equal to 2, and ξ1 = ζ2 and ξ2 = ζ1. Therefore, eq.(11) and eq.(12) are both equivalent to eq.(15)

in LDPC decoding. The main difference between turbo and LDPC decoding is that the turbo decoding updates ζr

sequentially, while LDPC decoding updates them simultaneously.

B. Equilibrium and Stability

The equilibrium of LDPC codes satisfies two conditions:

1) πM0◦pr(x; ζ∗
r ) = θ∗, r = 1, · · · , K.

which can be rewritten with the expectation parameters as,

η0(θ∗) = η1(ζ∗
1) = · · · = ηK(ζ∗

K).

2) θ∗ =
K∑

r=1

ξ∗
r =

1
K − 1

K∑
r=1

ζ∗
r .

Theorem 3 holds for LDPC decoding, in which the definitions of submanifold E(θ) must be extended as follows:

E(θ) =

{
p(x)

∣∣∣ p(x) = Cp0(x; θ)t0

K∏
r=1

pr(x; ζr(θ))tr , tr∈R,
K∑

r=0

tr = 1

}

C : normalization factor,

where ζr(θ) is defined as

ζr(θ) def= πMr◦p0(x; θ), r = 1, · · ·, K.

At the converged point, q(x) is included in E(θ∗), which can be proved by setting t0 = −(K−1), t1 = t2 = · · · = 1:

C

∏K
r=1 pr(x; ζ∗

r )
p0(x; θ∗)K−1

= C exp
(
Kc0(x) +

K∑
r=1

cr(x) +
K∑

r=1

ζ∗
r · x − (K − 1)c0(x) − (K − 1)θ∗ · x

)
= C exp(c0(x) + c1(x) + · · ·+ cK(x)) = q(x).

This above equation proves that Theorem 3 holds for LDPC decoding.

We next show the local stability condition for LDPC decoding. Consider a case in which a sufficiently small

perturbation is added to the equilibrium: ζr = ζ∗
r +∆ζr . The next state after a vertical step and a horizontal step

is denoted by ζ ′
r = ζ∗

r +∆ζ ′
r. After the perturbation is added, the vertical step gives ξr = ξ∗

r +∆ξr, where

∆ξr = I0(ξ∗)−1Ir(ζ∗
r )∆ζr −∆ζr = (I0(θ∗)−1Ir(ζ∗

r ) −EN)∆ζr .

Following the horizontal step, we have

∆ζ ′
r =

K∑
r �=s

(I0(θ∗)−1Is(ζ∗
s ) − EN)∆ζs.

The local stability condition of LDPC decoding is summarized as follows.
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Theorem 5: The linearization of the dynamics of LDPC decoding around the equilibrium is⎛
⎜⎜⎜⎝
∆ζ ′

1

...

∆ζ ′
K

⎞
⎟⎟⎟⎠ = TLDPC

⎛
⎜⎜⎜⎝
∆ζ1

...

∆ζK

⎞
⎟⎟⎟⎠ ,

where

TLDPC =

⎛
⎜⎜⎜⎜⎜⎜⎝

O I−1
0 I2 − EN · · · I−1

0 IK −EN

I−1
0 I1 −EN O

...
...

. . .
...

I−1
0 I1 −EN · · · · · · O

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

I0 = I0(θ∗), and Ir = Ir(ζ∗
r ). The equilibrium is locally stable when every eigenvalue, λi (i = 1, · · · , NK), of

TLDPC satisfies |λi| < 1.

The local stability condition generally depends on the syndrome vector, ỹ. However, when the partial conditional

probability, pr(x; ζ∗
r ), is close to p0(x; θ∗), Ir≈I0. For LDPC, pr(x; ζ∗

r ) ≈ p0(x; θ∗) because of the sparsity of

the parity check matrix. This implies that all the eigenvalues of TLDPC should be small, which leads to a stable

and quick convergence.

VII. ANALYSIS OF DECODING ERRORS

A. Framework of Error Analysis

We have described the information geometrical framework of the decoding algorithms and have shown how

MPM decoding is approximated by these decoding algorithms. In this section we analyze the goodness of the

approximation and give a correction term for improving the approximation. We also provide an explanation why

the sparsity, i.e., low density, of the parity check matrix has an advantage.

For the following discussion, we define the family of distributions,

MS = {p(x; θ, v)},

by using two sets of parameters: θ = (θ1, . . . , θN)T ∈ RN and v = (v1, . . . , vK)T ∈ RK .

p(x; θ, v) = exp
(
c0(x) + θ · x +

K∑
r=1

vrcr(x) − ϕ(θ, v)
)

= exp(c0(x) + θ · x + v · c(x) − ϕ(θ, v))

ϕ(θ, v) def= ln
∑
x

exp(c0(x) + θ · x + v · c(x)), c(x) def=(c1(x), . . . , cK(x))T .

The family MS is a (K + N)–dimensional exponential family. The manifolds M0 = {p0(x; θ)} and Mr =

{pr(x; ζr)} are submanifolds of MS since M0 = {p(x; θ, v)|v = 0} and Mr = {p(x; θ, v)|v = er}, where er is

the unit vector

er = (0, . . . , 0, 1
∧
r

, 0, . . . , 0)T .
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It also includes q(x), when we set θ = 0 and v = 1K :

1K = (1, · · · , 1︸ ︷︷ ︸
K

)T =
K∑

r=1

er.

We denote the expectation parameter of p(x; θ, v) ∈MS by η(θ, v) = (η1(θ, v), . . . , ηN(θ, v))T , which is given

by

η(θ, v) = ∂θϕ(θ, v) =
∑
x

p(x; θ, v)x.

B. Analysis of Equimarginal Submanifold M(θ∗)

Let p(x; θ, v) be the distributions included in the equimarginal submanifold, M(θ∗); that is, η(θ, v) =

η(θ∗, 0)def=η(θ∗). This constraint makes θ an implicit function of v, which is denoted by θ(v). Note that θ∗ = θ(0).

More precisely,

η(θ(v), v) = η(θ(0), 0) = η(θ∗),

for any v. We analyze how θ changes from θ∗ as v changes from 0 and finally becomes 1K . We start by introducing

the derivative D/∂v along M(θ):

0 =
D

∂v
η(θ, v) =

∂η

∂θ

∂θ

∂v
+
∂η

∂v
. (16)

The structural quantities ∂η/∂θ and ∂η/∂v are the Fisher information because η = ∂ϕ(θ, v)/∂θ. We use the index

notation in which suffixes i, j, and k are for θ and r, s, and t are for v. In component form, (I0(θ) =)Gθθ
def=(∂η/∂θ)

and Gθv
def=(∂η/∂v) are defined as

gij(θ) =
∂ηi

∂θj
= Gij(θ) = I0,ij(θ), gir(θ) =

∂ηi

∂vr
.

From eq.(16), Gθθ, and Gθv we have

0 = I0(θ)
∂θ

∂v
+Gθv(θ)

∂θ

∂v
= −I−1

0 (θ)Gθv(θ) def= −G̃θv . (17)

Similarly, from

D2

∂v∂v
η(θ, v) = 0,

we have

I0(θ)
∂2θ

∂v∂v
= −Tθvv − Tθθθ

∂θ

∂v

∂θ

∂v
− 2Tθθv

∂θ

∂v
, (18)

where

Tθθθ =
∂3ϕ

∂θ∂θ∂θ
, Tθθv =

∂3ϕ

∂θ∂θ∂v
, Tθvv =

∂3ϕ

∂θ∂v∂v
.
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More explicitly, by using the index notation, we have∑
j

gij
∂2θj

∂vr∂vs
= −Tirs −

∑
j,k

Tijk
∂θj

∂vr

∂θk

∂vs
− 2

∑
j

Tijr
∂θj

∂vs
.

By replacing ∂θ/∂v in eq.(18) with the result of eq.(17), we get

I0(θ)
∂2θ

∂v∂v
= −Tθvv − TθθθG̃θvG̃θv + 2TθθvG̃θv.

The differential operator D/dv at (θ, v) = (θ∗, 0) is written as

D

dv

∣∣∣
(θ,v)=(θ∗,0)

def= B =
∂

∂v
− G̃θv(θ∗)

∂

∂θ
,

In the component form, it is

Br =
∂

∂vr
−

∑
i

g̃ir(θ∗)
∂

∂θi
.

Following some calculations, we have

∂2θ

∂v∂v
= −I0(θ∗)−1B2η.

We denote the (r, s) component of B2 by Brs = BrBs. Note that B2η �= 0 while (D2/∂v∂v)η = 0.

The second-order approximation of θ(v) around (θ∗, 0) is given by

θ(v) =θ∗ +
∂θ

∂v
v +

1
2
vT ∂2θ

∂v∂v
v,

=θ∗ − G̃θvv − 1
2
vTI−1

0 (θ∗)(B2η)v,

where the values of G and T are to be evaluated at (θ∗, 0). By plugging v = 1K into the formula, we have

θi(1K) = θ∗i −
∑

r

g̃ir(θ∗) − 1
2
(I−1

0 (θ∗))ii

(∑
r,s

Brs

)
ηi(θ∗), (19)

which shows the point at which M(θ∗) intersects the submodels {p(x; θ, 1K)}. Since q(x) is given by p(x; 0, 1K),

θ(1K ) is related to the discrepancy of q(x) and the iterative decoding result.

This result is based on the perturbation analysis, of which justification is outlined below. When ε is small, the

Taylor expansion for function f(x) is

f(ε) = f(0) + f ′(0)ε+
1
2
f ′′(0)ε2 +O(ε3).

When we rescale v = x/ε,

f(v) = f(0) + εf ′(0)v +
1
2
ε2f ′′(0)v2 + O(ε3).

In our analysis of iterative decoding, x = ε corresponds to vr = 1, where the k-th derivative is of the order εk. We

have assumed that the effects of v are small, and we take the expansion with respect to v in terms of ε. We finally

set ε = 1, and the results are valid in the above sense.
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In order to conclude our analysis of the decoding error based on perturbation analysis, we consider two

distributions:

p(x; θ∗, 0) = exp(c0(x) + θ∗ · x − ϕ(θ∗, 0))

p(x; ζr , εer) = exp(c0(x) + ζr · x + εcr(x) − ϕ(ζr , εer)).

Note that p(x; θ∗, 0) ≡ p0(x; θ∗), and p(x; ζr , εer)
∣∣
ε=1

= pr(x; ζ∗
r ). Let p(x; ζr, εer), r = 1, . . . , K, be included

in M(θ∗). From the result of eq.(19), ζr − θ∗ is approximated in the power series of ε:

ζr − θ∗ − G̃θv(θ∗)erε−
1
2
I−1
0 (θ∗)Brrη(θ∗)ε2.

This gives the approximation of ξ∗
r as ε becomes 1:

ζ∗
r − θ∗ = −ξ∗

r − G̃θv(θ∗)er −
1
2
I−1
0 (θ∗)Brrη(θ∗).

Hence, θ∗ satisfies

θ∗ =
∑

r

ξ∗
r  G̃θv(θ∗)1K +

1
2
I−1
0 (θ∗)

∑
r

Brrη(θ∗). (20)

Consider another distribution,

p(x; u, ε1K) = exp(c0(x) + u · x + ε1K · c(x) − ϕ(u, ε1K)).

Note that p(x; 0, ε1K)
∣∣
ε=1

= q(x) and that p(x; u, ε1K) is included in M(θ∗). As ε increases from 0 to 1, u

becomes u∗, and generally u∗ �= 0, which means q(x) is generally not included in M(θ∗).

From the result of eq.(19), we have

u∗ − θ∗ − G̃θv(θ∗)1K − 1
2
I−1
0 (θ∗)

∑
r,s

Brsη(θ∗). (21)

From eqs.(20) and (21), we have

u∗  −1
2
I−1
0 (θ∗)

∑
r �=s

Brsη(θ∗).

From the Taylor expansion, we have

η(0, 1K)  η(u∗, 1K) −∇θη(θ∗)u∗ = η(θ∗) +
1
2

∑
r �=s

Brsη(θ∗). (22)

Note that η(0, 1K) is the expectation of x with respect to q(x) which is equivalent to soft decoding based on q(x).

Equation (22) shows the difference between the ultimate goal of the decoding and the result of iterative decoding.

We summarize the above analysis:

Theorem 6: Let ηMPM
def= η(0, 1K) be the expectation of x with respect to q(x), and η(θ∗) be the expectation

with respect to the distribution obtained by iterative decoding. Then, ηMPM is approximated by decoding result

η(θ∗):

ηMPM  η(θ∗) +
1
2

∑
r �=s

Brsη(θ∗). (23)
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C. Remark on Brsηi

We remark here that the error term is related to the curvature of M(θ∗) without giving details about the definition

of the e– and m–curvatures. See Amari and Nagaoka[12] for the mathematical details. We have shown that M(θ)

is m–flat. This implies that the embedding m–curvature tensor vanishes; that is,

H(m)i
rs =

D2

∂vr∂vs
ηi(v) = 0.

On the other hand, M(θ) is not e–flat, so the embedding e–curvature is given by

H(e)i
rs =

D2

∂vr∂vs
θi(v).

Its covariant version is given by

H(e)i
rs = Brsηi,

which shows that the error term is directly related to the e–curvature of M(θ∗).

VIII. IMPROVING DECODING ERRORS FOR LDPC CODES

A. Structural Terms

The terms Brsηi are given by structural tensors G and T at p0(x; θ) ∈M0. For LDPC codes, they are given by

gir =Ep0 [(xi − ηi)(cr(x) − c̄r)], Tijr = Ep0 [(xi − ηi)(xj − ηj)(cr(x)− c̄r)],

where Ep0 denotes the expectation with respect to p0(x; θ), and

c̄r = Ep0 [cr(x)] = ρỹr

∏
j∈Lr

ηj.

Because the xi’s are independent with respect to p0(x; θ), the following relations hold and are used for further

calculation:

Ep0 [xicr(x)] =

⎧⎪⎨
⎪⎩

ηic̄r, when i /∈ Lr,
1
ηi
c̄r when i ∈ Lr,

Ep0 [cr(x)cs(x)] =
1
Prs

c̄rc̄s,

where

Prs =

⎧⎨
⎩

∏
j∈Lr∩Ls

η2
j . when Lr ∩ Ls �= ∅,

1 when Lr ∩ Ls = ∅.

The explicit forms of G and T are given in Appendix II.
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B. Algorithm to Calculate Correction Term

From the result of Theorem 6, the soft-decoded η∗ is improved by

ηMPM = η(θ∗) +
1
2

∑
r �=s

Brsη(θ∗).

By calculating Brsηi for (r �= s), (see Appendix III), we give the algorithm to calculate correction term Brsηi as

follows.

1) Calculate

c̄r = Ep0 [cr(x)].

2) Given i, search for the pair (r, s) which includes i, that is, i ∈ Lr and i ∈ Ls. Calculate

Brsηi = 2
1− η2

i

ηi
c̄r c̄s

∑
j �=i

1 − η2
j

η2
j

hjrhjs. (24)

3) Given i, search for the pair (r, s) such that i ∈ Lr and i /∈ Ls. Calculate

Brsηi = c̄rc̄s
1 − η2

i

ηi

⎛
⎝−1 − Prs

Prs
+

∑
j

1 − η2
j

η2
j

hjrhjs

⎞
⎠ . (25)

4) The correction term is given by summing up over all (r, s) in the above two cases.

The summation in eq.(24) runs over j ∈ Lr ∩ Ls \ i, and that in eq.(25) runs over j ∈ Lr ∩ Ls. Thus, when the

parity-check matrix is designed such that, for any r and s,

hirhis = 1

holds for at most one i, that is, any two columns of the parity-check matrix have at most one overlapping positions

of 1, all the principal terms of the correction vanishes (Tanaka et al.[19]), which leads to the following theorem

for the LDPC codes.

Theorem 7: The principal term of the decoding error vanishes when parity-check matrix H has no pair of

columns with an overlap of 1 more than once.

It is believed[4] that the average probability of a decoding error is small, when any two columns of parity-check

matrix H do not have an overlap of 1 more than once. Intuitively, this avoidance prevents loops with a length of 4

from appearing in the graphical representation. Results of many experiments indicate that short loops are harmful

for iterative decoding; that is, they worsen the decoding errors. Our result in Theorem 7 analytically supports this

indication: the principal term of the decoding error vanishes when the parity-check matrix is sparse and prepared

so that there are no two columns with an overlap of 1 more than once. Loops longer than 4 do not contribute to

the decoding error at least via the principal term (although they may have effects via higher order terms). Many
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LDPC codes have been designed to satisfy this criterion (MacKay[4]). The analysis presented here can be extended

in a straightforward manner to higher order perturbation analysis in order to quantify these effects.

It should be noted that our approach is different from the approach commonly used to analyze the properties

of iterative decoders since we do not consider any ensemble of codes. A typical reasoning found in the literature

(e.g., [20]) is first to consider an ensemble of random parity-check matrices and show that the probability (over

the ensemble) of short loops in the associated graph decreases to zero as the codelength tends to infinity while

the column and row weights are kept finite. This means that the behavior of iterative decoders for codes with

longer loops is the same as that in the loop-free case. The statistical-mechanical approach to performance analysis

of Gallager-type codes[21] also assumes random ensembles. Our analysis, on the other hand, does not assume

ensembles but allows the evaluation of the performance of the iterative decoders with any single instance of a the

parity-check matrix with a finite codelength.

IX. DISCUSSION AND CONCLUSION

We have discussed the mechanism of the iterative decoding algorithms from the information geometrical

viewpoint. We built a framework for analyzing the algorithms and used it to reveal their basic properties.

The problem of iterative decoding is summarized as a unified problem of marginalizing the probability distribution

q(x) in eq.(2). This problem is common to the belief propagation for the loopy belief diagram in artificial

intelligence[6] and the Bethé approximation in statistical physics. In all of them, the direct marginalization of

q(x) is intractable, and only the marginalization of partial distributions pr(x; ζr), r = 1, · · · , K, in eq.(4), is

possible.

The marginalization of q(x) is approximated through iterative processes of adjusting {ζr}, marginalizing

pr(x; ζr), and integrating them into the approximated parameter θ. Both decoding algorithms were redefined with

the information geometrical terms, and the conditions of the equilibrium were derived. They revealed an intuitive

information geometrical meaning of the equilibrium point, which is summarized in Theorem 3. In the information

geometrical terms, the ideal goal is to have the cross section of M0 and an m–flat submanifold M(θ) including

q(x): however, instead of M(θ), an e–flat manifold E(θ) is used to obtain the decoding result. A new perspective

arose from the theorem: the discrepancy between M(θ) and E(θ) gives the decoding error.

The principal term of the discrepancy was obtained through perturbation analysis, which is summarized in

Theorem 6. The decoding error was given in eq.(23), and the correction term gives a method for improving the

existing decoding algorithms. Moreover, since the correction term strongly depends on the encoders, it gives a new

suggestion for designing the codes. We have done the perturbation analysis up to the second order, and it is possible

to extend it to higher order analysis in a straightforward fashion.

We also derived the local stability conditions in Theorems 4 and 5. Although Theorem 4 coincides with the

results of Richardson[2], Theorem 5 presents a new result for the local stability condition of LDPC codes. The

global convergence property is another issue[22] which is one of our future works.
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The belief propagation algorithm is not directly connected to the gradient method of minimizing a cost function.

It has been pointed out that the final result is at the critical point of the Bethé free energy[9], [13].

For ζ1, · · · , ζK, and θ, we define the following function of {ζr} and θ:

F({ζr}, θ) def= D[p0(x; θ); q(x)] −
K∑

r=1

D[p0(x; θ); pr(x; ζr)].

The first term is rewritten as

D[p0(x; θ); q(x)] =Ep0 [c0(x)] + θ·η0(θ) − ϕ0(θ) −
( K∑

r=0

Ep0 [cr(x)] + lnC
)
.

The second term is rewritten as
K∑

r=1

D[p0(x; θ); pr(x; ζr)] =K(Ep0 [c0(x)] + θ · η0(θ) − ϕ0(θ))

−
K∑

r=1

(Ep0 [c0(x)] +Ep0 [cr(x)] + ζr · η0(θ) − ϕr(ζr)).

These three equations give

F({ζr}, θ) = (K − 1)ϕ0(θ) −
K∑

r=1

ϕr(ζr) − lnC +
∑

ζr · (η0(θ) − ηr(ζr)).

Since lnC is a constant, we neglect it and redefine F({ζr}; θ):

F({ζr}, θ) = (K − 1)ϕ0(θ) −
K∑

r=1

ϕr(ζr) +
∑

ζr · (η0(θ) − ηr(ζr)).

When the p0(x; θ), pr(x; ζr) ∈ M(θ), the last term vanishes, and this function with constraint ζr = ζr(θ) or

ηr(ζr) = η0(θ) coincides with the free energy introduced by Kabashima and Saad[9] using the statistical physical

method.

The advantage of the information geometrical framework lies in its generality. The framework is common not

only to turbo and LDPC codes, but is also generally valid for the Bethé approximation, the belief propagation

applied to a loopy belief diagram, and its variants such as TRP[23] and the CCCP algorithm[24]. We have to

work for reformulation of the problem in different terms. Another important extension will be found when we use

different models of channels. It is easy to extend the result for any memoryless channel (see Appendix I), and by

employing such channels, we can derive wide varieties of the turbo and the LDPC type decoding algorithms.

This study is a first step towards information geometrical understanding of turbo and LDPC codes. By using the

framework presented in this paper, we expect that further understanding will appear and new improvements will

emerge.

APPENDIX I

EXTENSION TO GENERAL MEMORYLESS CHANNEL

The information geometrical framework in this paper can be easily extended to the case where the channel is a

general binary-input memoryless channel, which includes various important channels, such as AWGN and Laplace
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channels. We show that the Bayes posterior distribution is expressed in the form of eq.(2) for turbo codes. Its

extension to LDPC codes is also simple.

The information bits x = (x1, · · · , xN)T , xi ∈ {−1,+1} and two sets of parity bits y1 = (y11, · · · , y1L)T ,

y2 = (y21, · · · , y2L)T , y1j , y2j ∈ {−1,+1} are transmitted through a memoryless channel. The receiver observes

their noisy version as (x̃, ỹ1, ỹ2). Since the channel is memoryless the following relation holds

p(x̃, ỹ1, ỹ2|x) = p(x̃|x)p(ỹ1|x)p(ỹ2|x). (26)

The Bayes posterior with the uniform prior is

p(x|x̃, ỹ1, ỹ2) =
p(x̃, ỹ1, ỹ2|x)∑
x p(x̃, ỹ1, ỹ2|x)

= Cp(x̃, ỹ1, ỹ2|x) = Cp(x̃|x)p(ỹ1|x)p(ỹ2|x). (27)

For memoryless channels, each conditional distribution on the right hand side of eq.(26) is formulated as

p(x̃|x) =
N∏

i=1

p(x̃i|xi), p(ỹr|x) =
L∏

j=1

p(ỹrj |yrj(x)), r = 1, 2. (28)

Let us view p(x̃i|xi) as a function of xi, where x̃i is fixed. By defining λi as

λi =
1
2

ln
p(x̃i|xi = +1)
p(x̃i|xi = −1)

,

p(x̃i|xi) is rewritten as

p(x̃i|xi) ∝ exp(λixi). (29)

Note that λi is a function of x̃i. We can also rewrite p(ỹrj |yrj(x)) as follows.

p(ỹrj |yrj(x)) ∝ exp(µrjyrj ), µrj =
1
2

ln
p(ỹrj |yrj = +1)
p(ỹrj |yrj = −1)

, r = 1, 2. (30)

From eqs.(28), (29), and (30), eq.(27) becomes

p(x|x̃, ỹ1, ỹ2) = C exp(λ · x + µ1 · y1(x) + µ2 · y2(x)), λ = (λ1, · · · , λN)T , µr = (µr1, · · · , µrL)T , (31)

which has the identical form to eq.(2), where c0(x) = λ · x, and cr(x) = µr · yr(x). Other distributions p0(x; θ)

and pr(x; ζr) are also expressed with c0(x) and cr(x), which shows the information geometrical framework is

valid for general binary-input memoryless channels.

Finally, we give practical form of λ and µr for an AWGN channel. Let the noise variance of an AWGN channel

be ς2 and p(x̃|x) becomes

p(x̃|x) = (2πς2)−N/2 exp
(
−

N∑
i=1

(x̃i − xi)2

2ς2
)

= (2πς2)−N/2 exp
(−1

2ς2

N∑
i=1

(x2
i − 2x̃ixi + x̃2

i )
)
.

Since x2
i = 1 holds, it becomes

p(x̃|x) = (2πς2)−N/2 exp
( 1

2ς2
(2x̃ · x−N − |x̃|2)

)
.

Following the same line for p(ỹr|x), the Bayes posterior with the uniform prior is

p(x|x̃, ỹ1, ỹ2) = C exp(λ · x + µ1 · y1(x) + µ2 · y2(x)), λ =
1
ς2

x̃, µr =
1
ς2

ỹr,

which is identical to eq.(31).
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APPENDIX II

EXPLICIT FORMS OF G AND T

Metric tensor G :

for gij :

gij = Ep0 [(xi − ηi)(xj − ηj)] = (1 − η2
i )δij ,

which is the diagonal matrix I0(θ∗).

for gir :

gir =Cov[xi, cr(x)] =
1 − η2

i

ηi
c̄rhir, g̃ir = (I−1

0 (θ∗)Gθv)ir =
1
ηi
c̄rhir

Skewness tensor T :

for Tijk :

Tijk =Ep0 [(xi − ηi)(xj − ηj)(xk − ηk)] = −2ηi(1 − η2
i )δijk,

where δijk is equal to 1 when i = j = k and 0 otherwise. Hence, it is diagonal.

for Tijr :

Tiir = − 2hir(1 − η2
i )c̄r, Tijr = hirhjr

(1 − η2
i )(1 − η2

j )
ηiηj

c̄r.

for Tirs (r �= s) :

Tirs = Ep0 [(xi − ηi)(cr(x)− c̄r)(cs(x) − c̄s)]. (32)

When Lr ∩Ls = ∅, Tirs = 0. For Lr ∩ Ls �= ∅, we consider three cases.

case 1) i /∈ Lr ,Ls: In this case, xi and (cr(x), cs(x)) are independent:

Tirs = 0.

case 2) i ∈ Lr , i ∈ Ls: Careful calculation of eq.(32) gives

Tirs = −2
1 − η2

i

ηi
c̄rc̄s.

case 3) i ∈ Lr , i /∈ Ls or i /∈ Lr , i ∈ Ls: Careful calculation gives

Tirs = c̄r c̄s

{
−1 − η2

i

ηi
+

1 − η2
i

ηi

1
Prs

}
.

APPENDIX III

EXPLICIT FORM OF Brsηi FOR r �= s

First, we give the form of Brsηi as follows,

Brsηi = −Tirs −
∑
jk

TijkG̃jrG̃ks +
∑

j

(
TijrG̃js + TijsG̃jr

)
.
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for i /∈ Lr, i /∈ Ls:

Brsηi = 0

for i ∈ Lr, i ∈ Ls :

Tirs = −2
1 − η2

i

ηi
c̄rc̄s

∑
jk

TijkG̃jrG̃ks = TiiiG̃irG̃is = −2
1 − η2

i

ηi
c̄rc̄s

∑
j

TijrG̃js = TiirG̃is +
∑
j �=i

TijrG̃js = −2
1 − η2

i

ηi
c̄rc̄s +

∑
j∈Lr∩Ls\i

(1 − η2
i )(1 − η2

j )
ηiη2

j

c̄rc̄s

Hence

Brsηi = 2
∑

j∈Lr∩Ls\i

(1 − η2
i )(1 − η2

j )
ηiη2

j

c̄rc̄s,

which vanishes when Lr ∩ Ls does not include any j other than i.

for i ∈ Lr, i /∈ Ls (or i ∈ Ls, i /∈ Lr):

Tirs = c̄rc̄s
1 − η2

i

ηi

(
1
Prs

− 1
)
, TijkG̃jrG̃ks = 0, TijsG̃jr = 0,

and ∑
j

TijrG̃js =
∑

j∈Lr∩Ls

(1 − η2
i )(1 − η2

j )
ηiη

2
j

c̄rc̄s.

Hence,

Brsηi =
1 − η2

i

ηi
c̄r c̄s

⎛
⎝−1 − Prs

Prs
+

∑
j∈Lr∩Ls

1 − η2
j

η2
j

⎞
⎠ .

When Lr ∩Ls = {j}, Prs = η2
j , which reduces to

Brsηi = 0.
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