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Abstract

The properties of the turbo decoding is studied from information geometrical viewpoint. Our
study gives an intuitive understanding of the theoretical background, and a new framework for the
analysis. Based on the framework, we reveal basic properties of the turbo decoding.

1 Introduction

Turbo codes[2] has been attracting a lot of interests because of its high performance of error correction.
Although the thorough experimental results support the potential of the iterative decoding method, the
mathematical background is not sufficiently understood.

The problem of the turbo decoding is equivalent to marginalizing an exponential family distribution.
The distribution includes higher order correlations, and its direct marginalization is intractable. But the
partial model with a part of the correlations (i.e., a constituent code), can be marginalized efficiently, by
soft decoding. By collecting and exchanging the results of the partial models, the true decoding result is
approximated.

Richardson[6] initiated a geometrical understanding of the turbo decoding. But further intuitive un-
derstanding seems to be necessary. We investigate the problem from information geometrical viewpoint[1].
It gives a new framework for analyzing the iterative methods, and shows an intuitive understanding. Also
it reveals a lot of basic properties, such as characteristics of the equilibrium, the condition of stability,
the cost function related to the iterative method, and the decoding error[3, 4].

2 Information Geometrical Framework

2.1 Turbo Decoding
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Figure 1: Turbo codes

Let x ∈ {−1,+1}N be the information bits, from which the turbo encoder generates two sets of
parity bits, y1 = (y11, · · · , y1L)T , and y2 = (y21, · · · , y2L)T , y1j , y2j ∈ {−1,+1} (Fig.1). Each parity bit is
expressed in the form

∏
i∈Lrj

xi, (r = 1, 2), where the product is taken through a subset Lrj ∈ {1, · · · , N}.
The codeword (x,y1,y2) is then transmitted over a noisy channel, which we assume a BSC (binary
symmetric channel) with flipping probability σ < 1/2. The receiver observes their noisy version as
(x̃, ỹ1, ỹ2), x̃i, ỹ1j , ỹ2j ∈ {−1,+1}.

The ultimate goal of the turbo decoding is the MPM (maximization of the posterior marginals)
decoding of x based on p(x|x̃, ỹ1, ỹ2). Since the channel is memoryless, the following relation holds

p(x̃, ỹ1, ỹ2|x) = exp(βx̃ · x + βỹ1 · y1 + βỹ2 · y2 − (N + 2L)ψ(β))

β > 0, σ =
1
2
(1− tanhβ), ψ(β) def= ln(eβ + e−β),
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where, ‘·’ denotes the inner-product of vectors. By assuming the uniform prior on x, the posterior
distribution is given as follows,

p(x|x̃, ỹ1, ỹ2) =
p(x̃, ỹ1, ỹ2|x)∑
x p(x̃, ỹ1, ỹ2|x)

= C exp(βx̃ · x + βỹ1 · y1 + βỹ2 · y2)

= C exp(c0(x) + c1(x) + c2(x)).
(1)

Here C is the normalizing factor, and c0(x) = βx̃·x, cr(x) = βỹr·yr, (r = 1, 2). The soft decoding is
expressed as follows,

x̄
def=

∑
xxp(x|x̃, ỹ1, ỹ2),

x̄i (i = 1, · · · , N) is the soft bit, and the sign of each is the MPM decoding result. Let Π denote the
operator of marginalization,

Π◦p(x|x̃, ỹ1, ỹ2)
def=

∏N
i=1p(xi|x̃, ỹ1, ỹ2).

Since x̄i is directly calculated from p(xi|x̃, ỹ1, ỹ2), calculation cost of soft bits and Π◦p(x|x̃, ỹ1, ỹ2) are
the same.

In the turbo decoding, direct calculation of the soft bits are not tractable. Turbo codes utilize two
decoders. Each of them gives the soft decoding based on one of the two sets of the parity bits. For the
soft decoding, the following pr(x; ξ) (r = 1, 2) is used.

pr(x; ξ) = exp(c0(x) + cr(x) + ξ · x − ϕr(ξ)), ξ ∈ RN , ϕr(ξ) = ln
∑

x exp(c0(x) + cr(x) + ξ · x) (2)

This distribution is derived from p(x̃, ỹr|x) and the prior of x which has the form of

ω(x; ξ) = exp(ξ · x − ψ(ξ)), ψ(ξ) =
∑

iψ(ξi).

Each pr(x; ξ) includes one of {c1(x), c2(x)} in eq.(1), and additional parameter ξ adjusts the linear term
of x. In the turbo decoding, the marginalization of pr(x; ξ) is feasible. The soft decoding of p(x|x̃, ỹ1, ỹ2)
is approximated by updating ξ iteratively in “turbo” like way.

2.2 Information Geometrical View of MPM Decoding

Let us consider the family of all the probability distributions over x, which we call S. The manifold S is
equivalent to the family of distributions over 2N atoms,

S =
{
p(x)

∣∣p(x) > 0,
∑

x p(x) = 1
}
.

We define e–flat and m–flat submanifolds of S.

e–flat manifold: A submanifold M∈S is said to be e–flat, when the following r(x; t) belongs to M for
all q(x), p(x) ∈M . Here, c(t) is the normalization factor,

ln r(x; t) = (1− t) ln q(x) + t ln p(x) + c(t), t∈R.

m–flat manifold: A submanifold M∈S is said to be m–flat, when the following mixture r(x; t) belongs
to M for all q(x), p(x) ∈M ,

r(x; t) = (1− t)q(x) + tp(x), t∈[0, 1].

Now, let us consider a submanifold of p0(x;θ) defined as

M0 =
{
p0(x;θ) = exp(c0(x) + θ · x − ϕ0(θ)) | θ ∈ RN

}
, (3)

θ gives the coordinate system of M0, and is called the natural parameter. Since c0(x) = βx̃·x, every
distribution of M0 can be rewritten as follows

p0(x;θ) = exp(c0(x) + θ · x − ϕ0(θ)) = exp((βx̃ + θ) · x − ϕ0(θ)), ϕ0(θ) = ψ(βx̃ + θ).

It shows that every distribution ofM0 is decomposable, or factorizable. From the information geometry[1],
we have the following theorem of m–projection.
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Theorem 1. Let q(x)∈S, and θ̂ be the parameter of p0(x;θ) ∈ M0, that minimizes the KL-divergence
from q(x) to M0,

θ̂ = πM0◦q(x) def= argmin
θ∈RN

D[q(x); p0(x;θ)].

θ̂ is called the m–projection of q(x) to M0. The m–projection is unique.

Here, D[q(x); p0(x;θ)] is the Kullback-Leibler divergence, which is defined as,

D[q(x); p0(x;θ)] =
∑
x

q(x) log
q(x)

p0(x;θ)
,

Generally D[q(x); p0(x;θ)] ≥ 0, and it is equal to 0 if and only if q(x) = p0(x;θ) holds for every x. It is
easy to show that the marginalization corresponds to the m–projection to M0[7]. Since the soft decoding
and marginalization is equivalent, the soft decoding is also equivalent to the m–projection toM0. Finally,
we show that the following equation holds,

∑
xxq(x) =

∑
xxp0(x; θ̂)=def η0(θ̂).

η0(θ), which is called expectation parameter in information geometry[1], is the soft bits of p0(x;θ) and
gives another coordinate system of M0.

2.3 Information Geometry of Turbo Decoding

The turbo decoding process is written as follows,

1. Let ξt
1 = 0 for t = 0, and t = 1.

2. Project p2(x; ξt
1) onto M0 and calculate ξt+1

2 by

ξt+1
2 = πM0◦p2(x; ξt

1)− ξt
1.

3. Project p1(x; ξt+1
2 ) onto M0 and calculate ξt+1

1 by

ξt+1
1 = πM0◦p1(x; ξt+1

2 )− ξt+1
2 .

4. If πM0◦p1(x; ξt+1
2 ) �= πM0◦p2(x; ξt+1

1 ), go to step 2.

The turbo decoding approximates the estimated parameter θ∗, the projection of p(x|x̃, ỹ1, ỹ2) onto M0,
as θ∗ = ξ∗

1 + ξ∗
2 , where the estimated distribution is

p0(x;θ∗) = exp(c0(x) + ξ∗
1 · x + ξ∗

2 · x − ϕ0(ξ∗
1 + ξ∗

2)). (4)

An intuitive understanding of the turbo decoding is as follows. In step 2, (ξ2 · x) in eq.(4) is replaced
with c2(x). The distribution becomes p2(x; ξ1), and ξ2 is estimated by projecting it onto M0. In step 3,
(ξ1 · x) in eq.(4) is replaced with c1(x), and ξ1 is estimated by m–projection of p1(x; ξ2).

We now define the submanifold corresponding to pr(x; ξ), (r = 1, 2),

Mr =
{
pr(x; ξ) = exp(c0(x) + cr(x) + ξ · x − ϕr(ξ)) | ξ ∈ RN

}
.

ξ is the coordinate system of Mr. Mr is also an e–flat submanifold. M1 �=M2 and Mr �=M0 hold because
cr(x) includes cross terms of x and c1(x)�=c2(x) in general. The information geometrical view of the
turbo decoding is schematically shown in Fig.2.

3 The Properties of Turbo decoding

3.1 Equilibrium

For the following discussion, we define the expectation parameters of pr(x; ξ), r = 1, 2.

ηr(ξ)
def=

∑
x xpr(x; ξ) r = 1, 2.

3



When the turbo decoding converges, equilibrium solution defines three important distributions, p1(x; ξ∗
2),

p2(x; ξ∗
1), and p0(x;θ∗). They satisfy the following two conditions:

1. πM0◦p1(x; ξ∗
2) = πM0◦p2(x; ξ∗

1) = p0(x;θ∗
2), in other word, η1(ξ∗

2) = η1(ξ∗
1) = η0(θ∗). (5)

2. θ∗ = ξ∗
1 + ξ∗

2 . (6)

For p(x;θ)∈M0, there exist ξ1 and ξ2 such that η1(ξ2) = η2(ξ1) = η0(θ). We let ξ1(θ) and ξ2(θ) which
satisfy this equation. The manifold M(θ) is defined by

M(θ) =
{
p(x)

∣∣∑
xxp(x) = η0(θ)

}
.

This is anm–flat submanifold, which includes p1(x; ξ2(θ)), p2(x; ξ1(θ)), and p0(x;θ). From its definition,
for any p(x)∈M(θ), the expectation of x is the same. Hence for any p(x)∈M(θ), its m–projection to
M0 coincides with p0(x;θ). We call M(θ) an equimarginal submanifold.

Let us define an e–flat version of the submanifold as E(θ), which connects p0(x;θ), p1(x; ξ2), and
p2(x; ξ1) in log-linear manner

E(θ) =
{
p(x) = Cp0(x;θ)t0p1(x;ξ2)t1p2(x;ξ1)t2

∣∣∣ ∑2
r=0tr = 1

}
.

When eq.(6) holds, p(x|x̃, ỹ1, ỹ2) is included in the E(θ). It can be proved by taking t0 = −1, t1 = t2 = 1.

Theorem 2. When the turbo decoding procedure converges, the convergent probability distributions
p0(x;θ∗), p1(x; ξ∗

2), and p2(x; ξ∗
1) belong to equimarginal submanifold M(θ∗), while its e–flat version

E(θ∗) includes these three distributions and also the posterior distribution p(x|x̃, ỹ1, ỹ2) (Fig.3).
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Figure 2: Turbo decoding
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If M(θ∗) includes p(x|x̃, ỹ1, ỹ2), p0(x;θ∗) is the true marginalization of p(x|x̃, ỹ1, ỹ2). However, M(θ∗)
does not necessarily include p(x|x̃, ỹ1, ỹ2). This fact means that p(x|x̃, ỹ1, ỹ2) and p0(x;θ∗) are not
necessarily equimarginal, which is the origin of the decoding error.

3.2 Condition of Stability

From the properties of exponential family distributions, the following relation holds for expectation
parameters and ϕ0 in eq.(3) and ϕr, (r = 1, 2) in eq.(2)

η0(θ) = ∂θϕ0(θ), ηr(ξ) = ∂ξϕr(ξ).

We give a sufficiently small perturbation δ to ξ∗
1 and apply one turbo decoding step. The m–projection

from p2(x; ξ∗ + δ) to M0 gives,

η0(θ∗ +∆θ) = η2(ξ∗
1 + δ)

∆θ = G0(θ∗)−1G2(ξ∗
1)δ.
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G0(θ) is the Fisher information matrix of p0(x;θ), and Gr(ξ) is that of pr(x; ξ), (r = 1, 2), defined as,

G0(θ) = ∂θθ′ϕ0(θ) = ∂θη0(θ), Gr(ξ) = ∂ξξ′ϕr(ξ) = ∂ξηr(ξ), r = 1, 2.

Note that G0(θ) is a diagonal matrix. ξ2 in step 2 will be,

ξ2 = ξ∗
2 + (G0(θ∗)−1G2(ξ∗

1)− IN )δ.

Here, IN is an identity matrix of size N . Following the same line for step 3, we derive the theorem which
coincides with the result of Richardson[6].

Theorem 3. Let λi be the eigenvalues of the matrix T defined as

T = (G0(θ∗)−1G1(ξ∗
2)− IN )(G0(θ∗)−1G2(ξ∗

1)− IN ).

When |λi| < 1 holds for all i, the equilibrium point is stable.

3.3 Cost Function and Characteristics of Equilibrium

We give the cost function which plays an important role in turbo decoding.

F(ξ1, ξ2) = ϕ0(θ)− (ϕ1(ξ2) + ϕ2(ξ1)).

Here, θ = ξ1+ξ2. This function is identical to the “free energy” defined in [5], implying close relationship
between our approach and the statistical-mechanical one.

Theorem 4. The equilibrium state ξ∗
1 , ξ

∗
2 is a critical point of F .

Proof. Direct calculation gives ∂ξ1F = η0(θ) − η2(ξ1), ∂ξ2F = η0(θ) − η1(ξ2). For the equilibrium,
η0(θ∗) = η1(ξ∗

2) = η2(ξ∗
1) holds, and the proof is completed.

When (ξt+1
r − ξt

r) is small, the linear approximation of the mapping, defined by the one cycle of the
turbo decoding, is derived as

(
ξt+1
1

ξt+1
2

)
−

(
ξt
1

ξt
2

)
�

(
O G0(θ)−1

G0(θ)−1 O

) (
∂ξ1F
∂ξ2F

)
.

This shows that the algorithm performs a “skewed” gradient ascent in the vicinity of an equilibrium. The
Hessian of F is

H =
(
∂ξ1ξ1F ∂ξ1ξ2F
∂ξ2ξ1F ∂ξ2ξ2F

)
=

(
G0 −G1 G0

G0 G0 −G2

)
.

And by transforming the variables as, θ = ξ1 + ξ2 and ν = ξ1 − ξ2, we have
(
∂θθF ∂θνF
∂νθF ∂ννF

)
=

1
4

(
4G0(θ)− (G1 +G2) (G1 −G2)

(G1 −G2) −(G1 +G2)

)
.

Most probably, ∂θθF is positive definite and ∂ννF is always negative, thus, F is generally saddle at
equilibrium.

3.4 Perturbation Analysis

For the following discussion, we define a distribution p(x;θ,v) as

p(x;θ,v) = exp(c0(x) + θ · x + v · c(x)− ϕ(θ,v))

ϕ(θ,v) = ln
∑

x exp(c0(x) + θ · x + v · c(x)), c(x) def=(c1(x), c2(x))T .

This distribution includes p0(x;θ) (v = 0), p(x|x̃, ỹ1, ỹ2) (θ = , v = ), and pr(x; ξ) (θ = ξ, v = er),
where  = (1, 1)T , e1 = (1, 0)T , and e2 = (0, 1)T . The expectation parameter η(θ,v) is defined as,

η(θ,v) = ∂θϕ(θ,v) =
∑

x xp(x;θ,v).
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Let us consider M(θ∗), where every distribution p(x;θ,v)∈M(θ∗) has the same expectation parameter,
that is, η(θ,v) = η(θ∗) holds. Here, we define, η(θ∗) = η(θ∗,). From the Taylor expansion, we have,

ηi(θ,v) = ηi(θ∗) +
∑

j∂jηi(θ∗)∆θj +
∑

r∂rηi(θ∗)vr +
1
2
∑

r,s∂r∂sηi(θ∗)vrvs

+
∑

j,r∂r∂jηi(θ∗)vr∆θj +
1
2
∑

k,l∂k∂lηi(θ∗)∆θk∆θl +O(‖v‖3) +O(‖∆θ‖3).
(7)

The indexes {i, j, k, l} are for θ, {r, s} are for v, and ∆θ
def=θ − θ∗. After adding some definitions, that

is, ηi(θ,v) = ηi(θ∗), and ∂jηi(θ∗) = gij(θ∗), where {gij} is the Fisher information matrix of p(x;θ∗,)
which is a diagonal matrix, we substitute ∆θi with function of vr up to its 2nd order, and neglect the
higher orders of vr. And we have,

∆θi�−gii∑
rA

i
rvr−

gii

2
∑

r,s

(
∂r−

∑
kg

kkAk
r∂k

)(
∂s−

∑
jg

jjAj
s∂j

)
ηi(θ∗)vrvs, (8)

where, gii = 1/gii, and Ai
r = ∂rηi(θ∗). Let us consider, p(x;θ∗,), p(x; ξ1, δe2), p(x; ξ2, δe1), and

p(x;, δ). Let p(x;θ∗,), p(x; ξ1, δe2), and p(x; ξ2, δe1), be included in M(θ∗), and θ∗ = ξ1 + ξ2 be
satisfied. By putting δ = 1, this coincides with the converged point of the turbo decoding. From the
result of eq.(7) and eq.(8), we have the following theorem.

Theorem 5. The true expectation of x, which is η(,
∑

r er), is approximated as,

η
(
,

∑
rer

)
� η(θ∗) +

1
2
∑

r �=s

(
∂r−

∑
kg

kkAk
r∂k

)(
∂s−

∑
jg

jjAj
s∂j

)
η(θ∗). (9)

Where η(θ∗) is the solution of the turbo decoding.

Equation (9) is related to the m–embedded–curvature of E(θ∗) (Fig.3). The result can be extended
to general case where K>2 [8].

4 Discussion

We have shown a new framework for understanding and analyzing the turbo decoding. It elucidates the
mathematical background, and reveals basic properties.

The information geometrical structure of the equilibrium is summarized in Theorem 2. It shows the e–
flat submanifold E(θ∗) plays an important role. Furthermore, Theorem 5 shows that the relation between
E(θ∗) and the m–flat submanifold M(θ∗) causes the decoding error, and the principal component of the
error is the curvature of E(θ∗). Since the curvature strongly depends on the codeword, we can control it
by the encoder design. This shows a room for improvement of the “near optimum error correcting code”.

This paper gives a first step to the information geometrical understanding of the belief propagation
decoder. The main results are for the turbo decoding, but the mechanism is common with wider class,
and the framework is also valid for them. We believe further study in this direction will lead us to better
understanding of these methods.
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