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Abstract

This paper proposes a method of improving reception of digital satellite broadcasting in a moving

vehicle. According to some studies, the antennas used for mobile reception will be smaller in the next

generation and reception will be more difficult because of a fading multipath channel with delays

in a low carrier-to-noise ratio. Commonly used approaches to reduce the inter symbol interference

caused by a fading multipath channel with delays are pilot sequences and diversity reception. Digital

satellite broadcasting, however, does not transmit pilot sequences for channel estimation and it is

not possible to install multiple antennas in a vehicle. This paper does not propose any change to

the broadcasting standards but discusses how to process currently available digital satellite signals

to obtain better results. Our method does not rely on the pilot sequences or diversity reception,

but consists of channel estimation and stochastic inference methods. For each task, two methods are

proposed. The maximum likelihood estimation and higher order statistics matching methods are pro-

posed for the estimation, and the marginal with the joint probability inference methods are proposed

for the stochastic inference. The improvements were confirmed through experiments with numerical

simulations and real data. The computational costs are also discussed for future implementation.

1 Introduction

Since the 1990s, it has become popular to install television reception systems in vehicles and more people
are viewing television programs in the mobile environment [13].

Mobile reception is generally difficult. Among the many causes of the difficulties, we discuss two: the
Doppler shift and the fading multipath channel. The influence of the Doppler shift can be removed with
the phase locked loop (PLL). When a fast PLL is used, the influence of the Doppler shift is negligible.

Commonly used approaches to reducing the influence of fading are the pilot sequence and diversity
reception [3]. If the code includes a predetermined pilot sequence, the fading channel can be estimated.
However, the current digital satellite broadcasting has only a one-byte known sequence, which is not
enough for channel estimation. On the other hand, it is not possible to install multiple satellite anten-
nas for diversity reception in vehicles, either. These are the reasons mobile reception of the satellite
broadcasting more difficult than that of terrestrial broadcasting.

STRADA (Panasonic) is one of the commercial mobile reception products for the digital satellite
broadcasting. It recommends that users should install an automatic machine tracking parabolic antenna
to enhance the direct reception and reduce the reflected paths. Although this effectively reduces the
influence of the fading, the antenna is rather large and expensive. Some studies of next-generation mobile
reception of the digital satellite broadcasting have indicated that smaller antennas are preferable [16].
The carrier-to-noise (CNR) of such a compact antenna will be much lower than that for the standard
parabolic antenna for static reception of digital satellite broadcasting [16]. What is worse is that the
directivity is poor and it is not possible to eliminate the reflected waves that cause a fading multipath
channel with delays[16].
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What we propose in this paper is not a new standard for digital satellite broadcasting. No pilot
sequence is assumed, and the carrier frequency is not changed. Our proposal is to enhance the received
signals that are currently available from the satellite while still using an antenna with poor directivity
and low CNR. Our method consists of channel estimation and stochastic inference of the codes.

Blind channel estimation is a popular idea [9] and we discuss two estimation methods for it. One is the
commonly used maximum likelihood estimation (MLE) and the other is the higher order statistics (HOS)
matching method. For MLE, we need to utilize the expectation maximization (EM) algorithm [4]. The
EM algorithm is an iterative algorithm and its computational cost is relatively high. The HOS matching
method may not be as stable as MLE, but its computational cost is very low.

For the stochastic inference, we propose two methods. One is to utilize the marginal distribution
of the fading channel model and the other is to utilize the joint distribution. The idea is equivalent to
inference based on the graphical model [8], which is commonly used [19, 18, 11]. Our proposal is to find
the trade-off between the computational cost and the improvement.

The combinations of the proposed estimation and the stochastic inference methods were verified with
simulated data and measured real channel data of the digital satellite broadcasting. The results show that
our method improved the reception. The computational cost is reasonable enough for implementation.

Although the blind channel estimation and the stochastic inference are shown in some former studies [9,
19, 18, 11], this paper newly shows two items. One is the practical channel model for the mobile digital
satellite broadcasting reception. The reference [16] gives suggestions about a multipath channel in Ku-
band land mobile satellite broadcasting. The multipath of twelve symbol time delay is considered in the
reference. We consider the direct path and one symbol delay path for the channel model and deal the
multipath of more than one symbol time delay as the noise. Our consideration gives a simple model which
is enough for the practical use. The other is the specific computational expression of the HOS under the
channel model. Although an idea of the HOS is shown in the reference [9], the specific computational
expression is not explained. We show the constrained conditions to obtain the unique solution under the
channel model.

This paper is organized as follows. Section 2 describes the digital satellite broadcasting system and
the problem of mobile reception. Section 3 outlines the proposed method. Section 4 gives details of
the channel description and two channel estimation methods. Section 5 shows two approaches for code
inference. Section 6 presents experimental results for the numerical simulation and real mobile reception.
Finally, section 7 concludes the paper with a summary and some discussion.

2 Digital Satellite Broadcasting

2.1 Encoding and Modulation

First, we describe the encoding and modulation processes of digital satellite broadcasting. In this paper,
we focus on two standards for digital satellite broadcasting (ARIB STD-B20 and DVB-S), which are the
standards for NHK BS digital.

Figure 1: Encoding and Modulation.

The encoding and modulation processes are schematically shown in Fig. 1. First, information bits
are encoded with the Reed-Solomon (RS) code [6] and the convolutional code. The RS code is based on
Galois field GF(28), whose element is 1 byte = 8 bits. The RS(204, 188) code is used, where each 188
bytes is encoded into 204 bytes. Basically, errors of 8 bytes can be corrected with this RS code. One
block of RS(204, 188) is 204 bytes = 8×204 = 1632 bits. The outputs of the RS code are interleaved and
concatenated with a convolutional code, whose constraint length is 7. The code rate of the convolutional
code is 7/8. Finally, the output of the convolutional code is modulated with quadrature phase shift
keying (QPSK). In this paper, we focus on the channel properties and the convolutional code and do not
discuss the RS code in detail.
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Let u = (u0, u1, · · · , um−1) ∈ {1, 0}m be the interleaved output of the RS code, where m > 7. Let us

define the i-th output of the convolutional code as xi = (xI
i , x

Q
i ) ∈ {−1,+1}2, which is defined as follows:

xI
i = 1 − 2 (ui + ui−1 + ui−2 + ui−3 + ui−6)

xQ
i = 1 − 2 (ui + ui−2 + ui−3 + ui−5 + ui−6).

(1)

Neglecting the further puncturing process, we define eq. (1) as the encoding of the convolutional code.

Finally, xI
i ∈ {−1,+1} and xQ

i ∈ {−1,+1} are modulated by QPSK defined as

FQPSK(t) = b
[

xI
i cos(2πfct) + xQ

i sin(2πfct)
]

, iTs ≤ t < (i+ 1)Ts, (2)

where Ts is the duration of each bit (43.0404 ns), fc is the carrier frequency, and b denotes the amplitude.
In the case of NHK BS digital, fs ≡ 1/Ts, which we call the “symbol rate” is 23.234 MHz, fc is around
12 GHz, and fc is divisible by fs.

2.2 Static Reception

Digital satellite broadcasting is generally received fairly well from a fixed place with a BS/CS (broad-
casting satellite and communication satellite) receiving dish antenna having a rather large bore diameter
(40 to 50 cm). The received CNR range of static reception is very high (more than 14 dB) because of
the parabolic antenna. A conventional method of demodulation and decoding is shown in Figure 2. The

Figure 2: Conventional Demodulation and Decoding.

coherent QPSK demodulation is defined as the time average of the products of cos(2πfct) or sin(2πfct)

and the received signal F̃QPSK(t). Let us define yi = (yI
i , y

Q
i )T as follows:

yI
i = B

∫ (i+1)Ts

iTs

F̃QPSK(t) cos(2πfct)dt, yQ
i = B

∫ (i+1)Ts

iTs

F̃QPSK(t) sin(2πfct)dt, (3)

where B is a factor for making yI
i
2

+ yQ
i

2
= 2. Each component of yi is not binary in practice because

of the noise. However, in the case of static reception, the difference between yi and xi is small. In the
following, we define x as the sequence of xq, · · · , xq+N . In a similar manner, y and u show the sequence.
The basic idea for decoding y to ûH [15] is summarized in the following equation:

ûH = argmin
u

dH(sign(y),x(u)), (4)

where dH(·, ·) is the Hamming distance, x(u) is the function defined in eq. (1), and argminu defines the
u that minimizes the quantity. In eq. (4), the u that minimizes the total Hamming distance is selected.
In the following, we denote the decoded result of y as ûH . Some errors in ûH are corrected by the RS
decoding, and the final error rate is very low in static reception.

Since the reception antennas for static reception are large enough to focus only on the direct path,
it is possible to assume that the channel is stationary and memoryless. Under this assumption, the
received information about each bit can be regarded as an independent observation, and the decoding
with Hamming distance works well.

2.3 Mobile Reception

Compared with static reception, mobile reception of digital satellite broadcasting is difficult. We can see
this from the fact that there are very few commercial products for mobile reception.

The difficulty arises from two main reasons: the Doppler shift and the fading multipath channel [15].
We explain these first.
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In the mobile reception, the relative velocity between the satellite and the vehicle is not 0, so it
produces a Doppler shift. If a vehicle moves at 100 km/h toward the satellite, the Doppler shift is around
1 kHz because the carrier frequency is 12 GHz. This is much smaller than the symbol rate, which is
fs = 23 MHz, but the Doppler shift influences the QPSK demodulation. One of the general approaches
to reducing the influence of the Doppler shift is to use a phase locked loop (PLL).

In the case of static reception, dish antennas are used. Since they have narrow directivities, the
influence of the multipath channel can be neglected. However, in mobile reception, antennas are generally
small because they must be installed in a vehicle and their directivities are poor. We assume that the
direct path between the satellite and the vehicle is not occluded, but that the influence of the multipath
channel is not negligible. Moreover, it is natural to assume that the characteristics of the channel change
as the vehicle moves.

Next, let us discuss how these problems are solved in commercial products. Among the few commercial
digital satellite broadcasting receivers for vehicles, STRADA (Panasonic) is the one with a reasonable
price. Although details of the receiver are not available, it seems (from personal communication) the
system uses a fast PLL. A PLL resets the influence of the Doppler shift at every acquisition time and if
the PLL is fast enough, the influence of the Doppler shift can be neglected.

To reduce the influence of the fading channel, Panasonic recommends that customers should use an
antenna with a tracking system that has narrow directivity, which makes the main path is dominant and
reflections small.

The strategy of using a PLL and an antenna with a tracking system for the Doppler shift and fading
multipath channel, respectively, is effective.

3 Proposed Method

3.1 Our Strategy

The ultimate goal of our research is to make a compact receiving system with a reasonable price. We do
not propose any change to the broadcasting standard. We receive the signal that is currently available
from the satellite and improve the quality of the received broadcasting.

Our strategy is different from the available commercial products. To reduce the influence of the
Doppler shift, we also use a fast PLL, but we do not use a tracking antenna because an antenna with a
tracking system is rather large and expensive.

According to discussions of the ideal next-generation mobile reception antennas [16], a three-beam
antenna that covers 360 degree (each beam is 120 degree) in azimuth angle has good characteristics [7].
Antennas of this type are compact enough to be installed to vehicles. However, the CNR range of such
antennas will be relatively low [16]. Another study indicates that the next-generation antenna gain for
mobile reception will be around 25 dBi to 37 dBi [17]. What is worse is that since the directivities of
such antennas are poor, it is not possible to ignore the reflected waves even if the carrier frequency is
high (over 10 GHz) and the channel becomes a fading multipath channel with delays [16, 13, 15].

One of the commonly used approaches for channels with memory is to install multiple antennas for
diversity reception. However, it is not possible to install multiple digital satellite broadcasting antennas in
a vehicle. Another commonly used approach is to utilize pilot sequences. These enable the characteristics
of the fading channel to be estimated. However, the NHK digital satellite broadcasting has only one fixed
word (8 bits) in each block of RS(204, 188), and this is not long enough as the pilot sequence.

The method that we propose does not rely on diversity reception or pilot sequences, but uses the
stochastic channel model and recovers the information bits by using stochastic inference.

3.2 Channel Model and Stochastic Inference

The channel model is generally described as a stochastic model p(y|x(u)), which is the conditional
probability of y when x(u) is given. When y is observed, a natural inference on u is to take û =
argmaxu p(x(u)|y) by assuming that the prior distribution of x is uniform as p(x) = 1/22N (N is the
length of x) and using the Bayes theorem:

p(x(u)|y) =
p(y|x(u))p(x)

∑

x p(y|x(u))p(x)
∝ p(y|x(u)).
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Therefore,

û = argmax
u

p(x(u)|y) = argmax
u

p(y|x(u)). (5)

Moreover, if the channel is a binary symmetric channel (BSC) with flipping probability α < 1/2, which
is a typical memoryless channel, then

p(y|x(u)) =
∏

i

p(yi|xi(u)) =
∏

i

αdH (yi,xi(u))(1 − α)2−dH (yi,xi(u)) ∝
(1 − α

α

)

−dH(y,x(u))

.

Since α < 1/2, ((1 − α)/α) > 1, the maximization of p(y|x(u)) is equivalent to the minimization of
dH(y,x(u)) regardless of α. Therefore eq. (5) becomes equivalent to eq. (4).

When the channel has memory, the bits of y are not independent and eq. (4) does not work. We still
use eq.(5), based on the stochastic channel model with memory. What we need to discuss below is how
to build the channel model and how to utilize it to solve eq. (5).

In the case of a BSC, parameter α does not have any influence on the decoding algorithm, but in
the case of fading channels, the parameters must be estimated and used to solve eq. (5). The channel
model and parameter estimation methods are discussed in detail in section 4. We use the stochastic
model with adjacent inter symbol interference (ISI). We explain why we chose this model in section 4.
The parameter estimation of the channel is not simple because the channel input sequence u is hidden
from the observed signal y. We discuss two methods [19, 9]: MLE and HOS matching. For MLE, we use
the EM algorithm[4]. Although the EM algorithm is simple, iterative computation is inevitable and this
takes time. The estimation based on HOS may not be as stable as that of MLE, but the computational
cost is very low, which is better for practical implementation. We compare them in section 6.

When y is observed, the channel model gives us p(x(u)|y). In section 5, we discuss two methods of
stochastic inference ([18, 11]) based on p(x(u)|y).

One is to use the marginal distribution p(xi(u)|y) and compute u based on it (marginal inference).
The other is to use the joint probability of p(x(u)|y) to compute u (joint inference) (Fig. 3). In each
case, the decoded codeword of u is further decoded by the RS decoder (Fig. 3). Since the computational
cost is slightly different, we compare the costs and results of the methods.

Figure 3: Schematic Diagram of the Proposed Method.

For the following discussion, we define variables x̂, ũ, and û as follows.

x̂ : The stochastic inference of the hard bits based on the fading channel estimation.

ũ : The stochastic inference on u based on p(xi(u)|y).

û : The stochastic inference on u based on p(x(u)|y).
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4 Fading Channel and Estimation

4.1 Model of Fading Channel

Let us assume that y does not have a Doppler shift because a fast PLL is used, but that the influence of
the fading channel remains. Our problem is to remove the influence of the fading channel. More precisely,
we would like to infer the probability of the code sequence u from observations y. First, we build the
channel model. The autocorrelations of y, which were measured in twelve real routes with a moving
vehicle, are shown in Fig. 4 (details are given in section 6). Since x is the output of an interleaver, we
expect its autocorrelation to be 0 for τ 6= 0. However, the result shows that y has correlations for τ 6= 0.
This indicates that the channel with memory has ISI. Although the channel can have longer correlations,
Fig. 4 shows that the main contribution to the fading channel is the adjacent interfering path. On the

0 1 2 3 4 5 6 7 8 9

0

0.5

1

Ts     [Ts=43.0404 nsec]

A
ut

oc
or

re
la

ti
on

Figure 4: Autocorrelations of {yi} with the Measured Data.

basis of this result, we assume that the number of multiple paths is two, that is, the main path and one
adjacent interfering path. We also assume additive Gaussian noise. The mathematical formulation of the
channel is given by

yi ≃ b0xi + b1xi−1 + wi, wi ∼ N (0, σ2I4), (6)

where xi = (xI
i , x

Q
i ), yi = (yI

i , y
Q
i ). The parameters b0 and b1 are coefficients, N is the density function

of the normal distribution, σ2 is the variance of the noise, I4 is the 4 dimensional identity matrix and
wi ∼ N (0, σ2I4) means wi is generated from the density function of the normal distribution. Even though
this model is simple, the experiments described in section 6 show that it greatly improves the results. Our
ultimate goal is real-world application, where realtime processing is necessary. The computational cost
of estimation and inference with this simple model is low, so it can easily be implemented in a realtime
system.

Equation (6) gives the distribution of yi when xi and xi−1 are given. In other words, let θ = (b0, b1, σ
2)

and

yi ∼ p
(

yi | xi, xi−1; θ
)

= N (b0xi + b1xi−1, σ
2I4). (7)

Where yi ∼ p
(

yi | xi, xi−1; θ
)

means yi is generated from the probability function p
(

yi | xi, xi−1; θ
)

.

Figure 5: Graphical Model of the Channel.

This is the channel model and Fig. 5 shows it as a graphical model. On the basis of the discussion in
section 4.1, we define the channel model as in eq. (7), and the parameter θ must be estimated from data
in order to perform further inferences. For the estimation of the channel parameters θ = (b0, b1, σ

2), we
compare two methods: MLE and HOS matching.

4.2 Channel estimation by EM algorithm

Let us start with MLE. Since the channel input data x is hidden from the observed signal y, we use the
EM algorithm[4] to compute the MLE. We split the data into blocks and estimate the parameters for
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each block. The block length is set to N = 2000. Let block y = {y1, · · · , yN}. For the estimation, we
use MLE, which is defined as

θ̂ = argmax
θ

p(y; θ) = argmax
θ

log p(y; θ).

The likelihood p(y; θ) is rewritten as

p(y; θ) =
∑

x

p(y,x; θ) =
∑

x

p(y|x; θ)p(x).

From eq. (7), p(y|x; θ) is easily rewritten as

p(y|x; θ) =

N
∏

i=1

p
(

yi | xi, xi−1; θ
)

,

and the natural choice of p(x), which is the prior of x, is a uniform distribution p(x) = 1/22(N+1). Now
the distributions p(y,x; θ) and p(y; θ) become

p(y,x; θ) =
1

22(N+1)

N
∏

i=1

p
(

yi | xi, xi−1; θ
)

(8)

p(y; θ) =
1

22(N+1)

∑

x

N
∏

i=1

p
(

yi | xi, xi−1; θ
)

. (9)

This is a mixture of normal distributions, and x is the hidden stochastic variable. In this situation, one
widely used method for MLE is the EM algorithm. We use the EM algorithm to compute the MLE
of θ = (b0, b1, σ

2). The EM algorithm is a simple iterative method that consists of E- and M-steps for
maximizing the log-likelihood function [4]. The algorithm is as follows.

E-step In the r-th round of the E-step, a Q function, which is defined below, is computed.

Q(θ,θr) =
1

N

∑

x

p(x|y; θr) log p(y,x; θ)

From eqs. (7) and (8), Q(θ,θr) is rewritten as

Q(θ,θr) = − 1

N

∑

x

p(x|y; θr)

∣

∣yi − (b1xi−1 + b0xi)
∣

∣

2

2σ2
− log 2πσ2

= − 1

N

N
∑

i=1

y2
i

2σ2
− b21 + b20

σ2
− log 2πσ2 +

2b1
σ2

Cr
yx

−1
+

2b0
σ2

Cr
yx − 2b0b1

σ2
Cr

xx
−1
,

(10)

where the fact |xi|2 = 2 is used and Cr
yx

−1
, Cr

yx, and Cr
xx

−1
are defined as follows:

Cr
yx

−1
=

1

2N

N
∑

i=1

∑

xi−1

p(x|y; θr)yi · xi−1, C
r
yx =

1

2N

N
∑

i=1

∑

xi

p(x|y; θr)yi · xi

Cr
xx

−1
=

1

2N

N
∑

i=1

∑

xi−1,xi

p(x|y; θr)xi−1 · xi.

(11)

It is necessary to compute Cr
yN x

−1
, Cr

yN x
−1

, and Cr
xx

−1
at every iteration. For the computation,

we can utilize the belief propagation (BP) algorithm. Details are given in section A.

M-step At each iteration, the M-step updates θ as

θr+1 = argmax
θ

Q(θ,θr).
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If we equate ∂Q(θ,θr)/∂θ|θ=θr+1 = 0, it becomes

br+1
0 =

Cr
yx − Cr

yx
−1
Cr

xx
−1

1 − (Cr
xx

−1
)2

, br+1
1 =

Cr
yx

−1
− Cr

yxC
r
xx

−1

1 − (Cr
xx

−1
)2

σr+12
=

1

2N

N
∑

i=1

∣

∣yi

∣

∣

2
+ br+1

1

2
+ br+1

0

2 − 2br+1
1 Cr

yx
−1

− 2br+1
0 Cr

yx + 2br+1
0 br+1

1 Cr
xx

−1
.

At r = 0, θ0 is initialized as b̂00 = 0.8(2 − σ̂2), b̂01 = 0.2(2 − σ̂2) and σ̂2)
0

= 0.3. In practice, the E-
and M-steps are repeated and the algorithm with the initial condition converges well with a few to 20
iterations. Finally, the parameter is estimated as θ̂ = (b̂0, b̂1, σ̂

2).

4.3 Channel estimation by Higher Order Statistics

Next, we explain the HOS matching. From the model in eq. (6) and the assumptions that xi is indepen-
dent, its mean is 0, and noise is independent additive Gaussian noise, we have the following relations:

Cyy = 2(b20 + b21 + σ2), Cyy
−1

= 2b0b1,

Cy4 = 4
{

(b20 + b21 + σ2)2 + 4σ2(b20 + b21 + σ2) − 2σ4 + 4b20b
2
1

}

= 4
{

2σ2Cyy +
1

2
C2

yy + C2
yy

−1
−σ4

} (12)

where we used the fact that Ep(z)[z
4] = 3σ4 if z ∼ N (0, σ2) and the following quantity

Cyy = Ep(y)[y
Q
i

2
+ yI

i

2
], Cy4 = Ep(y)[y

Q
i

4
+ yI

i

4
], Cyy

−1
= Ep(y)[y

I
i y

I
i−1 + yQ

i y
Q
i−1].

In practice, we replace these with the following example means.

Ĉyy =
1

N

∑

i

(

yQ
i

2
+ yI

i

2
)

, Ĉy4 =
1

N

∑

i

(

yQ
i

4
+ yI

i

4
)

, Ĉyy
−1

=
1

N

∑

i

(yI
i y

I
i−1 + yQ

i y
Q
i−1).

The unknown parameters b0, b1, and σ2 can be estimated by solving the set of equations in eq. (12). It is
easy to check that the solutions are not unique from the fact that the equations in eq. (12) are symmetric
for b0 and b1.

Since b0 shows the signal strength from the direct path, we impose two constraints: b0 > 0 and
b0 > |b1|.

σ̂2 = Ĉyy −
√

3

2
Ĉ2

yy + 2Ĉ2
yy

−1
− Ĉy4 ,

b̂0 =
1√
2

(

B2 +
√

B2 − Ĉ2
yy

−1

)1/2

, b̂1 =
Ĉyy

−1

2b̂0
, where B =

1

2
Ĉyy − σ̂2.

This method strongly depends on the assumption that the noise is Gaussian, and the solution may not be
as stable as that of MLE. However, the computation is straightforward and its cost is low. We compare
these two methods through experiments.

5 Inference of Convolutional Code

When the parameters of the channel are estimated with the MLE or HOS matching methods, the channel
model p(y|x(u); θ) is given. We would like to make the stochastic inference on u, which is the inputs of
the convolutional code, based on p(x(u)|y; θ).

In the following, we propose two approaches for stochastic inference. The first approach is to apply
stochastic inference to the hard bits of x and decode them by the conventional convolutional decoding. We
call this approach the marginal inference approach. The other approach is to apply stochastic inference
directly to the input sequence of the convolutional encoding u. We show the graphical model of the
transmitting convolutional code words and the channel model. And the stochastic inference on the
convolutional code words is based on the graphical model. We call this method the joint inference
approach. Both approaches are discussed below.
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5.1 Marginal Inference Approach

In the marginal inference approach, we first estimate x based on the marginal probability p(xi(u)|y).
Let x̂ be the inference of the sequence x. With an abuse of the notation, the inference x̂ is defined as
follows:

x̂i = sign xi, xi =
∑

xi

xip(xi|y; θ̂) (13)

This is the maximization of the posterior marginals; that is,

x̂i = argmax
xi

p(xi|y; θ̂).

The BP algorithm (A) is an efficient method for computing xi. To decode x̂ to ũ, we use eq. (4):

ũ = argmin
u

dH(sign(x̂),x(u)). (14)

The standard decoding algorithm of convolutional codes solves this problem. We define ũ as the decoded
word of this method.

5.2 Joint Inference Approach

In the joint inference approach, the stochastic inference on u is done based on p(x(u)|y; θ̂). The graphical
model representation is shown in Fig. 6, where code words u as well as x are the hidden stochastic
variables. We infer code û from the posterior distribution given observed signal y.

Figure 6: Graphical Model of Convolutional Code.

The idea of the inference is to find the path in the trellis that maximizes p(u|y; θ̂) as

û = argmax
u

p(u|y; θ̂) = argmax
u

∑

x

p(u|x)p(x|y; θ̂). (15)

From eq. (8), we have p(x|y; θ) as

p(x|y; θ̂) =
p(x)p(y|x; θ̂)

∑

x p(x)p(y|x; θ̂)
=

1

Z

N−1
∏

i=1

p(yi|xi, xi−1; θ̂) =
1

Z ′

N−1
∏

i=1

ψt(xi, xi−1),

where

Z = 22N
∑

x

p(y,x; θ̂), ψi(xi, xi−1) = exp

[

−
∣

∣yi − (b0xi + b1xi−1)
∣

∣

2

2σ2

]

Z ′ = (2πσ2)N−1Z =
∑

x

N−1
∏

i=1

ψi(xi, xi−1).

We use the BP algorithm[14] to compute p(x|y; θ̂) efficiently. In the following, we rewrite p(u|y; θ̂)
as p(u) and denote uq

r for ur, · · · , uq, (q > r) for simplicity because the joint distribution p(uM−1
0 ) is

defined as

p(uM−1
0 ) = p(u6

0) p(u7|u6
0) · · · · · p(uM−1|uM−2

M−8)

log p(uM−1
0 ) = log p(u6

0) + log p(u7|u6
0) + · · · + log p(uM−1|uM−2

M−8).
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The individual conditional probabilities are defined as

p(ui|ui−1
i−7) =

p(ui
i−7)

p(ui−1
i−7)

.

The trellis for the computation of û is shown in Fig. 7. Figure 7 starts from the initial status log p(u6
0)

and then moves to the next status log p(u7|u6
0). Final status is log p(uM−1|uM−2

M−8). The sequence uM−1
0

is searched for in the trellis as the path that maximizes p(uM−1
0 ).

Figure 7: Convolutional Code Inference.

6 Numerical Experiments

6.1 Simulated Data

We have proposed two channel estimation methods (MLE and HOS matching) and two stochastic infer-
ence methods (marginal and joint inference). The combinations of each estimation and inference methods
were tested in two numerical experiments: one with simulated data and the other with real mobile channel
data.

First, we explain the experiment with simulated data. We generated data sets according to eq. (6).
Each data set consists of 2000 data points, where b0 is fixed to 1.0, b1 is a sample taken from a uniform
distribution of [−1/K, 1/K], and the additive noise follows the Gaussian distribution as

wi ∼ N (0, σ2I4).

Note that b0 and b1 are fixed for each data set, and we repeated the experiments 100 times for each σ by
drawing b1 from a uniform distribution.

K = 10 K = 5 K = 1

Figure 8: Error Performances of the Outputs of Convolutional Code.

The error performances of the convolutional decoding are shown in Fig. 8. Each graph shows the
results for a different K. Each figure shows 7 results: combinations of the two channel estimation
methods and two inference methods, two inference methods with true parameters (since we know the

10



channel model parameters in the simulation), and standard decoding methods without the channel model
or joint inference (hard decision + Viterbi decoding).

As shown in Fig. 8, the method (MLE estimation or HOS matching) did not influence the results,
but the joint inference worked better than the marginal inference. In each case, the results were close to
those obtained using the true parameters.

The maximum bit error rate (BER) to let RS decoding have an error ratio of less than 10−5 is typically
2 × 10−3. Although wide rage of CNR is simulated in the refrence [16], we consider 8 dB to 10 dB of
CNR is the range of our experiments. This range is relatively low and the method shown in the reference
[16] cannot improve the error performances enoughly. In this range, decoding without channel estimation
cannot remove the influence of the fading channel. The marginal inference approach can improve the
error performances, but cannot achieve sufficient quality. The joint inference approach can remove the
influence of the fading channel.

6.2 Measuring Real Channels on Twelve Routes

Next, we explain the experiment with the data for real channels of satellite broadcasting mobile reception.
The measurement conditions are listed in Table 1.

Table 1: Measurement Conditions.
Satellite BSAT-2a

Reception frequency 11.84256 GHz
Places Tokyo and Kanagawa, Japan

Elevation angle 38.1 degree
Antenna gain 25 dBi

Date February 2, 2006
Weather Fine

We used a multi-beam antenna [7] and a fast PLL whose acquisition time is equal to the symbol
time. In our experiments, we installed a commercially produced Lunenburg lens antenna [7] (Sumitomo
Electric Industries, LuneQ-40 1) on the roof of a vehicle. The measuring system consisted of a low noise
amplifier module and an orthogonal signal recorder with a PLL whose acquisition time was one QPSK
symbol time.

The channel was measured on a fine day while the vehicle was moving along the K1-Yokohane highway
from Haneda toward Yokohama, the urban road around Ohta Ichiba in Shinagawa, and the city road
around Aomonoyokocho in Shinagawa. The routes were chosen so as not to have any serious shadowing.
We measured at five places along the highway (H1–H5), three places along the urban road (U1–U3), and
four places along the city road (C1–C4) (Fig. 9).

Highway Urban Road City Road

Figure 9: Measurement Routes (I.C.: interchange).

The autocorrelations for each route are shown in Fig. 10. The highway is an elevated expressway with

1Although this product is designed for static reception, the antenna was installed on a vehicle for the measurement.

11



few reflected waves. The urban road is surrounded by warehouses, and the city road is surrounded by
office buildings, giving relatively many reflected waves and delays.

High Way Urban Road City Road

Figure 10: Examples of Autocorrelation.

In each route, the CNR was in the range of 8 to 10 dB. We recorded the frequency modulation (FM)
signal broadcast from the satellite, where the original signal was known. The real channel was measured
at the sampling rate 92.936 MHz and the channel was reconstructed in the form of autocorrelations,
where the data rate was 23.234 MHz. Data for 120 s was collected. We used data for twelve real channel
in the experiments (Fig. 11). In this case, the original data was known and the error rates were computed.

Figure 11: Block Diagram of the Measurement.

6.3 Reconstruction of the Mobile Channel

For the experiments, the measured mobile channels had to be reconstructed from the measured FM
signals. An FM signal is generally expressed as

FFM (t) = a cos(2π(fc + fm(t))t),

where fm(t) is the frequency of the transmission signal, which we know.
With the PLL, the mobile channel output signal of the FM signal, which is influenced by the Doppler

shift and the fading channel, can be expressed as

F̃FM (t) =

LF M−1
∑

l=0

al cos(2π(fc + fm(t))(t − τl) +̟l(t)), ̟l(t) = 2πfDl(t− τl) + φ0,

where al, τl, and ̟l(t) are the amplitude, delay, and Doppler shift of the lth path, respectively. Since
we know fm(t), the mobile channel characteristics are obtained by removing fm(t) from the recorded
signal. After that, the channel is approximated as a finite impulse response filter with 4096 taps, which
is defined as

hFM (t) ≡
LF M−1

∑

l=0

al cos
(

2π(fc + fDl)(t− τl) + φ0

)

=

4095
∑

l=0

al cos
(

2π(fc + fDl)(t− lT̂S) + φ0

)

.

Here, T̂S is given by the PLL. To get each multiple path amplitude and phase rotation, we multiply
hFM(t) by cos(2πfc(t− lT̂S)) and obtain the signal observed through the low pass filter as

bl cos(2πfDl(t− lT̂s) + φ0).

The Hilbert transformation gives us

bl sin(2πfDl(t− lT̂s) + φ0). (16)
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In this way, the reproduced mobile channel is expressed as the filter. We can rewrite it as a filter from
xi to yi, which is expressed as a matrix defined as follows:

H(t) ≡
4095
∑

l=0

(

bl cos̟l(t) bl sin̟l(t)
−bl sin̟l(t) bl cos̟l(t)

)

, ̟l(t) = 2πfDl(t− lT̂s) + φ0.

The noise was also measured in the case of a different carrier, where no signal was sent. Letting the noise
n(iTs), the received signal is reconstructed as

yi = H(iTs)xi + n(iTs).

6.4 Results

Here, we present the results obtained when our method was applied to the data for twelve mobile chan-
nels. First, to explain how the multiple paths are removed, we show the autocorrelations of y and x̂,
where y is the reception data and x̂ is the inference based on the fading channel, as expressed by eq. (13).
The original codes were interleaved and the ideal autocorrelations were 0 except for τ = 0. The autocor-
relations for 3 out of 12 measured mobile channels (the results were similar for the other channels) are
shown in Fig. 12. As y was processed to x̂, the autocorrelations got closer to the expected function.

Figure 12: Autocorrelations.

Next we show how the proposed method improves the results. We show the experimental schematic
diagrams in Fig.13. The results for ũ (the marginal inference approach) and û (the joint inference

Figure 13: Schematic Diagram of Experiments.

approach) are shown in Tables 2 and 3. For both inference approaches, two channel estimation methods
(HOS matching and the EM algorithm) were combined. The BER of the outputs of the convolutional
decoding and the element errors of the RS decoding are shown in Tables 2 and 3, respectively. These
tables also show the results with ûH (hard decision without channel estimation).

For NHK BS television reception, the quality of the received images was very good when the element
error rate was less than 2 × 10−4 at the output of the RS decoding.

Comparing the marginal and joint inference approaches, the joint inference reached a good quality
range in a practical CNR range (8 to 10 dB), while the marginal inference approach gave good results
for some routes (e.g., H1, H2, and U1), but performed badly for others (e.g., H5, U3, and C4).

Comparing the HOS matching and the EM algorithm, although there were almost no differences for
the numerical simulation, the EM algorithm worked slightly better than the HOS matching. The HOS
matching strongly relies on the noise being Gaussian that Ep(z)[z

4] = 3σ4 if z ∼ N (0, σ2), each x is
independent and the average of x is zero. This may indicate that the noise distribution of a real channel
is non-Gaussian. However, at the output of the RS decoder, there were almost no differences.

We give a quantitative comment of the computational cost by measuring the execution time of MAT-
LAB program. Comparing the decoding time expressed in Eq.(4), although the method combined the
MLE estimation with Joint Inference times from 2.2 to 20.2, the method combined the HOS estimation
with Joint Inference times 1.3.
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Table 2: BER of Convolutional Code.

Table 3: Element Error Rate of RS Code.

For further reference, we present pictures some results in Fig. 14. These are the snapshots of the
decoded images for route C4, whose received CNR was the lowest (around 8 dB). They show that the
joint inference approach with both HOS matching and the EM algorithm removed the influence of the
real digital satellite mobile channel.

Original picture. Enlarged original picture.

7 Conclusion

We proposed mobile reception methods to improve the quality of the received information in digital
satellite broadcasting. These methods do not use any diversity reception or pilot sequences [5], but use
channel estimation and stochastic inference of code words based on a simple graphical model, which
represents the fading channel and the convolutional code. We proposed two channel estimation methods
and two stochastic inference methods. The estimation methods are MLE and HOS matching. The
stochastic inference methods are marginal inference and joint inference.
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Decoded image without chan-
nel estimation or inference.

Decoded image with HOS
and marginal inference.

Decoded image with EM and
marginal inference.

Decoded image with HOS
and joint inference.

Decoded image with EM and
joint inference.

Figure 14: Snapshots of Picture Information for Route C4.

The error performances of the two estimation methods were very similar. For a real channel, the HOS
matching method worked slightly worse than the MLE method. The reason for this might be related
to the fact that HOS matching strongly relies on the assumption that the noise is Gaussian, whereas
the distribution of the real channel might be non-Gaussian. However, the difference is small. It is also
important to note that the computational cost of the HOS matching method is very small compared with
the EM algorithm where iteration is inevitable.

We clarified that the inference of the code words combined with the channel estimation works well.
The results of the numerical and real data experiments show that convolutional code inference by the
marginal probability works well if the received CNR is high enough, but not in a low CNR range. On
the other hand, inference by joint probability works well in a practical CNR range, from 8 to 10 dB.

For these reasons, we conclude that joint inference with HOS channel estimation is very effective for
receiving BS digital satellite broadcasting in vehicles. Note that the CNR in the experiment with real
data was lower than that of the currently available system, and the result was still good enough for a
real application. It is also important to note that the computational cost is quite low and it is possible
to implement it to a practical system that requires realtime processing.

Finally, we mention some of our plans for future work and conclude the paper. We would like to extend
the idea to other modulations such as OFDM and CDMA [10, 1]. For the fading channel, we assumed
a single interfering path, but we can extend it to multiple paths. The problem for such an extension is
the computational cost for the estimation and inference. Roughly speaking, the computational cost for
the inference increases exponentially with the number of paths. In this paper, we did not discuss the
RS decoding algorithm. Although belief propagation is not used for decoding the RS codes, it is the
standard algorithm for turbo codes[2] and LDPC (low-density parity check) codes [12]. If we implement
the decoding of the RS code with a BP decoder, the whole process of the inference of the codes and the
decoding can be unified with one BP algorithm. We intend to study this.
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A Belief Propagation

The idea of belief propagation is explained in this section [14]. From eq. (8), we have the following
relation:

p(x|y; θ) =
p(x)p(y | x; θ)
∑

x p(y,x; θ)
=

1

Z

N−1
∏

i=1

p(yi | xi, xi−1; θ) =
1

Z ′

N−1
∏

i=1

ψi(xi, xi−1),
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where

Z = 22N
∑

x

p(y,x; θ), ψi(xi, xi−1) = exp

[

−
∣

∣yi − (b0xi + b1xi−1)
∣

∣

2

2σ2

]

Z ′ = (2πσ2)N−1Z =
∑

x

N−1
∏

i=1

ψi(xi, xi−1).

It is important to note that p(x|y; θ) is denoted only with local information ψi(xi, xi−1). Although

ψi(xi, xi−1) seems to have 16 states, we can simplify it to 8 because we assume that xI
i , x

Q
i , and wI

i , wQ
i

in (6) are independent of each other: that is,

ψi(xi, xi−1) = ψI
i (xI

i , x
I
i−1)ψ

Q
i (xQ

i , x
Q
i−1),

where

ψI
i (xI

i , x
I
i−1) = exp

[

−
(

yI
i − (b0x

I
i + b1x

I
i−1)

)2

2σ2

]

, ψQ
i (xQ

i , x
Q
i−1) = exp

[

−
(

yQ
i − (b0x

Q
i + b1x

Q
i−1)

)2

2σ2

]

.

The values of eq. (11) can be efficiently computed by using the characteristics of the distribution. More
precisely, the computation can be applied by passing messages, first from i = 1 to i = N and then from
i = N to i = 1. A practical BP algorithm for calculating the maximization of the marginal probability
is as follows. On the graphical model shown in Fig. 5, the probability is calculated by multiplying two
messages: the forward message and the backward message. The message passing in the graphical model
is shown in Fig. 15. Since the messages from xi−1 to xi and from xi to xi−1 pass through yi, the practical
graph includes yi in the equation and deletes yi from the graph, as shown in Fig. 16.

Figure 15: Message Passing in the Graphical Model.

Figure 16: Message Passing of x.

A practical algorithm for the graph in Fig. 16 is shown below.

Set Initial Probability To calculate the maximization of the marginal probability pi of the ith node
xi, first the initial probability p0

i is set. The initial probability is arbitrary within 0 < p0
i < 1.

Calculate Forward Message Passing The message from the (i− 1)th node to the ith node αi−1 i is
calculated as

αi−1 i =
1

Zfi

∑

xi

exp

[

−
(

yi − (b0xi + b1xi−1)
)2

2σ2

]

p0
i−1, (17)

where Zfi is the normalization factor.

Calculate Backward Message Passing The message from the ith node to the (i− 1)th node βi i−1

is calculated as

βi i−1 =
1

Zbi

∑

xi−1

exp

[

−
(

yi − (b0xi + b1xi−1)
)2

2σ2

]

βi+1 i, (18)

where Zbi is the normalization factor.
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Calculate Marginal Probability The maximized marginal probability of the ith node pi is computed
as

pi =
1

ZBPi
αi−1 i βi+1 i, (19)

where ZBPi is the normalization factor.

The practical algorithm is similar to the Forward-Backward algorithm of the hidden Markov models.
Its computational cost is proportional to N , and it can easily be implemented in a realtime system.
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