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Abstract

Belief propagation (BP) is a universal method of stochastic reasoning. It gives exact

inference for stochastic models with tree interactions, and works surprisingly well

even if the models have loopy interactions. Its performance has been analyzed

separately in many fields, such as, AI, statistical physics, information theory, and

information geometry. The present paper gives a unified framework to understand

BP and related methods, and to summarize the results obtained in many fields. In

particular, BP and its variants including tree reparameterization (TRP) and concave-

convex procedure (CCCP) are reformulated with information geometrical terms,

and their relations to the free energy function are elucidated from information

geometrical viewpoint. We then propose a family of new algorithms. The stabilities

of the algorithms are analyzed, and methods to accelerate them are investigated.

1 Introduction

Stochastic reasoning is a technique used in wide areas of AI, statistical physics,

information theory, and others, to estimate the values of random variables based

on partial observation of them (Pearl (1988)). Here, a large number of mutually
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interacting random variables are represented in the form of joint probability.

However, the interactions often have specific structures such that some variables

are independent of others when a set of variables are fixed. In other words, they

are conditionally independent, and their interactions take place only through these

conditioning variables. When such a structure is represented by a graph, it is called

a graphical model (Lauritzen & Spiegelhalter (1988); Jordan (1999)). The problem is

to infer the values of unobserved variables based on observed ones by reducing the

conditional joint probability distribution to the marginal probability distributions.

When the random variables are binary, their marginal probabilities are

determined by the conditional expectation, and the problem is to calculate them.

However, when the number of binary random variables is large, the calculation

is computationally intractable from the definition. Apart from sampling methods,

one way to overcome this problem is to use belief propagation (BP) proposed in

AI (Pearl (1988)). It is known that BP gives exact inference when the underlying

causal graphical structure does not include any loop, but it is also applied to loopy

graphical models (loopy BP), and gives amazingly good approximate inference.

The idea of loopy BP is successfully applied to the decoding algorithms of turbo

codes and low-density parity-check (LDPC) codes as well as spin-glass models

and Boltzmann machines. It should be also noted that some variants have been

proposed to improve the convergence property of loopy BP. Tree reparameterization

(TRP) (Wainwright et al. (2002)) is one of them, and convex concave computational

procedure (CCCP) (Yuille (2002); Yuille & Rangarajan (2003)) is another algorithm

which is reported to have better convergence property.

The reason why loopy BP works so well is not fully understood, and there

are a number of theoretical approaches which attempt to analyze its performance.

The statistical physical framework utilizes the Bethe free energy (Yedidia et al.

(2001a)) or the like (Kabashima & Saad (1999, 2001)), and a geometrical theory

was initiated by Richardson (2000) to understand the turbo decoding. Information

geometry (Amari & Nagaoka (2000)), which has been successfully used in the study

of the mean field approximation (Tanaka (2000, 2001); Amari et al. (2001)), gives a

framework to elucidate the mathematical structure of BP (Ikeda et al. (2002, 2004)).

A similar framework is also given to describe TRP (Wainwright et al. (2002)).
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The problem is interdisciplinary where various concepts and frameworks

originate from AI, statistics, statistical physics, information theory, and information

geometry. In the present paper, we focus on undirected graphs which is a general

representation of graphical models, and give a unified framework to understand BP,

CCCP, their variants, and the role of the free energy, based on information geometry.

To this end, we propose a new function of the free-energy type to which the Bethe

free energy (Yedidia et al. (2001a)) and that of (Kabashima & Saad (2001)) are closely

related. By constraining the search space in proper ways, we obtain a family of

algorithms including BP, CCCP, and a variant of CCCP without double loops. We

also give their stability analysis. The error analysis was given in another paper

(Ikeda et al. (2004)).

The paper is organized as follows. In section 2, the problem is stated compactly

followed by preliminary of information geometry. Section 3 introduces information

geometrical view of BP, the characteristics of its equilibrium, and related algorithms,

TRP and CCCP. We discuss the free energy which is related to BP in section 4,

and new algorithms are proposed with stability analysis in section 5. Section 6

gives some extensions of BP from information geometrical viewpoint, and finally

section 7 concludes the paper.

2 Problem and Geometrical Framework

2.1 Basic Problem and Strategy

Let x = (x1, · · · , xn)T be hidden and y = (y1, · · · , ym)T be observed random

variables. We start with the case where each xi is binary i.e., xi ∈ {−1, +1}
for simplicity. An extension to wider class of distributions will be given in

subsection 6.1.

The conditional distribution of x given y is written as q(x|y), and our task is to

give a good inference of x from the observations. We hereafter simply write q(x) for

q(x|y) and omit y.

One natural inference of x is the maximum a posteriori (MAP), that is

x̂map = argmax
x

q(x).
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This minimizes the error probability that x̂map does not coincide with the true one.

However, this calculation is not tractable when n is large because the number of

candidates of x increases exponentially with respect to n. The maximization of

the posterior marginals (MPM) is another inference that minimizes the number of

component errors. If each marginal distribution q(xi), i = 1, · · · , n, is known, the

MPM inference decides x̂i = +1 when q(xi = +1) ≥ q(xi = −1) and x̂i = −1

otherwise. Let ηi be the expectation of xi with respect to q(x), that is

ηi = Eq[xi] = ∑
xi

xiq(xi).

The MPM inference gives x̂i = sgn ηi, which is directly calculated if we know the

marginal distributions q(xi), or the expectation

η = Eq[x].

The present paper focuses on the method to obtain a good approximation to η,

which is equivalent to the inference of ∏n
i=1 q(xi).

For any q(x), ln q(x) can be expanded as a polynomial of x up to degree n,

because every xi is binary. However, in many problems, mutual interactions of

random variables exist only in specific manners. We represent ln q(x) in the form

ln q(x) = h · x +
L

∑
r=1

cr(x)− ψq,

where h · x = ∑i hixi is the linear term, cr(x), r = 1, · · · , L, is a simple polynomial

representing the r-th clique among related variables, and ψq is logarithm of the

normalizing factor or the partition function, which is called the (Helmholtz) free

energy,

ψq = ln ∑
x

exp
[

h · x + ∑
r

cr(x)
]
. (2.1)

In the case of Boltzmann machines (Figure 1) and conventional spin-glass models,

cr(x) is a quadratic function of xi, that is,

cr(x) = wijxixj,

where r is the index of the edge which corresponds to the mutual coupling between

xi and xj.
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Figure 1: Boltzmann machine.

It is more common to define the true distribution q(x) of an undirected graph as

a product of clique functions as

q(x) =
1

Zq

n

∏
i=1

φi(xi) ∏
r∈C

φr(xr),

where C is the set of cliques. In our notation, φi(xi) and φr(xr) are denoted as follows

hi =
1
2

ln
φi(xi = +1)
φi(xi = −1)

, cr(x) = ln φr(xr), ψq = ln Zq.

When there are only pairwise interactions, φr(xr) has a form of φr(xi, xj).

2.2 Important Family of Distributions

Let us consider the set of probability distributions

p(x; θ, v) = exp[θ · x + v · c(x)− ψ(θ, v)] (2.2)

parameterized by θ and v, where v = (v1, · · · , vL)T, c(x) = (c1(x), · · · , cL(x))T,

and v · c(x) = ∑L
r=1 vrcr(x). We name the family of the probability distributions S,

which is an exponential family

S =
{

p(x; θ, v)
∣∣ θ ∈ <n, v ∈ <L

}
, (2.3)
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where its canonical coordinate system is (θ, v). The joint distribution q(x) is

included in S, which is easily proved by setting θ = h and v = 1L = (1, · · · , 1)T,

q(x) = p(x; h, 1L).

We define M0 as a submanifold of S specified by v = 0,

M0 =
{

p0(x; θ) = exp[h · x + θ · x− ψ0(θ)]
∣∣ θ ∈ <n

}
.

Every distribution of M0 is an independent distribution which includes no mutual

interaction between xi and xj, (i 6= j), and canonical coordinate system of M0 is θ.

The product of marginal distributions of q(x), that is, ∏n
i=1 q(xi), is included in M0.

The ultimate goal is to derive ∏n
i=1 q(xi) or corresponding coordinate θ of M0.

2.3 Preliminary of Information Geometry

In this subsection we give preliminaries of information geometry (Amari &

Nagaoka (2000); Amari (2001)). First we define e–flat and m–flat submanifolds of

S.

e–flat submanifold: Submanifold M⊂S is said to be e–flat, when, for all t ∈
[0, 1], q(x), p(x) ∈ M, the following r(x; t) belongs to M.

ln r(x; t) = (1− t) ln q(x) + t ln p(x) + c(t),

where c(t) is the normalization factor. Obviously, {r(x; t) | t ∈ [0, 1]} is an

exponential family connecting two distributions, p(x) and q(x). When an e–

flat submanifold is a one–dimensional curve, it is called an e–geodesic. In

terms of the e–affine coordinates θ, a submanifold M is e–flat when it is linear

in θ.

m–flat submanifold: Submanifold M⊂S is said to be m–flat when, for all t ∈
[0, 1], q(x), p(x) ∈ M, the following mixture r(x; t) belongs to M.

r(x; t) = (1− t)q(x) + tp(x).

When an m–flat submanifold is a one–dimensional curve, it is called an m–

geodesic. Hence, the above mixture family is the m–geodesic connecting them.
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From the definition, any exponential family is an e–flat manifold. Therefore S

and M0 are e–flat. Next we define the m–projection (Amari & Nagaoka (2000)).

Definition 1. Let M be an e–flat submanifold in S, and let q(x)∈S. The point in M that

minimizes the KL–divergence from q(x) to M, denoted by

ΠM◦q(x) = argmin
p(x)∈M

D[q(x); p(x)] (2.4)

is called the m–projection of q(x) to M.

Here, D[·; ·] is the KL (Kullback-Leibler)-divergence defined as

D[q(x); p(x)] = ∑
x

q(x) ln
q(x)
p(x)

.

The KL–divergence satisfies D[q(x); p(x)]≥0, and D[q(x); p(x)] = 0 when and only

when q(x) = p(x) holds for every x. Although symmetry D[q; p] = D[p; q] does

not hold in general, it is regarded as an asymmetric squared distance. Finally, the

m–projection theorem follows.

Theorem 1. Let M be an e–flat submanifold in S, and let q(x)∈S. The m–projection of

q(x) to M is unique and given by a point in M such that the m–geodesic connecting q(x)

and ΠM◦q is orthogonal to M at this point in the sense of the Riemannian metric due to the

Fisher information matrix.

Proof. A detailed proof is found in Amari & Nagaoka (2000) and the following is

a sketch of it. First, we define the inner product and prove the orthogonality. A

rigorous definition concerning the tangent space of manifold is found in Amari &

Nagaoka (2000).

Let us consider a curve p(x; α) ∈ S, which is parameterized by a real-valued

parameter α. Its tangent vector is represented by a random vector ∂α ln p(x; α),

where ∂α = ∂/∂α. For two curves p1(x; α) and p2(x; β) which intersect at α = β = 0,

p(x) = p1(x; 0) = p2(x; 0), we define the inner product of the two tangent vectors

by

Ep(x)[∂α ln p1(x; α)∂β ln p2(x; β)]α=β=0.

Note that this definition is consistent with the Riemannian metric defined by the

Fisher information matrix.
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Let p∗(x) be an m–projection of q(x) to M, and the m–geodesic connecting q(x)

and p∗(x) be rm(x; α), which is defined as

rm(x; α) = αq(x) + (1− α)p∗(x), α ∈ [0, 1].

The derivative of ln rm(x; α) along the m–geodesic at p∗(x) is

∂α ln rm(x; α)|α=0 =
q(x)− p∗(x)

rm(x; α)

∣∣∣
α=0

=
q(x)− p∗(x)

p∗(x)
.

Let an e–geodesic included in M be re(x; β), which is defined as

ln re(x; β) = β ln p′(x) + (1− β) ln p∗(x) + c(β), p′(x) ∈ M, β ∈ [0, 1].

The derivative of ln re(x; β) along the e–geodesic at p∗(x) is

∂β ln re(x; β)|β=0 = ln p′(x)− ln p∗(x) + c′(0).

The inner product becomes

Ep∗(x)[∂α ln p∗(x)∂β ln p∗(x)] = ∑
x

[q(x)− p∗(x)][ln p′(x)− ln p∗(x)]. (2.5)

The fact that p∗(x) is an m–projection from q(x) to M gives ∂βD[q; re(β)]|β=0 = 0,

that is,

∂βD[q(x); re(x; β)]
∣∣

β=0 = ∑
x

q(x)[ln p∗(x)− ln p′(x)]− c′(0) = 0. (2.6)

Moreover, since D[p∗; re(β)] is minimized to 0 at β = 0, we have

∂βD[p∗(x); re(x; β)]
∣∣

β=0 = ∑
x

p∗(x)[ln p∗(x)− ln p′(x)]− c′(0) = 0. (2.7)

Equation 2.5 is proved to be zero by combining equations 2.6 and 2.7. Furthermore,

it immediately proves the Pythagorean theorem

D[q(x); p′(x)] = D[q(x); p∗(x)] + D[p∗(x); p′(x)].

This holds for every p′(x) ∈ M. Suppose the m–projection is not unique, and

let another point be p∗∗(x) ∈ M which satisfies D[q; p∗∗] = D[q; p∗]. Then the

following equation holds

D[q(x); p∗∗(x)] = D[q(x); p∗(x)] + D[p∗(x); p∗∗(x)] = D[q(x); p∗(x)].

This is true only if p∗(x) = p∗∗(x) which proves the uniqueness of the m–

projection.
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2.4 MPM Inference

We show the MPM inference is immediately given if the m–projection from q(x) to

M0 is given. From the definition in equation 2.4, the m–projection of q(x) to M0 is

characterized by θ∗, that satisfies

p0(x; θ∗) = ΠM0 ◦ q(x).

Hereafter, we denote the m–projection to M0 in terms of the parameter θ as,

θ∗ = πM0 ◦ q(x) = argmin
θ

D[q(x); p0(x; θ)].

By taking the derivative of D[q(x); p0(x; θ)] with respect to θ, we have

∑
x

xq(x)− ∂θψ0(θ∗) = 0, (2.8)

where ∂θ shows the derivative with respect to θ. From the definition of exponential

family,

∂θψ0(θ) = ∂θ ln ∑
x

exp(h · x + θ · x) = ∑
x

xp0(x; θ). (2.9)

We define the new parameter η0(θ) in M0 as

η0(θ) = ∑
x

xp0(x; θ) = ∂θψ0(θ). (2.10)

This is called the expectation parameter (Amari & Nagaoka (2000)). From

equations 2.8, 2.9, and 2.10, the m–projection is equivalent to marginalizing q(x).

Since translation between θ and η0 is straightforward for M0, once the m–projection

or equivalently the product of marginals of q(x) is obtained, the MPM inference is

given immediately.

3 BP and Variants: Information Geometrical View

3.1 BP

Information Geometrical View of BP

In this subsection, we give the information geometrical view of BP. The well-known

definition of BP is found somewhere else (Pearl (1988); Lauritzen & Spiegelhalter

(1988); Weiss (2000)), and the detail is not given in this paper. We note that our
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A B C

Figure 2: A: Belief graph, B: Graph with a single edge, C: Graph with all edges.

derivation is based on BP for undirected graphs. For loopy graphs, it is well-known

that BP does not necessarily converge, and even if it does, the result is not equal to

the true marginals.

Figure 2 shows three important graphs for BP. The belief graph in Figure 2.A

corresponds to p0(x; θ), and that in Figure 2.C corresponds to the true distribution

q(x). Figure 2.B shows an important distribution which includes only a single edge.

This distribution is defined as pr(x; ζr) where

pr(x; ζr) = exp
[

h · x + cr(x) + ζr · x− ψr(ζr)
]
, r = 1, · · · , L.

This can be generalized without any change to the case when cr(x) is a polynomial.

The set of the distributions pr(x; ζr) parameterized by ζr is an e–flat manifold

defined as

Mr =
{

pr(x; ζr)
∣∣ ζr ∈ <n

}
, r = 1, · · · , L.

Its canonical coordinate system is ζr. We also define the expectation parameter

ηr(ζr) of Mr as follows

ηr(ζr) = ∂ζr ψr(ζr) = ∑
x

xpr(x; ζr), r = 1, · · · , L. (3.1)

In Mr, only the r-th edge is taken into account but all the other edges are replaced

by a linear term ζr · x and p0(x; θ) ∈ M0 is used to integrate all the information from

pr(x; ζr), r = 1, · · · , L, giving θ, which is the parameter of p0(x; θ), to infer ∏i q(xi).

In the iterative process of BP ζr of pr(x; ζr), r = 1, · · · , L are modified by using the

information of θ, which in turn is renewed by integrating local information {ζr}.

Information geometry has elucidated its geometrical meaning for special graphs for
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error correcting codes (Ikeda et al. (2004), see also Richardson (2000)), and we give

the framework for general graphs in the following.

BP is stated as follows: Let pr(x; ζt
r) be the approximation to q(x) at time t, which

each Mr, r = 1, · · · , L specifies.

Information geometrical view of BP

1. Set t = 0, ξt
r = 0, ζt

r = 0, r = 1, · · · , L.

2. Increment t by one and set ξt+1
r , r = 1, · · · , L as follows,

ξt+1
r = πM0◦pr(x; ζt

r)− ζt
r. (3.2)

3. Update θt+1 and ζt+1
r as follows,

ζt+1
r = ∑

r′ 6=r
ξt+1

r′ , θt+1 = ∑
r

ξt+1
r =

1
L− 1 ∑

r
ζt+1

r .

4. Repeat steps 2 and 3 until convergence.

The algorithm is summarized as follows: Calculate iteratively

θt+1 = ∑
r

[πM0 ◦ pr(x; ζt
r)− ζt

r],

ζt+1
r = θt+1 − [πM0 ◦ pr(x; ζt

r)− ζt
r], r = 1, · · · , L.

We have introduced two sets of parameters {ξr} and {ζr}. Let the converged point

of BP be {ξ∗r }, {ζ∗r }, and θ∗, where θ∗ = ∑r ξ∗r = ∑r ζ∗r /(L− 1) and θ∗ = ξ∗r + ζ∗r .

With these relations, the probability distribution of q(x), its final approximations

p0(x; θ∗) ∈ M0, and pr(x; ζ∗r ) ∈ Mr are described as

q(x) = exp[h · x + c1(x) + · · ·+ cr(x) + · · ·+ cL(x)− ψq],

p0(x; θ∗) = exp[h · x + ξ∗1 · x + · · ·+ ξ∗r · x + · · ·+ ξ∗L · x− ψ0(θ∗)],

pr(x; ζ∗r ) = exp[h · x + ξ∗1 · x + · · ·+ cr(x) + · · ·+ ξ∗L · x− ψr(ζ∗r )].

The idea of BP is to approximate cr(x) by ξ∗r · x in Mr, taking the information from

Mr′ (r′ 6= r) into account. The independent distribution p0(x; θ) integrates all the

information.
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Common BP Formulation and Information Geometrical One

BP is generally described as a set of message updating rules. Here, we describe the

correspondence between common formulation and information geometrical one. In

the graphs with pairwise interactions, messages and believes are updated as

mt+1
ij (xj) =

1
Z ∑

xi

φi(xi)φij(xi, xj) ∏
k∈N (i)\j

mt
ki(xi),

bi(xi) =
1
Z

φi(xi) ∏
k∈N (i)

mt+1
ki (xi),

where Z is the normalization factor and N (i) is the set of vertices connected to

vertex i. The vector ξr corresponds to mij(xj). More precisely, when r is a edge

connecting i and j,

ξr,j =
1
2

ln
mij(xj = +1)
mij(xj = −1)

, ξr,i =
1
2

ln
mji(xi = +1)
mji(xi = −1)

, ξr,k = 0 for k 6= i, j,

where ξr,i denotes the i-th component of ξr. Note that i-th component of ξr is

not generally 0 if r-th edge includes vertex i and that equation 3.2 updates mij(xj)

and mji(xi) simultaneously. Now, it is not difficult to understand the following

correspondences

θi = ∑
r′

ξr′,i =
1
2

ln ∏
k∈N (i)

mki(xi = +1)
mki(xi = −1)

,

ζr,i = θi − ξr,i =
1
2

ln ∏
k∈N (i)\j

mki(xi = +1)
mki(xi = −1)

,

where θi and ζr,i are the i-th component of θ and ζr respectively and r corresponds

to the edge connecting i and j. Note that ζr,k = θk holds for k 6= i, j.

Equilibrium of BP

The following theorem proved in Ikeda et al. (2004) characterizes the equilibrium of

BP.

Theorem 2. The equilibrium (θ∗, {ζ∗r }) satisfies

1) m–condition: θ∗ = πM0 ◦ pr(x; ζ∗r ).

2) e–condition: θ∗ =
1

L− 1

L

∑
r=1

ζ∗r .
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It is easy to check that the m–condition is satisfied at the equilibrium of the BP

algorithm from equation 3.2 and θ∗ = ζ∗r + ξ∗r . In order to check the e–condition,

we have to note that ξ∗r corresponds to a message. If the same set of messages is

used to calculate the belief of each vertex, the e–condition is automatically satisfied.

Therefore, at each iteration of BP, the e–condition is satisfied. Although, in some

algorithms, multiple sets of messages are defined, and a different set is used to

calculate each belief. In such cases, the e–condition plays an important role.

In order to have an information geometrical view, we define two submanifolds

M∗ and E∗ of S (see equation 2.3) as follows,

M∗ =
{

p(x)
∣∣∣ p(x) ∈ S, ∑

x
xp(x) = ∑

x
xp0(x; θ∗) = η0(θ∗)

}
,

E∗ =
{

p(x) = Cp0(x; θ∗)t0
L

∏
r=1

pr(x; ζ∗r )
tr

∣∣∣
L

∑
r=0

tr = 1, tr ∈ <
}

, (3.3)

C : normalization factor.

Note that M∗ and E∗ are an m–flat and an e–flat submanifold, respectively.

The geometrical implications of these conditions are as follows:

m–condition: The m–flat submanifold M∗ which includes pr(x; ζ∗r ), r = 1, · · · , L,

and p0(x; θ∗) is orthogonal to Mr, r = 1, · · · , L and M0, that is, they are the

m–projections to each other.

e–condition: The e–flat submanifold E∗ includes p0(x; θ∗0), pr(x; ζ∗r ), r = 1, · · · , L,

and q(x).

The equivalence between the e–condition of theorem 2 and the geometrical one

stated above is proved straightforwardly by setting t0 = −(L− 1) and t1 = · · · =

tL = 1 in equation 3.3.

From the m–condition, ∑x xp0(x; θ∗) = ∑x xpr(x; ζ∗r ) holds, and from the

definitions in equations 2.10 and 3.1, we have,

η0(θ∗) = ηr(ζ∗r ), r = 1, · · · , L. (3.4)

It is not difficult to show that equation 3.4 is the necessary and sufficient condition

for the m–condition, and it implies not only that the m–projection of pr(x; ζ∗r ) to M0

is p0(x; θ∗), but also that the m–projection of p0(x; θ∗) to Mr is pr(x; ζ∗r ), that is,

ζ∗r = πMr ◦ p0(x; θ∗), r = 1, · · · , L.

13



S

M(θ∗)

E(θ∗)

Mr

p0(x; θ∗)

pr(x; ζ∗r )

q(x)

Figure 3: Structure of equilibrium.

where πMr denotes the m–projection to Mr. When BP converges, the e–condition

and the m–condition are satisfied, but it does not necessarily imply q(x) ∈ M∗, in

other words p0(x; θ∗) = ∏n
i=1 q(xi), because there is a discrepancy between M∗ and

E∗. This is shown schematically in Figure 3.

It is well-known that in the graphs with tree structures, BP gives the true

marginals, that is, q(x) ∈ M∗ holds. In this case, we have the following relation

q(x) = ∏L
r=1 pr(x; ζ∗r )

p0(x; θ∗)L−1 . (3.5)

This relationship gives the following proposition.

Proposition 1. When q(x) is represented with a tree graph, q(x), p0(x; θ∗), and pr(x; ζ∗r ),

r = 1, · · · , L are included in M∗ and E∗ simultaneously.

This proposition shows that when a graph is a tree, q(x) and p0(x; θ∗) are

included in M∗ and the fixed point of BP is the correct solution. In the case of a

loopy graph, q(x) /∈ M∗ and the correct solution is not generally a fixed point of BP.

However, we still hope that BP gives a good approximation to the correct

marginals. The difference between the correct marginals and the BP solution
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is regarded as the discrepancy between E∗ and M∗, and if we can qualitatively

evaluate it, the error of the BP solution is estimated. We have given a preliminary

analysis in Ikeda et al. (2002, 2004), which showed that the principal term of the

error is directly related to the e–curvature (see Amari & Nagaoka (2000) for the

definition) of M∗, which mainly reflects the influence of the possible shortest loops

in the graph.

3.2 TRP

There have been proposed some variants of BP, and information geometry gives

a general framework to understand them. We begin with TRP (Wainwright et al.

(2002)). TRP selects the set of trees {Ti}, where each tree Ti consists of a set of edges,

and renew related parameters in the process of inference. Let the set of edges be L
and Ti ⊂ L, i = 1, · · · , K be its subsets where each graph with the edges Ti does

not have any loop. The choice of the sets {Ti} is arbitrary, but every edge must be

included at least in one of the trees.

In order to give the information geometrical view, we use the parameters ζr, θr,

r = 1, · · · , L, and θ. The information geometrical view of TRP is given as follows,

Information geometrical view of TRP

1. Set t = 0, ζt
r = θt

r = 0, r = 1, · · · , L, and θt = 0.

2. For a tree Ti, construct a tree distribution pt
Ti
(x) as follows

pt
Ti
(x) = Cp0(x; θt) ∏

r∈Ti

pr(x; ζt
r)

p0(x; θt
r)

= C′ exp
{

h · x + ∑
r∈Ti

cr(x) +
[
∑

r∈Ti

(ζt
r − θt

r) + θt] · x
}

. (3.6)

By applying BP, calculate the marginal distribution of pt
Ti
(x), and let θt+1 =

πM0◦pt
Ti
(x). Then update θt+1

r and ζt+1
r as follows,

For r ∈ Ti,

θt+1
r = θt+1, ζt+1

r = πMr◦pt
Ti
(x).

For r /∈ Ti,

θt+1
r = θt

r, ζt+1
r = ζt

r.
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3. Repeat step 2 for trees Tj ∈ {Ti}.

4. Repeat steps 2 and 3 until θt+1
r = θt+1, holds for every r, and {ζt+1

r } converges.

Let us show that the e– and the m–conditions are satisfied at the equilibrium of

TRP. Since pt
Ti
(x) is a tree graph, BP in step 2 gives the exact inference of marginal

distributions. Moreover, from equations 3.5 and 3.6, we have

pt
Ti
(x) = Cp0(x; θt)

∏r∈Ti
pr(x; ζt

r)
∏r∈Ti

p0(x; θt
r)

=
∏r∈Ti

pr(x; ζt+1
r )

p0(x; θt+1)|Ti |−1
.

where |Ti| is the cardinality of Ti. By comparing 2nd and 3rd terms, and using

θt+1
r = θt+1, r ∈ Ti,

∑
r∈Ti

(ζt
r − θt

r) + θt = ∑
r∈Ti

ζt+1
r − (|Ti| − 1)θt+1 = ∑

r∈Ti

(ζt+1
r − θt+1

r ) + θt+1.

Since ∑r/∈Ti
(ζt

r − θt
r) does not change through step 2, we have the following relation,

which shows the e–condition holds for the convergent point of TRP,

∑
r

ζ∗r − (L− 1)θ∗ = ∑
r

(ζ∗r − θ∗r ) + θ∗ = ∑
r

(ζt
r − θt

r) + θt = 0.

When TRP converges, the operation of step 2 shows that each tree distribution has

the same marginal distribution, which shows p∗Ti
(x) ∈ M∗, where p∗Ti

(x) is the tree

distribution constructed with the converged parameters. Since ζ∗r = πMr ◦ p∗Ti
(x),

r ∈ Ti holds, pr(x; ζ∗r ) ∈ M∗ also holds for r = 1, · · · , L, which shows the m–

condition is satisfied at the convergent point.

3.3 CCCP

CCCP is an iterative procedure to obtain the minimum of a function, which is

represented by the difference of two convex functions (Yuille & Rangarajan (2003)).

The idea of CCCP was applied to solve the inference problem of loopy graphs,

where the Bethe free energy, which we will discuss in section 4, is the energy

function (Yuille (2002)) (therefore, it is CCCP-Bethe, but in the following, we refer

it as CCCP). The detail of the derivation will be given in Appendix, and CCCP is

defined as follows in information geometrical framework.

Information geometrical view of CCCP
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inner loop: Given θt, calculate {ζt+1
r } by solving

πM0 ◦ pr(x; ζt+1
r ) = Lθt −∑

r
ζt+1

r , r = 1, · · · , L. (3.7)

outer loop: Given a set of {ζt+1
r } as the result of the inner loop, calculate

θt+1 = Lθt −∑
r

ζt+1
r . (3.8)

From equations 3.7 and 3.8, one obtains

θt+1 = πM0 ◦ pr(x; ζt+1
r ), r = 1, · · · , L,

which means that CCCP enforces the m–condition at each iteration. On the other

hand, the e–condition is satisfied only at the convergent point, which can be

easily verified by letting θt+1 = θt = θ∗ in equation 3.8 to yield the e–condition

(L− 1)θ∗ = ∑r ζ∗r . One can therefore regard that the inner and outer loops of CCCP

solve the m–condition and the e–condition, respectively.

4 Free Energy Function

4.1 Bethe Free Energy

We have described the information geometrical view of BP and related algorithms.

It gives the characteristics of the equilibrium points, but it is not enough to describe

the approximation accuracy, and the dynamics of the algorithm.

An energy function helps us to clarify them, and there are some functions

proposed for this purpose. Most popular one is the Bethe free energy. The Bethe

free energy itself has been well known in the literature of statistical mechanics, being

used in formulating the so-called Bethe approximation (Itzykson & Drouffe (1989)).

As far as we know, Kabashima & Saad (2001) were the first to point out that BP is

derived by considering a variational extremization of a free energy. It was Yedidia

et al. (2001a) who introduced to the machine-learning community the formulation

of BP based on the Bethe free energy. Following Yedidia et al. (2001a) and using

their terminology, the definition of the free energy is given as follows,

Fβ = ∑
r

∑
xr

br(xr) ln
br(xr)

exp[hixi + hjxj + cr(x)]
−∑

i
(li − 1) ∑

xi

bi(xi) ln
bi(xi)

exp(hixi)
.
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Here, xr denotes the pair of vertices which is included in the edge r, bi(xi) and br(xr)

are a belief and a pairwise belief respectively, and li is the number of neighbors of

vertex i. From its definition, ∑xi
bi(xi) = 1, and ∑xr

br(xr) = 1 is satisfied. In

information geometrical formulation,

br(xr) = pr(xr; ζr).

And by setting

pr(xk; ζr) = p0(xk; θ), k /∈ r-th edge,

the Bethe free energy becomes

Fβ = ∑
r

[ζr · ηr(ζr)− ψr(ζr)]− (L− 1)[θ · η0(θ)− ψ0(θ)]. (4.1)

In Yedidia et al. (2001a,b), the following reducibility conditions (also called the

marginalization conditions) are further imposed,

bi(xi) = ∑
xj

bij(xi, xj), bj(xj) = ∑
xi

bij(xi, xj). (4.2)

These conditions are equivalent to the m–condition in equation 3.1, that is, ηr(ζr) =

η0(θ), r = 1, · · · , L, so that every ζr is no more an independent variable but is

dependent on θ. With these constraints, the Bethe free energy is simplified as

follows,

Fβm(θ) = (L− 1)ψ0(θ)−∑
r

ψr(ζr(θ)) +
[
∑

r
ζr(θ)− (L− 1)θ

]
· η0(θ). (4.3)

We have to note that at each step of the BP algorithm, equation 4.2 is not satisfied,

but the e–condition is satisfied. Therefore assuming equation 4.2 for original BP

immediately gives the equilibrium, and no free parameter is left. Without any free

parameter, it is not possible to take the derivative, which does not allow us to give

any further analysis in terms of the Bethe free energy. Thus, it is important to specify,

in any analysis based on the free energy, what are the independent variables and

what are not, in order for a proper argument.

Finally, we mention the relation between the Bethe free energy and the

conventional (Helmholtz) free energy ψq, logarithm of the partition function of q(x)

defined in equation 2.1. When the e–condition is satisfied, Fβm(θ) becomes

Fβm(θ) = (L− 1)ψ0(θ)−∑
r

ψr(ζr(θ)) = −
{

ψ0(θ) + ∑
r

[
ψr(ζr(θ))− ψ0(θ)

]}
.
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This formula shows that the Bethe free energy can be regarded as an approximation

to the conventional free energy by a linear combination of ψ0 and {ψr}. Moreover,

if the graph is tree, the result of Proposition 1 shows that the Bethe free energy is

equivalent to −ψq.

4.2 A New View on Free Energy

Instead of assuming equation 4.2, let us start from the free energy defined in

equation 4.3 without any constraint on the parameters, that is, all of θ, ζ1, · · · , ζL

are the free parameters,

F (θ, ζ1, · · · , ζL) = (L− 1)ψ0(θ)−∑
r

ψr(ζr) +
[
∑

r
ζr − (L− 1)θ

]
· η0(θ). (4.4)

The above function is rewritten in terms of the KL–divergence as,

F (θ, ζ1, · · · , ζL) = D[p0(x; θ); q(x)]−∑
r

D[p0(x; θ); pr(x; ζr)] + C,

where C is a constant. The following theorem is easily derived.

Theorem 3. The equilibrium (θ∗, ζ∗r ) of BP is a critical point of F (θ, ζ1, · · · , ζr).

Proof. By calculating
∂F
∂ζr

= 0,

we easily have

ηr(ζr) = η0(θ),

which is the m–condition. By calculating

∂F
∂θ

= 0, (4.5)

we are led to the e–condition (L− 1)θ = ∑r ζr.

The theorem shows that equation 4.4 works as the free energy function without

giving any constraint.
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4.3 Relation to Other Free Energies

The function F (θ, ζ1, · · · , ζL) works as a free energy, but it is also important to

compare it with other “free energies.” First, we compare it with the one proposed

by Kabashima & Saad (2001). It is a function of (ζ1, · · · , ζL) and (ξ1, · · · , ξL), given

by

FKS(ζ1, · · · , ζL; ξ1, · · · , ξL) = F (θ, ζ1, · · · , ζL) + ∑
r

D[p0(x; θ); p0(x; ζr + ξr)],

where θ = ∑r ξr. It is clear from the definition that the choice of ξr which makes

FKS minimum is ξr = θ− ζr, for all r, and FKS becomes equivalent to F .

Next, we consider the dual form of the free energy Fβ in equation 4.1. The dual

form is defined by introducing the Lagrange multipliers (Yedidia et al. (2001a)), and

redefining the free energy as a function of them. The multipliers are defined on the

reducibility conditions, bi(xi) = ∑xj
bij(xi, xj) and bj(xj) = ∑xi

bij(xi, xj). They are

equivalent to ηr(ζr) = η0(θ), which is the m–condition in information geometrical

formulation. Let λr ∈ <n, r = 1, · · · , L be, the Lagrange multipliers, and the free

energy becomes

G(θ, {ζr}, {λr}) = Fβ(θ, {ζr})−∑
r

λr · [ηr(ζr)− η0(θ)], λr ∈ <n.

The original extremal problem is equivalent to the extremal problem of G with

respect to θ, {ζr}, and {λr}. The dual form Gβ is derived by redefining G as a

function of {λr}, where the extremal problem of θ and {ζr} are solved. By solving

∂θG = 0, we have

θ({λr}) =
1

L− 1 ∑
r

λr,

while ∂ζrG = 0 gives

ζr(λr) = λr.

Finally the dual form Gβ becomes

Gβ({λr}) = (L− 1)ψ0(θ({λr}))−∑
r

ψr(ζr(λr)). (4.6)

Although F in equation 4.4 becomes equivalent to Gβ by assuming the e–condition,

F is free from the e– and the m–conditions, and is different from Gβ.
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From the definition of the Lagrange multipliers, Gβ is introduced to analyze

the extremal problem of Fβ under the m–condition, where the e–condition is not

satisfied. The m–constraint free energy Fβm in equation 4.3 shows F is equivalent

to Fβ under the m–condition.

Finally we summarize as follows: Under the m–condition, F is equivalent to Fβ

and under the e–condition F is equivalent to the dual form Gβ.

4.4 Property of Fixed Points

Let us study the stability of the fixed point of Fβ or equivalently F under the m–

condition. Since the m–condition is satisfied, every ζr is a dependent variable of θ,

and we consider the derivative with respect to θ. From the m–condition, we have

ηr(ζr) = η0(θ),
∂ζr

∂θ
= I−1

r (ζr)I0(θ), r = 1, · · · , L. (4.7)

Here, I0(θ) and Ir(ζr) are the Fisher information matrices of p0(x; θ) and pr(x; ζr),

respectively, which are defined as

I0(ζr) = ∂θη0(θ) = ∂2
θψ0(θ), Ir(ζr) = ∂ζr ηr(ζr) = ∂2

ζr
ψr(ζr), r = 1, · · · , L.

Equation 4.7 is proved as follows,

ηr(ζr) + Ir(ζr)δζr ' ηr(ζr + δζr) = η0(θ + δθ) ' η0(θ) + I0(θ)δθ

δζr = Ir(ζr)−1 I0(θ)δθ. (4.8)

The condition of the equilibrium is equation 4.5 which yields the e–condition, and

the second derivative gives the property around the stationary point, that is

∂2F
∂θ2 = I0(θ) + I0(θ) ∑

r

[
Ir(ζr)−1 − I0(θ)−1

]
I0(θ) + ∆, (4.9)

where, ∆ is the term related to the derivative of the Fisher information matrix, which

vanishes when the e–condition is satisfied.

If equation 4.9 is positive definite at the stationary point, the Bethe free energy is

at least locally minimized at the equilibrium. But it is not always positive definite.

Therefore, the conventional gradient descent method of Fβ or F may fail.
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5 Algorithms and Their Convergences

5.1 e–constraint Algorithm

Since the equilibrium of BP is characterized with the e– and the m–conditions,

there are two possible algorithms for finding the equilibrium. One is to constrain

the parameters always to satisfy the e–condition, and search for the parameters

which satisfy the m–condition (e–constraint algorithm), the other is to constrain the

parameters to satisfy the m–condition, and search for the parameters which satisfy

the e–condition (m–constraint algorithm).

In this section, we discuss e–constraint algorithms. BP is an e–constraint

algorithm since the e–condition is satisfied at each step, but its convergence is not

necessarily guaranteed. We give an alternate of the e–constraint algorithm which

has a better convergence property. Let us begin with proposing a new cost function

as

Fe({ζr}) = ∑
r
||η0(θ)−ηr(ζr)||2, (5.1)

under the e–constraint θ = ∑r ζr/(L− 1). If the cost function is minimized to 0, the

m–condition is satisfied, and it is an equilibrium. A naive method to minimize Fe is

the gradient descent algorithm. The gradient is

∂Fe

∂ζr
= −2Ir(ζr)[η0(θ)−ηr(ζr)] +

2
L− 1

I0(θ) ∑
r

[η0(θ)−ηr(ζr)]. (5.2)

If the derivative is available, ζr and θ are updated as,

ζt+1
r = ζt

r − δ
∂Fe

∂ζt
r

, θt+1 =
1
L ∑

r
ζt+1

r ,

where δ is a small positive learning rate. It is not difficult to calculate η0(θ), ηr(ζr),

and I0(θ), and the rest of the problem is to calculate the first term of equation 5.2.

Fortunately, we have the relation,

Ir(ζr)h = lim
α→0

ηr(ζr + αh)− ηr(ζr)
α

.

If (η0(θ)−ηr(ζr)) is substituted for h, this becomes the first term of equation 5.2.

Now, we propose a new algorithm.

A new e–constraint algorithm
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1. Set t = 0, θt = 0, ζt
r = 0, r = 1, · · · , L.

2. Calculate η0(θt), I0(θt), and ηr(ζt
r), r = 1, · · · , L.

3. Let hr=η0(θt)−ηr(ζt
r) and calculate ηr(ζt

r + αhr) for r = 1, · · · , L, where α>0 is

small. Then calculate

gr =
ηr(ζt

r + αh)− ηr(ζt
r)

α
.

4. For t = 1, 2, · · · , update ζt+1
r as follows,

ζt+1
r = ζt

r − δ
[
−2gr +

2
L− 1

I0(θt) ∑
r

hr

]
,

θt+1 =
1

L− 1 ∑
r

ζt+1
r .

5. If Fe({ζr}) = ∑r ||η0(θ)−ηr(ζr)||2 > ε (ε is a threshold) holds, t+1→t and go to

2.

This algorithm is an e–constraint algorithm, and does not include double loops,

which is similar to the BP algorithm, but we have introduced a new parameter α

which can affect the convergence. We have checked, with small-sized numerical

simulations, that if α is sufficiently small, this problem can be avoided, but further

theoretical analysis is needed. Another problem is that this algorithm converges to

any fixed point of BP, even if it is not a stable fixed point of BP. For example, when ζr

and θ are extremely large, eventually every component of ηr and η0 becomes close

to 1, which is a trivial useless fixed point of this algorithm. In order to avoid this,

it is natural to use the Riemannian metric for the norm, instead of the square norm

defined in equation 5.1. The local metric modifies the cost function to

FeR({ζr}) = ∑
r

[η0(θ)− ηr(ζr)]T I0(θ0)−1[η0(θ)− ηr(ζr)],

where θ0 is the convergent point. Since I0(θ0)−1 diverges at trivial fixed points

mentioned above, we expect FeR({ζr}) to be a better cost function. The gradient

can be calculated similarly by fixing θ0, which is unknown. Hence, we replace it by

θt. The calculation of gr should also be modified to

g̃r =
ηr(ζt

r + αI0(θt)−1 ∑r hr)
α
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from the point of view of the natural gradient method (Amari (1998)). We finally

have

ζt+1
r = ζt

r − 2δI0(θt)−1
[
−g̃r +

1
L− 1 ∑

r
hr

]
.

Since I0(θ) is a diagonal matrix, computation is simple.

5.2 m–constraint Algorithm

The other possibility is to constrain the parameters always to satisfy the m–

condition, and modify the parameters to satisfy the e–condition. Since the m–

condition is satisfied, {ζr} are dependent on θ.

A naive idea is to repeat the following two steps,

Naive m–constraint algorithm

1. For r = 1, · · · , L,

ζt
r = πMr ◦ p0(x; θt). (5.3)

2. Update the parameters as

θt+1 = Lθt −∑
r

ζt
r.

Starting from θt, the algorithm finds {ζt+1
r } that satisfies the m–condition by

equation 5.3, and θt+1 is adjusted to satisfy the e–condition.

This is a simple recursive algorithm without double loops. We call it the naive

m–constraint algorithm. One may use an advanced iteration method that uses,

instead of ζt
r, new ζt+1

r . In this case, the algorithm is

ζt+1
r = πMr ◦ p0(x; θt+1), where θt+1 = Lθt −∑

r
ζt+1

r .

In this algorithm, starting from θt, one should solve a non-linear equation in θt+1,

because {ζt+1
r } are functions of θt+1. This algorithm therefore uses double loops,

the inner loop and the outer loop. This is the idea of CCCP, and it is also an m–

constraint algorithm.
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Stability of the algorithms

Although the naive m–constraint algorithm and CCCP share the same equilibrium

θ∗ and {ζ∗r }, their local stabilities at the equilibrium are different. It is reported

that CCCP has superior properties in this respect. The local stability of BP was

analyzed by Richardson (2000) and also by Ikeda et al. (2004) in geometrical terms.

The stability condition of BP is given by the conditions of the eigen values of a

matrix defined by the Fisher information matrices. In this paper, we give the local

stability of the other algorithms.

If we eliminate the intermediate variables {ζr} in the inner loop, the naive m–

constraint algorithm is

θt+1 = Lθt −∑
r

πMr ◦ p0(x; θt), (5.4)

and CCCP is represented as

θt+1 = Lθt −∑
r

πMr ◦ p0(x; θt+1). (5.5)

In order to derive the variational equation at the equilibrium, we note that, for the

m–projection

ζr = πMr ◦ p0(x; θ),

a small perturbation δθ in θ is updated as

δζr = Ir(ζr)−1 I0(θ)δθ,

(see equation 4.8). The variational equations are hence for equation 5.4,

δθt+1 =
[

LE−∑
r

Ir(ζr)−1 I0(θ)
]
δθt,

where E is the identity matrix, and for equation 5.5,

δθt+1 = L
[

E + ∑
r

Ir(ζr)−1 I0(θ)
]−1

δθt,

respectively. Let K be a matrix defined by

K =
1
L ∑

r

√
I0(θ)Ir(ζr)−1

√
I0(θ),

and δθ̃t be a new variable defined as

δθ̃t =
√

I0(θ)δθt.
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The variational equations for equations 5.4 and 5.5 are then

δθ̃t+1 = L(E− LK)δθ̃t,

δθ̃t+1 = L(E + LK)−1δθ̃t,

respectively.

The equilibrium is stable when the absolute values of the eigenvalues of the

respective coefficient matrices are smaller than 1. Let λ1, · · · , λn be the eigenvalues

of K. They are all real and positive, since K is a symmetric positive-definite matrix.

We note that λi are close to 1, when Ir(ζr) ≈ I0(θ) or Mr is close to M0. The

following theorem shows CCCP has a good convergent property.

Theorem 4. The equilibrium of the naive m–constraint algorithm in equation 5.4 is stable

when

1 +
1
L

> λi > 1− 1
L

, i = 1, · · · , n.

The equilibrium of CCCP is stable when the eigen values of K satisfies

λi > 1− 1
L

, i = 1, · · · , n. (5.6)

Under the m–constraint, the Hessian of F (θ) at an equilibrium point is equal to

(cf. equation 4.9) √
I0(θ)

[
LK− (L− 1)E

]√
I0(θ),

so that the stability condition (equation 5.6) for CCCP is equivalent to the

condition that the equilibrium is a local minimum of F under the m–constraint

which is equivalent to the m–constraint Bethe free energy Fβm(θ). The theorem

therefore states that CCCP is locally stable around an equilibrium if and only if

the equilibrium is a local minimum of Fβm(θ), whereas the naive m–constraint

algorithm is not necessarily stable even if the equilibrium is a local minimum. A

similar result is obtained in Heskes (2003).

It should be noted that the above local stability result for CCCP does not follow

from the global convergence result given by Yuille (2002). Yuille has shown that

CCCP decreases the cost function and converges to an extremal point of Fβm(θ)

which means the fixed point is not necessarily a local minimum, but can be a

saddle point. Our local linear analysis shows a stable fixed point of CCCP is a local

minimum of Fβm(θ).
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Natural gradient and discretization

Let us consider a gradient rule for updating θ to find a minimum of F under the

m–condition,

θ̇ = −∂F (θ)
∂θ

.

When we have a metric to measure the distance in the space of θ, it is natural to use

the metric for gradient (natural gradient, see Amari (1998)). For statistical models,

the Riemannian metric given by the Fisher information matrix is a natural choice,

since it is derived from KL-divergence. The natural gradient version of the update

rule is

θ̇ = −I−1
0 (θ)

∂F
∂θ

= (L− 1)θ−∑
r

πMr ◦ p0(x; θ). (5.7)

For the implementation, it is necessary to discretize the continuous-time update

rule. The “fully explicit” scheme of discretization (Euler’s method) reads

θt+1 = θt + ∆t
[
(L− 1)θt −∑

r
πMr ◦ p0(x; θt)

]
. (5.8)

When ∆t = 1, this is equivalent to the naive m–constraint algorithm (equation 5.4).

However, we do not necessarily have to let ∆t = 1: Instead, we may use arbitrary

positive value for ∆t. We will show how the convergence rate will be affected by

the change of ∆t later.

The “fully implicit” scheme yields

θt+1 = θt + ∆t
[
(L− 1)θt+1 −∑

r
πMr ◦ p0(x; θt+1)

]
, (5.9)

which, after rearrangement of terms, becomes

[
1− ∆t(L− 1)

]
θt+1 = θt − ∆t ∑

r
πMr ◦ p0(x; θt+1).

When ∆t = 1/L, this equation is equivalent to CCCP in equation 5.5. Again, we

do not have to be bound to the choice ∆t = 1/L. We will also show the relation

between ∆t and the convergence rate later.

We have just shown that the naive m–constraint algorithm and CCCP can be

viewed as first-order methods of discretization applied to the continuous-time

natural gradient system shown in equation 5.7. The local stability result for CCCP

proved in theorem 4 can also be understood as an example of the well-known
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absolute stability property of the fully-implicit scheme applied to linear systems.

It should also be noted that other more sophisticated methods for solving ordinary

differential equations, such as Runge-Kutta methods (possibly with adaptive step-

size control), the Bulirsch-Stoer method, and so on (Press et al. (1992)), are applicable

to formulate m–constraint algorithms with better properties, for example, better

stability. In this paper, however, we do not discuss possible extension along this

line any further.

Acceleration of m–constraint algorithms

We give the analysis of equations 5.8 and 5.9 in this section.

The variational equation for equation 5.8 is

δθ̃t+1 =
{

E− [LK− (L− 1)E]∆t
}

δθ̃t.

Let

λ1 ≤ λ2 ≤ · · · ≤ λn (5.10)

be the eigenvalues of K. Then, the convergence rate is improved by choosing an

adequate ∆t. The convergence rate is governed by the largest absolute values of the

eigenvalues of E− [
LK− (L− 1)E

]
∆t, which are given by

µi = 1− [
Lλi − (L− 1)

]
∆t.

From equation 5.10 we have µ1 ≥ µ2 ≥ · · · ≥ µn. The stability condition is |µi| < 1

for all i. At a locally stable equilibrium point, µ1 < 1 always holds, so that the

algorithm is stable if µn > −1 holds. The convergence to a locally stable equilibrium

point is most accelerated when µ1 + µn = 0, which holds by taking

∆topt =
2

L(λ1 + λn − 1) + 2
.

The variational equation for equation 5.9 is

δθ̃t+1 =
{

E + [LK− (L− 1)E]∆t
}−1

δθ̃t,

and the convergence rate is governed by the largest of the absolute values of the

eigenvalues of {E + [LK − (L − 1)E]∆t}−1, which should be smaller than 1 for
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convergence. The eigenvalues are

µi =
1

1 +
[
Lλi − (L− 1)

]
∆t

.

We again have µ1 ≥ µ2 ≥ · · · ≥ µn. At a locally stable equilibrium point, 0 < µn

and µ1 < 1 always hold, so that the algorithm is always stable. In principle, the

smaller µ1 becomes, the faster the algorithm converges, so that taking ∆t → +∞

yields the fastest convergence. However, the algorithm in this limit reduces to the

direct evaluation of the e–condition under the m–constraint with one update step of

the parameters. This is the fastest if it is possible, but this is usually infeasible for

loopy graphs.

6 Extension

6.1 Extend the Framework to Wider Class of Distributions

In this section, two important extensions of BP is given in the information

geometrical framework. First, we extend the model to the case where the marginal

distribution of each vertex is an exponential family. A similar extension is given in

Wainwright et al. (2003).

Let ti be the sufficient statistics of the marginal distribution of xi, that is, q(xi).

The marginal distribution is in the family of distributions defined as follows

p(xi; θi) = exp[θi · ti − ϕi(θi)].

This includes many important distributions. For example, multinomial distribution

and Gaussian distribution are included in this family.

Let us define t = (tT
1 , · · · , tT

n )T and θ = (θT
1 , · · · , θT

n)T, and let the true

distribution be

q(x) = exp[h · t + c(x)− ψq].

We can now redefine equation 2.2 as follows,

p(x; θ, v) = exp[θ · t + v · c(x)− ψ(θ, v)],

and S in equation 2.3 as

S =
{

p(x; θ, v)
∣∣ θ ∈ Θ, v ∈ V

}
.
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When the problem is to infer the marginal distribution q(xi) of q(x), we can redefine

the BP algorithm in this new S, by redefining M0 and Mr. This extension based on

the new definition is simple, and we do not give further details in this article.

6.2 Generalized Belief Propagation

In this section, we show the information geometrical framework for the general

belief propagation (GBP) (Yedidia et al. (2001b)), which is an important extension of

BP.

A naive explanation of GBP is that the cliques are reformulated by subsets

of L, which is the set of all the edges. This brings us a new implementation of

the algorithm and different inference. In information geometrical formulation, we

define c′s(x) as a new clique function, which summarizes the interactions of the

edges in Ls, s = 1, · · · , L′, that is,

c′s(x) = ∑
r∈Ls

cr(x),

where Ls ⊆ L. Those Ls may have overlaps, and Ls must be chosen to satisfy

∪sLs = L.

GBP is a general framework, which includes a lot of possible cases. We

categorize them into three important classes, and give an information geometrical

framework for them

Case 1

In the simplest case, each Ls does not have any loop. This is equivalent to TRP. As

we have seen in section 3.2, the algorithm is explained in information geometrical

framework.

Case 2

In the next case, each Ls can have loops, but there is no overlap, that is, Ls ∩Ls′ = ∅

for s 6= s′. The extension to this case is also simple. We can apply information

geometry by redefining Mr as Ms, where its definition is given as follow

Ms =
{

ps(x; ζs) = exp[h · x + c′s(x) + ζs · x− ψs(ζs)]
∣∣∣ ζs ∈ <n

}
.

30



Since some loops are treated in a different way, the result might be different from

BP.

Case 3

Finally, we describe the case where each Ls can have loops and overlaps with the

other sets. In this case we have to extend the framework. Suppose Ls and Ls′ have

an overlap, and both have loops. We explain the case with an example in Figure 4.

x1

x2

x3

x4

1

2

3

4

5

Figure 4: Case 3.

Let us first define the following distributions,

q(x) = exp
[

h · x +
5

∑
i=1

ci(x)− ψq

]
,

p0(x; θ) = exp[h · x + θ · x− ψ0(θ)], (6.1)

p1(x; ζ1) = exp
[

h · x +
3

∑
i=1

ci(x) + ζ1 · x− ψ1(ζ1)
]
, (6.2)

p2(x; ζ2) = exp
[

h · x +
5

∑
i=3

ci(x) + ζ2 · x− ψ2(ζ2)
]
. (6.3)

Even if ζ1, ζ2, and θ satisfy the e–condition as θ = ζ1 + ζ2, this does not imply

C
p1(x; ζ1)p2(x; ζ2)

p0(x; θ)

is equivalent to q(x), since c3(x) is counted twice. Therefore, we introduce another

model p3(x; ζ3), which has the following form.

p3(x; ζ3) = exp
[

h · x + c3(x) + ζ3 · x− ψ3(ζ3)
]
. (6.4)

Now,

C
p1(x; ζ1)p2(x; ζ2)

p3(x; ζ3)

becomes equal to q(x) where ζ3 = ζ1 + ζ2 is the e–condition.
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Next we look at the m–condition. The original form of the m–condition is

∑
x

xp0(x; θ) = ∑
x

xps(x; ζs),

but, in this case, this form is not enough. We need a further condition, that is,

ps(x2, x3; ζs) = ∑
x1,x4

ps(x; ζs)

should be the same for s = {1, 2, 3}. The models in equations 6.1, 6.2, 6.3, and

6.4 are not sufficient, since we do not have enough parameters to specify a joint

distribution of (x2, x3), and the model must be extended. In the binary case, we can

extend the models by adding one variable as follows,

p1(x; ζ1, v1) = exp
[

h · x +
3

∑
i=1

ci(x) + ζ1 · x + v1x2x3 − ψ1(ζ1, v1)
]
,

p2(x; ζ2, v2) = exp
[

h · x +
5

∑
i=3

ci(x) + ζ2 · x + v2x2x3 − ψ2(ζ2, v2)
]
,

p3(x; ζ3, v3) = exp[h · x + c3(x) + ζ3 · x + v3x2x3 − ψ3(ζ3, v3)],

and the m–condition becomes,

∑
x

xp0(x; θ) = ∑
x

xps(x; ζs, vs), s = 1, 2, 3,

∑
x

x2x3 p1(x; ζ1, v1) = ∑
x

x2x3 p2(x; ζ2, v2) = ∑
x

x2x3 p3(x; ζ3, v3).

We revisit the e–condition, which is now extended as,

ζ3 = ζ1 + ζ2, v3 = v1 + v2.

This is a simple example, but we can describe any GBP problem in the information

geometrical framework in a similar way.

7 Conclusion

Stochastic reasoning is an important technique widely used for graphical models

including many interesting applications. BP is a useful method to solve it, and

in order to analyze its behavior and to give a theoretical foundation, a variety of

approaches have been proposed from AI, statistical physics, information theory, and

information geometry. We have shown a unified framework to understand various
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interdisciplinary concepts and algorithms from the point of view of information

geometry. Since information geometry captures the essential structure of the

manifold of probability distributions, we are successful in clarifying the intrinsic

geometrical structures and their difference of various algorithms proposed so far.

The BP solution is characterized with the e– and the m–conditions. We have

shown that BP and TRP explore the solution in the subspace where the e–condition

is satisfied, while CCCP does in the subspace where the m–condition is satisfied.

This analysis makes us possible to obtain new efficient variants of these algorithms.

We have proposed new e– and m–constraint algorithms. The possible acceleration

methods for the m–constraint algorithm and CCCP are shown with local stability

and convergence rate analysis. We have clarified the relation among the free-

energy-like functions and have proposed a new one. Finally we have shown

possible extensions of BP from information geometrical viewpoint.

This work is a first step toward information geometrical understanding of BP.

By using the framework, we expect further understanding and a new improvement

of the methods will emerge.

Appendix: Information Geometrical View of CCCP

In this section, we derive the information geometrical view of CCCP. The following

two theorems play important roles in CCCP.

Theorem 5. (Yuille & Rangarajan (2003) section 2) Let E(x) be an energy function with

bounded Hessian ∂E(x)/∂x∂x. Then we can always decompose it into the sum of a convex

function and a concave function.

Theorem 6. (Yuille & Rangarajan (2003) section 2) Consider an energy function E(x)

(bounded below) of form E(x) = Evex(x) + Ecave(x) where Evex(x), Ecave(x) are convex

and concave functions of x respectively. Then the discrete iterative CCCP algorithm

xt 7→ xt+1 given by

∇Evex(xt+1) = −∇Ecave(xt)

is guaranteed to monotonically decrease the energy E(x) as a function of time and hence to

converge to a minimum or saddle point of E(x) (or even a local maximum if it starts at one).
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The idea of CCCP was applied to solve the inference problem of loopy graphs,

where the Bethe free energy Fβ in equation 4.1 is the energy function (Yuille (2002)).

The concave and convex functions are defined as follows

Fβ(θ, {ζr}) = ∑
r

[ζr · ηr(ζr)− ψr(ζr)]− (L− 1)[θ · η0(θ)− ψ0(θ)]

= Fvex(θ, {ζr}) +Fcave(θ, {ζr}),

Fvex(θ, {ζr}) = ∑
r

[ζr · ηr(ζr)− ψr(ζr)] + [θ · η0(θ)− ψ0(θ)],

Fcave(θ) = −L[θ · η0(θ)− ψ0(θ)].

Let the m–condition be satisfied, and Fvex is a function of θ. Next, since η0 and θ

has a one-to-one relation, let η0 be the coordinate system. The gradient of Fvex and

Fcave is given as follows,

∇η0Fvex(η0) = θ + ∑
r

ζr, −∇η0Fcave(η0) = Lθ.

Finally, the CCCP algorithm is written as

∇η0Fvex(ηt+1
0 ) = −∇η0Fcave(ηt

0),

θt+1 + ∑
r

ζt+1
r = Lθt. (A.1)

Since the m–condition is not satisfied in general, the inner loop solves the condition,

while the outer loop updates the parameters as equation A.1.
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