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Abstract

ICA (independent component analysis) is a new, simple and powerful idea for

analyzing multi-variant data. One of the successful applications is neurobiological

data analysis such as EEG (electroencephalography), MRI (magnetic resonance

imaging), and MEG (magnetoencephalography). But there remain a lot of problems.

In most cases, neurobiological data contain a lot of sensory noise, and the number

of independent components is unknown. In this article, we discuss an approach

to separate noise-contaminated data without knowing the number of independent

components. A well-known two stage approach to ICA is to pre-process the data

by PCA (principal component analysis), and then the necessary rotation matrix is

estimated. Since PCA does not work well for noisy data, we implement a factor

analysis model for pre-processing. In the new pre-processing, the number of the

sources and the amount of the sensory noise are estimated. After the pre-processing,

the rotation matrix is estimated using an ICA method. Through the experiments

with MEG data, we show this approach is effective.

Keywords ICA; PCA; factor analysis; MDL; MEG; Spatial filters.
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1 Introduction

The basic problem of ICA is defined for the noiseless case, where the sources and obser-

vations have the following linear relation,

x = As (1)

x ∈ Rn, s ∈ Rm, A ∈ Rn×m.

The assumptions of an ICA problem are that each component of s is 0 as its mean value,

mutually independent and drawn from a probability distribution which is not a normal

distribution except for at most one component. In this article, we also restrict m to be

smaller or equal to n. This assumption is necessary for the existence of linear solution.

The goal of ICA is to estimate a matrix W which satisfies the following equation,

WA = PD (2)

W ∈ Rm×n, P,D ∈ Rm×m..

Here, P is a permutation matrix which has single entry of one in each row and column,

and D is a diagonal matrix. This simple problem is solved in the framework of semi

parametric approach[1], and giving a lot of interesting theoretical and practical results.

However, when we apply ICA to real world problem, the situation is different from the

above ideal case. In many cases, we cannot ignore noise, and the number of the sources

m is not known. For example, in the case of neurobiological data such as EEG[12, 17]

or MEG[5, 16], the number n of the sensors is large and sometimes around 200, but we

believe that the number of the sources is not so large in a macroscopic viewpoint within

a short period, and noise is very large. Therefore, eq.(1) is not enough to describe the

problem. It is pointed out that, especially when the number of the sources is small, one

cannot have a good solution generally[10].

In this article, we discuss the case where there is additive noise in observations as,

x = As + ε. (3)

Here, ε is an n-dimensional real valued noise term and we assume that components {εi}
(i = 1, · · · , n) of ε are mutually independent. We call ε the sensory noise in this article.

This is the case of MEG data.
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H. Attias has proposed a parametric approach, IFA (independent factor analysis)

which solves this problem in the framework of maximum likelihood estimation[3]. It is

one of the extensions of basic ICA problem, but is difficult to be applied to biological data

when the numbers of sensors and sources are large. We will discuss the relation between

our method and IFA (subsection 2.4).

We propose a semi parametric approach to solve this problem. The idea is to use factor

analysis for the pre-processing of data. In many ICA algorithms, PCA is used for the

pre-processing to make the signals uncorrelated but we replace PCA with factor analysis.

By the new pre-processing, the source signals are made to be uncorrelated, and the power

of sensory noise and the number of the sources are estimated. After the pre-processing,

we use one of ICA algorithms for estimating separation matrix. In the following sections,

we describe the factor analysis approach, its relation to ICA, and experimental results.

2 Factor analysis and ICA

2.1 Factor analysis

In factor analysis (see for example [14]), we discuss the case where a real valued n-

dimensional observation x is modeled as,

x = µ + Af + ε (4)

x, µ, ε ∈ Rn, f ∈ Rm, A ∈ Rn×m.

The assumptions in factor analysis are that: a) f is normally distributed as f∼N(, Im),

where Im is the Rm×m identity matrix, b) ε is normally distributed as ε∼N(, Σ) where

Σ is a diagonal matrix, and c) f and ε are mutually independent. The mean of x is

given by µ which is assumed to be 0 in this article. Without µ, eq.(4) becomes similar

to eq.(3).

The goal of factor analysis is to estimate m, A (factor loading matrix), and Σ (unique

variance matrix) using the second order statistics of the observation x. When m is given,

there are various estimation methods for A and Σ. The major ones are ULS (unweighted

least squares method) and MLE (maximum likelihood estimation). Both of them are

summarized in terms of related loss functions. Suppose we have a data set as {xt}
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(t = 1, . . . , N) and let C be the covariance matrix of x, (C =
∑

t xtx
T
t /N). Here, T

denotes transpose. The estimates of ULS (Â, Σ̂)ULS and MLE (Â, Σ̂)MLE are defined as,

(Â, Σ̂)ULS = argmin
A,Σ

tr (C − (AAT + Σ))2, (5)

(Â, Σ̂)MLE = argmax
A,Σ

L(A, Σ), (6)

L(A, Σ) = −1

2

{

tr
(

C(Σ + AAT )−1
)

+ log(det(Σ + AAT)) + n log 2π
}

.

In both loss functions, the matrix A appears only in the form of AAT . Therefore, cost

functions are not affected by any orthogonal matrix (rotation matrix) U∈Rm×m, multi-

plied to A as AU , because AAT = AUUT AT . This means we cannot estimate the rotation

of A by minimizing a loss function in eq.(5) or (6). One typical method to ignore this

ambiguity through the estimation process is to force ATA to be diagonal and the diagonal

components to be in descending order.

The estimation of the rotation is one of the main problems in factor analysis. There

have been proposed a lot of methods, but we are not going to use any factor analysis

approach. We use an ICA method. This problem is discussed in subsection 2.3.

The matrix A has n×m parameters and since rotation cannot be determined, it has

n×m − m(m − 1)/2 meaningful free parameters, and Σ has n parameters. On the other

hand, C has n(n + 1)/2 freedom. Therefore, if n(m + 1) −m(m − 1)/2≤n(n+1)/2 holds,

we have sufficient conditions to solve eq.(5) or eq.(6). By taking one more condition m≤n

into account, we have the following bound,

m ≤ 1

2

{

2n + 1 −
√

8n + 1
}

. (7)

This is a necessary condition for A and Σ to be estimable (Ledermann[11]). Anderson

and Rubin discussed sufficient conditions[2]. We don’t go into the detail of the estimation

method in this article. But we can use the gradient descent algorithm or Gauss-Newton

method[14]. In the case of MLE, we can also use the EM (expectation maximization)

algorithm.

The remaining problem is to estimate the number of factors, m. There are many

estimation approaches. Some of them are based on the eigenvalues of the covariance

matrix. There are other well known approaches which are based on statistical model

selection with information criterion such as AIC (Akaike information criteria) and MDL

4



(minimum description length). In this article, we use MDL for the estimation of m in

the framework of model selection. Since MDL is based on MLE, we use MLE for the

estimation of A and Σ as shown in eq.(6).

MDL is defined as follows,

MDL = −L(Â, Σ̂) +
log N

N
× the number of free parameters.

The number of free parameters in A and Σ is n(m+1)−m(m−1)/2, and MDL is defined

as,

MDL = −L(Â, Σ̂) +
log N

N

(

n(m + 1) − m(m − 1)

2

)

.

We estimate A and Σ for different m, (1≤m≤{2n + 1 −
√

8n + 1}/2) and select the set

of m, A, and Σ which minimizes MDL.

2.2 Factor analysis as the pre-processing

It is not necessary but, from a practical reason, ICA algorithms are separated into two

parts in many cases[6, 8, 9]. One is to pre-process the data such that they become

uncorrelated. This part is called sphering or whitening. After the pre-processing, the

remaining part of the estimation is the rotation matrix. A lot of algorithms are proposed[4,

6, 8, 9] for the estimation of the rotation matrix.

For sphering, the basic approach is to use PCA[8]. This is based on the second order

statistics. Let P = C1/2, where C = PP T . By letting,

x′ = P−1x,

it is clear that
∑

t x
′
tx

′
t
T/N = In. Therefore, components of x′ are uncorrelated, and the

power of each component of x′ is normalized as 1. We can then remove the ambiguity of

amplitude.

When the data are noisy, we still assume that the sources are uncorrelated to each

other and the power of each is 1, that is, E[ssT ] = Im, where E[·] denotes the expectation.

But the matrix P = C1/2 does not give pre-processing such that the remaining part is a

rotation matrix. We can instead use factor analysis.
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As the result of factor analysis, we estimate Â (with the ambiguity of rotation) and

Σ̂. Let Q∈Rm×n be the pseudo-inverse of Â where ÂQÂ = Â holds. After transforming

the data as,

z = Qx,

z becomes sphered data. However, its covariance matrix is not Im. If we could estimate

Â correctly with the ambiguity of rotation, covariance matrix of z is,

E[zzT ] = Im + QΣQT .

This result shows that we can make the part of x due to the sources uncorrelated, but

not the sensory noise at the same time. And sphering is completed.

The pseudo-inverse matrices are not unique. We chose the one to minimize the ex-

pected norm E[(x − Âz)T Σ̂−1(x − Âz)], which is the difference between x and the re-

constructed observation Âz measured with Σ−1. The solution is,

Q = (ÂT Σ̂−1Â)−1ÂT Σ̂−1 (8)

(for the proof, see [13]). This helps to reduce the sensory noise when we reconstruct the

data from independents components. It will be discussed in the next subsection.

2.3 ICA as estimating the rotation matrix

After we pre-processed x by Q, z is uncorrelated except for the part due to the sensory

noise. What is left is to estimate the rotation matrix. This is also one big problem in factor

analysis. Instead of adopting any factor analysis approach, we use an ICA approach.

In subsection 2.1, we assumed that s (f in the subsection) and ε are normally dis-

tributed. We break one of them. We still assume ε is normally distributed, but s is

not normally distributed and each component si is independent. We can use some ICA

algorithm now.

The ICA algorithm we use here should not be affected by the second order statistics

since even if data are pre-processed by factor analysis, components of sphered data z still

have second order correlations. Therefore, an algorithm based on higher order statistics

is preferable. We used JADE (joint approximate diagonalization of eigen-matrices) by
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J.-F. Cardoso & A. Souloumiac, which is based on the 4th order cumulant[7]. Suppose a

separation matrix B ∈ Rm×m is estimated by an ICA algorithm. The separated signal y

is obtained as,

y = Bz = BQx = BQ(As + ε) = W (As + ε), W
def
= BQ, W∈Rm×n. (9)

The goal of ICA is to estimate WA to be PD, (P,D ∈ Rm×m) as eq.(2). In the noisy

case, we can make signals independent based on the parts due to the sources, but it

is impossible to cancel the sensory noise by any linear operation. Our method does not

apply nonlinear transformation to reduce the additive sensory noise, but projects the high

dimensional observation into smaller dimension of source space with a linear matrix W .

And in the process of the linear projection, we compress the sensory noise ε into smaller

dimension. The total power of noise will be reduced because each component of sensory

noise is mutually independent.

We can also estimate the mixing system with B. Let us denote A estimated by factor

analysis as ÂFA, and the new mixing system as ÂICA where,

ÂICA = ÂFABT . (10)

This ÂICA does not have the ambiguity of rotation.

The mixing matrix ÂICA is important when we reconstruct the data from independent

sources. Each column of ÂICA corresponds to the coefficient of how each independent

component contributes to sensory inputs. Let ÂICA = (âICA,1, . . . , âICA,m), where âICA,i

is an n-dimensional column vector. The source yi on the sensors are estimated as x̂i =

âICA,iyi.

When we reconstruct x using all the independent sources as,

x̂ = ÂICAy = ÂICAWx = ÂICAW (A∗s + ε) = ÂICAWA∗s + ÂICAWε,

where A∗ is the true mixing matrix. In the original data, the power of the sensory noise

is estimated as

E[|ε|2] = tr Σ̂. (11)

The power of the sensory noise in x̂ is estimated as,

E[|ÂICAWε|2] = tr (ÂFAQΣ̂QT ÂT
FA), (12)
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from eq.(9) and (10). This quantity is not affected by B, and minimized when Q is chosen

as eq.(8) [13].

2.4 Relation to IFA

In this subsection, we discuss the relation between our method and IFA[3]. IFA is a

parametric approach to solve the problem in eq.(3). In IFA, the sensory noise distribution

is assumed to be normally distributed with 0 mean, but the covariance matrix Σ is not

necessarily diagonal, and m≤n is not assumed.

The characteristics of IFA is that not only the noise distribution, but also the pdf

(probability density function) of source signal s is estimated. The original work[3] defined

pdf of each source component si with a MOG (mixture of Gaussians) which is defined as,

p(si) =

ni
∑

ri=1

wi,ri
G(si − µi,ri

, v2
i,ri

) (13)

ni
∑

ri=1

wi,ri
= 1, wi,ri

≥ 0, G(si − µi,ri
, v2

i,ri
) =

1
√

2πv2
i,ri

exp

(

−(si − µi,ri
)2

2v2
i,ri

)

.

Here, ni≥2 is the number of normal distributions in the pdf of source si (i = 1, · · · , m),

and wi,ri
, µi,ri

, and v2
i,ri

(ri = 1, · · · , ni) are the mixing weight, mean, and variance of

each normal distribution. With these distributions, p(x, s) is defined as,

p(x, s) = G(x −As, Σ)

m
∏

i

p(si) = G(x −As, Σ)

m
∏

i

ni
∑

ri=1

wri
G(si − µi,ri

, v2
i,ri

). (14)

It is easy to check by expanding eq.(14) that p(x, s) is a mixture of
∏m

i ni normal distribu-

tions. We can define log-likelihood function log p(x) from eq.(14), and the EM algorithm

is derived to obtain MLE[3]. Consequently, it is possible to estimate mixing process, the

sensory noise distribution and the source distribution. And we can estimate the condi-

tional source distribution p(s|x) and reconstruct each source signal from the distribution.

Though IFA seems to be a natural approach, there are practical problems. One prob-

lem is the choice of ni. This is important for the accurate estimation of p(si) but it is

difficult to choose ni. Another problem is the calculation cost of the estimation. Large

ni results in slow convergence of estimation iterations. In the process of the EM algo-

rithm or any other gradient descent algorithms, it is necessary to calculate conditional

distribution over nall
def
=

∏m
i ni components for each data point iteratively. Since ni≥2,
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we have nall≥2m components. Therefore, the estimation process is not tractable unless

m is small. We will show the case where m = 2 in section 3, but in the case of MEG

brain data analysis, estimated m is more than 15 (section 4.3), and it is impossible to

calculate conditional distribution of 216 or more components for each iteration. Finally

since estimation process is not easy, we cannot apply statistical model selection method

for estimating m.

IFA is theoretically interesting and a general parametric model for noisy observation

of linearly mixed independent sources. But for the case of MEG data analysis, it does

not give a practical method for estimation. Our method gives a practical method for

estimation and it is a semi parametric approach which does not assume particular source

distribution.

3 Experiment with synthesized data

First, we used speech data, which are recorded separately and mixed on the computer.

The source data are shown in Fig.1. We have two sources and the power of each source

is normalized to be 1 (E[s2
i ] = 1). In this experiment, there are 7 sensors and sensory

noise is added to each sensory inputs independently as,

x = A∗s + ε (15)

x, ε ∈ R7, s ∈ R2, A∗ ∈ R7×2, ε∼N(, Σ∗).

The observations xi are shown in Fig.2. The total sum of the power of the source signals

is equal to that of ε, which means,

E[|A∗s|2] = tr
(

A∗E[ssT ]A∗T
)

= tr
(

A∗A∗T
)

= tr Σ∗ = E[|ε|2]. (16)

The data are noisy and it is impossible to use PCA for sphering. And the number of the

sources is assumed to be unknown.

First, factor analysis is applied to the data, and the number of the sources m, the

mixing matrix ÂFA and the noise covariance Σ are estimated. In this case, m ≤ 3.7251 . . .

should be satisfied from eq.(7), and the candidates for the number of the sources are 1, 2,

and 3.

9



We used MDL for the estimation of m. For comparison, we show AIC for the candi-

dates in Table 1. Both MDL and AIC selected two as the source number. But AIC gives

a very small difference between m = 2 and 3. This is the reason why we use MDL for the

information criterion in our method. We selected the source number as 2 and obtain the

pseudo-inverse of Â as Q ∈ R2×7 by eq.(8). The data x is transformed to z by Q as,

z = Qx.

Figure 3 shows the sphered data. We can see that the signals are orthogonal, that is, un-

correlated to each other and, pre-processing is almost completed. The remaining problem

is to estimate the rotation matrix.

The demixing rotation matrix W ∈ R2×2 is estimated with JADE. This is equivalent

to making the fourth order cumulant uncorrelated. Finally, we linearly transform the

signal as,

y = BQx = Wx = WA∗s + Wε. (17)

Here, y ∈ R2 and it still includes compressed noise. However, the original sources are

recovered very well (Fig.4).

In this experiment, we know the true mixing matrix A∗, therefore we can calculate

the cross-talks as the ratio of diagonal and off diagonal components of the matrix WA∗.

The cross talk is 0.92% in y1(t) and 0.57% in y2(t).

We tried PCA on the data and selected two dimensional subspace based on the eigen-

values. After reducing the input dimension, we applied JADE to the data and estimated

a rotation matrix. For PCA+JADE, the cross talk is 14.8% in y1(t) and 19.9% in y2(t).

The estimated covariance matrices and true covariance matrices are shown as 2 di-

mensional ellipsoids in Fig.5. It is shown that our method gives good estimation, but

in the case of PCA+JADE, the signals don’t become orthogonal to each other by the

pre-processing, and the separation matrix is not estimated correctly.

We also applied IFA for comparison. Two normal distributions are used for modeling

each source signal. It took a lot of time for the estimation and the result is shown in

Fig.6. The cross talk is 1.92% in y1(t) and 6.40% in y2(t). For the estimation of the

source signals, we are not using linear transformation, but we estimated the sources by
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using p(s|x) as,

ŝ = Ep( � | � )[s] =

∫

sp(s|x)ds

from observation x. This is a sort of non-linear transformation from x to s, and we

cannot have covariance matrix expressions as in Fig.5.

4 MEG data analysis

4.1 The characteristics of MEG data

We applied our method to MEG data. Before going to the detail of the experiment, we

discuss the characteristics of the MEG data.

MEG measures the change of magnetic field caused by the brain activity with a lot

of (50∼200) coils placed around the brain. Because the change in the magnetic field is

directly connected to the nerve activities, MEG can measure the brain activities without

any delay. The sampling rate is around 1kHz which is much higher than other techniques

such as MRI. We can estimate the location of the sources by solving an inverse problem,

and the resolution can be a few mm. Therefore, MEG is a technique which measures the

brain activity with high time and spatial resolutions without causing any damage to the

brain.

Since the change of the magnetic field caused by the brain activity is extremely small

(∼ 10−14 T), we need special device called SQUID (super-conducting quantum interfer-

ence device). The device can detect the brain signal, but the signal contains a lot of

environmental noise. We can categorize the noise into two major categories. One is called

the artifacts and the other is the quantum mechanical sensory noise. The artifacts include

the noise from electric power supply, the earth magnetism, heart beat, breathing and the

brain activity which we are not interested in. These artifacts effect on all the sensors si-

multaneously. On the other hand, the quantum mechanical sensory noise originates from

the SQUID itself. SQUID is measuring the magnetic field in liquid Helium. Under this

low temperature, sensors cannot avoid to have quantum mechanical noise which is white

and independent to each other. The main technique used so far to lower the artifact and

the sensory noise is the averaging. The experimentalists usually repeat the same experi-
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ment from 100 to 200 times, and then, average the recorded response. But the averaged

data still contain a large amount of noise, which are still harmful for the data analysis.

After averaging the data, we modeled the data as,

x = As + ε (18)

s: sources and artifacts,

ε∼N(, Σ): quantum mechanical sensory noise.

We then applied our algorithm to MEG data. In the following subsections, we show the

results of phantom data and real brain data.

4.2 Experiment with phantom data

We show the result of our algorithm applied to phantom data in this section. The phantom

was designed to be roughly the same size as the brain and there is a small platinum

electrode inside. We designed the current signal supplied to the electrode to be a 20Hz

triangle wave, and averaged the data for 100 trials. Figure 7 shows 5 signals out of 126

active sensors.

The number of the sources and the separation matrix are estimated by our method.

We pre-processed the data with factor analysis and estimated the number of the sources

by MDL. In this experiment, the number of the sources is estimated as 3. After the

pseudo-inverse matrix is multiplied to the observed data, rotation matrix is estimated

by JADE. The estimated independent signals and their estimated powers in the total

observations are shown in Fig.8. We can see that independent component Y1 has a large

power 86.2% and both of Y2 and Y3 has less power than 1%. From the figure, we can see

that sensory noise has more power than 10% even after averaging over 100 times.

In this experiment, we know the input to the electrode is Y1 in Fig.8. After selecting

the source, we want to reconstruct the signal. The recovered signals are shown in Fig.9.

The artifact was removed compared to Fig.7.

The reason we can have better result is not only from subtracting Y2 and Y3 from the

observation, but as we wrote, we compressed the sensory noise and it helps to reduce the

sensory noise. In the original data, the estimated total power of sensory noise is tr Σ̂ from

eq.(11), and the noise in the recovered signal is estimated as tr (AAICWΣ̂W TAT
AIC) from
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eq.(12). The noise in the recovered signal is usually much smaller than the noise in th

original signlas. Even if we don’t subtract Y2 and Y3, the amount of the sensory noise in

the recovered signal is 1.5% of the original sensory noise in this experiment.

Figure 10 shows estimated strength of each source and noise on the sensors. The

strength of source is estimated as the component of matrix ÂICA. The strength of noise

is estimated as square root of the diagonal component of the matrix Σ̂. From the graph,

we can see that some sensors contain much more noise and artifacts than the signal even

after averaging over 100 trials. This result shows that we cannot trust the intensities of

the signals on sensors sometimes. In order to estimate the location of the signal in the

brain, it is necessary to know the intensity ratio of the signals on all the sensors, but the

result shows that artifacts and the sensory noise make it difficult to know the true ratio.

4.3 Experiment with brain data

Finally, we applied our method to the data of the brain activity evoked by visual stimu-

lation. The expected results of ICA applied to MEG data analysis can be summarized as

follows.

1. Separating artifacts from brain signals.

2. The independent brain activities coming from different parts of the brain to be

separated.

For the first part, we believe this is possible because the artifacts and the brain signals

would be independent. But for the second part, we don’t know if brain activities which

are coming from different parts are independent to each other. Probably it is more natural

to think that they might be dependent. This is a difficult problem of this study forcing

us to go further generalization of the ICA framework.

We show the separated independent components obtained b our method in Fig.12.

Some kind of visual stimulations are given to a subject. The data are recorded by 114

sensors in this case (because only 114 of 129 sensors were working correctly at that

moment). The duration of recording is from 100msec before the stimulation to 412msec

after the stimulation with 1kHz sampling rate. The same procedure is applied to one

subject for 100 times and we averaged the data. Some inputs from the sensors are shown
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in Fig.11. It is observed that the averaging reduces the noise but still a lot of noise remain

in the data.

We applied our method to the data and 19 independent components were selected

by MDL in this experiment. The independent components are shown in Fig.12. The

power of each independent component and sensory noise in the observation is shown in

Fig.14(left). It shows that even after averaging over 100 times, there are more than 10%

of sensory noise. Figure 14(right) shows the sensory noise on each sensor, and we can see

some sensors have a lot of noise and some does not have much. The method is applied

to the data from different subjects (4 more), and in all the cases, the selected numbers of

sources are roughly the same (from 16 to 19).

Figure 13 shows the result of PCA+JADE. We used PCA to compress the data into

19 dimension, and then used JADE. Some independent components are similar to those

in Fig.12, but some are not. For example Y9 in Fig.12 is mainly a harmonic (180Hz) of

the electric power supply (60Hz) but Fig.13 does not have it.

Based on the results in Fig.12, we have to separate the sources from the artifacts in

which we are not interested. For example, y8(t) has a large value at the very end of the

record. This seems to be a kind of mechanical or software noise. A harmonic of the

electric power supply, y9(t) is an artifact. But we cannot know if they are due to brain

responses or not for the rest. Fortunately, this experiment is designed for studying evoked

responses by visual stimulation, and we are not interested in the components which have

some power before the stimulation was given to the subject. Therefore, we defined a

threshold of a power such that, if a signal has some power before the stimulation, we

regarded the signal as an artifact. In this experiment, we set the threshold as follows, if

the averaged power of first 100msec is equal to or larger than 0.9 times of the averaged

power of the whole part of that component, we regarded it as an artifact. We added one

more criterion that if the estimated averaged power of an independent component on all

the sensors is smaller than a threshold (We set the threshold as 3% and it is shown in

Fig.14), we assume the signal is an artifact. In this case, the selected sources are y1(t),

y2(t), y3(t), y4(t), y5(t), y6(t), y7(t), and y11(t). They are shown in Fig.12 with solid boxes.

After picking those sources up, we put them back to the orignal sensor signal space,

and the result is shown in Fig.15. The noises are removed and the data becomes clear.
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One of the difficulties in evaluating the results of brain data analysis is that we don’t

know the true signal. This is a big problem in order to know how well our algorithm is

working. We can see the cleaned outputs of the sensors as Fig.15, but we further want

to know the relationship between the independent components and brain activities more

directly.

There are a lot of methods to see the relationships visually. One popular method

is the dipole estimation. In the dipole estimation, we describe the brain activities by

dipoles in the brain. In the estimation, we have to specify the number of the dipoles,

and we solve an inverse problem numerically. Since the choice of the number in this

experiment is difficult, we did not use dipole estimation, but we implemented SF (spatial

filter) technique[15]. SFs are a set of virtual sensors which are located on a hemisphere

defined on the brain. We can estimate the current flows on those virtual sensors which

describe the MEG observations well. This is an inverse problem and it can be solved in

a form of a linear mapping from the MEG sensors to SFs.

One of the characteristics of SFs is that we can put a set of virtual sensors at any

place we want, so that, we can estimate the activities of any place on the brain virtually

by a linear projection. But from the nature of this technique, the sensors at the boundary

of the hemisphere are not reliable[15]. Therefore, it is important to place the center of

the hemisphere at the position of our interests. In our experiment, the part of the brain

we are interested in is the visual cortex, and we put 21×21 SFs on a hemisphere, whose

center is located at V1.

Figure 16 shows the output of the SFs before and after the method. The original data

include a lot of noise and we cannot know if there is useful information (upper row). But

after applying factor analysis and ICA, those signals which we are not interested in are

removed well (lower row). The response of the brain in this experiment is known to be

high around 100msec after the stimulation[15]. And the characteristics is preserved very

well.
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5 Discussion

In this article, we proposed a new combination of methods having different backgrounds

to analyze biological data. The data includes strong sensory noise which is true in most

cases of biological data. We applied the algorithm to MEG data, and have shown the

approach is effective. We can estimate the number of the sources, and the power of the

sensory noise which is independent to each other. This is one of the serious problem

which has not been well treated in conventional ICA approaches, and this article gives

one effective method. H. Attias has proposed IFA to solve this problem. It gives the

source distribution by MOGs and the problem is solved as a parametric estimation. But

we have proposed a different method based on the semi parametric approach which is an

attractive point of ICA.

This approach is a natural extension of the standard ICA approaches which use PCA

as the pre-processing and then higher order statistics for the second step. We assumed the

sensory noise is normally distributed, and applied factor analysis for the pre-processing

instead of PCA. After the pre-processing, we applied an ICA method based on higher

order statistics for estimating the rotation matrix. It is already said that the estimation

based on higher order statistics would not be affected by the sensory noise if it is normally

distributed. However, we can skip the pre-processing only if the number of the sources

is known beforehand. Our approach estimates not only the mixing system but also the

number of the sources.

There still remain some open problems. In the factor analysis, there are a lot of

methods to estimate the parameters and the number of the sources, and each method has

a characteristic. We applied MLE for estimation and MDL for estimating the number of

the sources. But there are different combinations, and there might be a method which

suits better for some particular problems. We have the same problem for ICA algorithms.

We used JADE but there might be a better algorithm. Another problem is the noise

distribution. We assumed normal distributions, but if we can have a better model for

the sensory noise, the algorithm will be improved further. Another big problem for MEG

data is the choice of brain sources. We made some criterion for the choice of sources, but

this is only obtained through trial and error. The choice of the thresholds and the choice

of criterion itself is an open problem.
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We can also check the algorithm from the viewpoint of factor analysis. How to deter-

mine the rotation is one of the traditional problems in factor analysis. There are a lot of

algorithms proposed for this purpose, but it is not common to use higher order statistics.

Therefore our approach gives a new pathway to factor analysis, too.
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Table 1: MDL and AIC for the candidates: In the experiment, the candidates source

numbers are 1, 2 and 3. The MDL and AIC for these candidates are shown in the table.

# of the sources 1 2 3

MDL 4.0870 3.8911 3.8928

AIC 4.0826 3.8849 3.8850

S  
1

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
time(sec)

S  
2

S
1

S
2

Figure 1: Source sound signals: Both of them are speech signals recorded separately with

16kHz sampling rate. Data are 1.875sec length(30,000data points). Right graph plots the

data in the two dimensional space.
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Figure 2: Input signals: Two sources are distributed to seven inputs and sensory noises

of normal distributions are added to the seven sensors independently.
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Figure 3: Sphered data: After applying factor analysis to the input signals, two pre-

processed time series are obtained.
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Figure 4: Output data, after using the ICA algorithm: The signals are separated by our

method and the outputs are shown.

Y
1

Y
2

Y
1

Y
2 −1 1

−1

1

0

Y
1

Y
2

Figure 5: Features of separated signals in the mean of covariance matrices: Separation ma-

trix W∈R2×7 is estimated by Factor Analysis+ JADE as WFA (left) and by PCA+JADE

as WPCA(right). For the comparison, pseudo-inverse of true mixing matrix Wtrue = A∗−

is used (center). Solid ellipse shows the covariance matrix of the projected sensory noise

term W∗ε, dashed ellipse shows the covariance matrix of the projected source signal term

W∗A
∗s. Dot ellipse shows the sum of above two covariance matrices, y = W∗x. Dashed

dot lines show how the axes of the sources, which are x and y axes in the center figure, was

projected by the separation matrix. The data points shown in the left and right graphs

were rescaled to match the size.
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Figure 6: Result of IFA: Source signals are recovered by estimating Ep( � | � )[s] from each

observed data.
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Figure 7: Averaged sensory inputs of phantom data: The phantom has single electrode

inside and 20Hz triangle wave is the input. The input amplitude is adjusted to match the

signal from a brain.
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Figure 8: Estimated independent components and their powers: Left figure shows the

result of our method. 3 independent components are obtained. First component has

20Hz as its major frequency component, and the rest 2 signals main frequency components

are 180Hz. Right figure shows the power of each component in the observation and the

estimated sensory noise power in the observation.
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Figure 9: Estimated independent components on the sensors: The independent compo-

nent y1 is put back to the original sensors by a linear mapping
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Figure 10: Estimated strength of each source and noise on the sensors: The estimated

strength of the 3 independent components in Fig.8 and the sensory noise which is esti-

mated as Σ are shown.
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Figure 11: The MEG data: Left side is showing single record of 5 sensors, and the right

side is showing the data on those sensors after averaging over 100 trials. 0msec in time

axis shows the trigger of the visual stimulation.
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Figure 12: Separated visual evoked response signals: The independent components are

aligned along descending order of their averaged powers on the MEG sensors. The signals

surrounded by solid boxes are selected as source signals.
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Figure 13: Separation result of using PCA+JADE: Observed data are compressed to 19

dimension using PCA and JADE was applied after PCA.
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Figure 14: Power of signals and noise: Left figure shows the power of each independent

component and sum of the sensory noise powers which is shown as a different color, and

the line in the figure shows 3% which was used as the threshold in the selection of sources.

Right figure shows the estimated sensory noise on each sensor.
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Figure 15: The recovered MEG data by removing the artifacts: The independent com-

ponents Y1, Y2, Y3, Y4, Y5, Y6, Y7, and Y11 in Fig.12 are picked up and put back to the

sensors by linear mapping.
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The original data

After applying our method

Figure 16: Result of the approach applied to MEG data: Upper row shows the original

data and the lower row shows the results of our method. The arrows in the figures are

the estimated currents of the virtual sensors. The arrows are superimposed on the figure

of the brain obtained by MRI. Signals are recorded from 100msec before to 412msec after

the visual stimulation. 0msec in the time axis is the trigger of the stimulation. Red dots

in the figures show the position of visual cortex V1.
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