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1. introduction

Consider the inference problem of undirected graphical models[8, 9]. When the
graph is tree, the Belief Propagation (BP) algorithm (J.Pearl[11]) is an efficient
algorithm and the exact inference is computed. However, when the graph is “loopy,”
and the loops are big, the exact inference becomes intractable.

Besides sampling methods, such as MCMC, tractable approximate inference
gives us one practical solution, and the “loopy BP” algorithm is one of the most
successful methods. Recently, it is pointed out that the idea of loopy BP have been
used many fields, for example, Bethe approximation[3] in statistical physics, and
the decoding algorithms of Low Density Parity Check (LDPC) codes [4] and turbo
codes [2] in error correction codes.

Although we observe the loopy BP works well in many applications, its theoret-
ical aspects are not fully understood. Among some theoretical studies of loopy BP,
we have studied it from information geometrical viewpoint[6, 7]. In this abstract,
we first summerize the results of [6, 7] by defining the problem and showing the
properties loopy BP based on information geometry[1]. We further show its rela-
tion to other propagation algorithms, including the convex concave computational
procedure (CCCP)[14] and Adaptive TAP approximation[10]

2. Information Geometry of BP

2.1. Problem, Family of Distributions, and Projection. Let x =
(x1, · · · , xn)T be random variables. We consider the case where each xi is binary
i.e., xi ∈ {−1,+1} for simplicity. The joint distribution of x is q(x), and we define
the expectation of x as η̂

η̂ = Eq [x] =
∑

x

xq(x).

In this article, we focus on an inference problem of η̂, which is equivalent to the
inference of

∏n

i=1 q(xi). In graphical models, q(x) is often defined as the product
of functions {φi(xi)} and clique functions {φr(xr)} as,

q(x) =
1

Zq

n
∏

i=1

φi(xi)
∏

r∈C

φr(xr) = exp
[

h·x+

L
∑

r=1

cr(x)−ψq

]

, φi(xi) > 0, φr(xr) > 0,

here C is the set of cliques, and L is the cardinality of C.

hi =
1

2
ln
φi(xi = +1)

φi(xi = −1)
, cr(x) = lnφr(xr), ψq = lnZq .
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Let us consider the following family of probability distributions

S =
{

p(x; θ,v) = exp[θ · x + v · c(x) − ψ(θ,v)]
∣

∣ θ ∈ <n,v ∈ <L
}

,

c(x) = (c1(x), · · · , cL(x))T , v · c(x) =

L
∑

r=1

vrcr(x),

where its natural parameter is (θ,v), θ = (θn, · · · , θn)T , v = (v1, · · · , vL)T , and
clearly q(x) = p(x; h,) ∈ S. We define M0 as a submanifold of S specified by
v = ,

M0 =
{

p0(x; θ) = exp[h · x + θ · x − ψ0(θ)]
∣

∣ θ ∈ <n
}

.

The product of marginal distributions of q(x) is included in M0, that is,
∏n

i=1 q(xi) ∈M0. Next we show the definition of the m–projection[1] to M0.

Definition 1. Let πM0
be the operator of the m–projection to M0 as follows.

πM0
◦r(x) = argmin

θ

D[r(x); p0(x; θ)].

Here, D[·; ·] is the KL (Kullback-Leibler)-divergence defined as

D[r(x); p(x)] =
∑

x

r(x) ln
r(x)

p(x)
.

Since M0 is e–flat from its definition, the m–projection is unique, and we ob-

serve that the inference of η̂ is equivalent to compute θ̂ = πM0
◦q(x), since

η̂ = E
p0(x;θ̂)[x].

2.2. Information Geometry of BP. Although the exact inference is simply de-

noted as θ̂ = πM0
◦q(x), the computation becomes intractable for large loopy

graphs. In many applications, we face with the same problem, and the BP al-
gorithm is widely used. For loopy graphs, the BP algorithm does not necessarily
converge, and even if it does, the result is not equivalent to the exact inference.

The following submanifold Mr plays an important role to understand BP

Mr =
{

pr(x; ζr) = exp
[

h ·x + cr(x) + ζr ·x−ψr(ζr)
]

∣

∣ ζr ∈ <n
}

, r = 1, · · · , L.

Mr is an e–flat submanifold of S, and its natural parameter is ζr. We give the infor-
mation geometrical view of BP. The well-known definition of BP is found somewhere
else [9, 11, 12].
Information geometrical view of BP

(1) Set t = 0, ζt
r = , r = 1, · · · , L.

(2) Increment t by one and compute θ and {ζr} iteratively as follows

θt+1 =
∑

r

[πM0
◦ pr(x; ζt

r) − ζt
r],

ζt+1
r = θt+1 − [πM0

◦ pr(x; ζt
r) − ζt

r], r = 1, · · · , L.

(3) Repeat step (2) until convergence.

Let the converged point of BP be {ζ∗
r} and θ∗, where θ∗ =

∑

r ζ∗
r/(L− 1). We

also define ξ∗
r = θ∗ − ζ∗

r . The probability distribution of q(x), its final approxima-
tions p0(x; θ∗) ∈M0, and pr(x; ζ∗

r ) ∈Mr are described as follows

q(x) = exp[h · x + c1(x) + · · · + cr(x) + · · · + cL(x) − ψq ],

p0(x; θ∗) = exp[h · x + ξ∗
1 · x + · · · + ξ∗

r · x + · · · + ξ∗
L · x − ψ0(θ

∗)],

pr(x; ζ∗
r ) = exp[h · x + ξ∗

1 · x + · · · + cr(x) + · · · + ξ∗
L · x − ψr(ζ

∗
r )].

The idea of BP is to approximate cr(x) by ξ∗
r · x in Mr, taking the information

from Mr′ (r′ 6= r) into account. The information is integrated in θ∗ in M0.
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The following theorem [6] characterizes the equilibrium of BP.

Theorem 1. The equilibrium (θ∗, {ζ∗
r}) satisfies

1) m–condition: θ∗ = πM0
◦ pr(x; ζ∗

r ).

2) e–condition: θ∗ =
1

L− 1

L
∑

r=1

ζ∗
r .

We define two submanifolds M∗ and E∗ of S as follows,

M∗ =
{

p(x)
∣

∣

∣ p(x) ∈ S,
∑

x

xp(x) =
∑

x

xp0(x; θ∗) = η0(θ
∗)

}

,

E∗ =
{

p(x) = Cp0(x; θ∗)t0

L
∏

r=1

pr(x; ζ∗
r )tr

∣

∣

∣

L
∑

r=0

tr = 1, tr ∈ <
}

,

C : normalization factor.

Note that M∗ and E∗ are an m–flat and an e–flat submanifold, respectively.
The geometrical implications of the 2 conditions are as follows:

m–condition: The m–flat submanifold M∗ which includes pr(x; ζ∗
r ), r =

1, · · · , L, and p0(x; θ∗) is orthogonal to Mr, r = 1, · · · , L and M0, that is,
they are the m–projections to each other.

e–condition: The e–flat submanifold E∗ includes p0(x; θ∗
0), pr(x; ζ∗

r ), r =
1, · · · , L, and q(x).

For tree graph, we have the following proposition.

Proposition 1. When q(x) is represented with a tree graph, q(x), p0(x; θ∗), and
pr(x; ζ∗

r ), r = 1, · · · , L are included in M∗ and E∗ simultaneously.

This shows when a graph is a tree, q(x) and p0(x; θ∗) are included in M∗ and
the fixed point of BP is the exact inference. In the case of a loopy graph, generally
q(x) /∈ M∗ and the exact inference is not a fixed point of BP.

2.3. Approximate Inference. However, we still hope that BP gives a good ap-
proximation. The difference between the exact inference and the BP solution is
regarded as the discrepancy between E∗ and M∗. We have given a preliminary
analysis in [5, 6], which showed the principal term of the error is directly related to
the e–curvature of M∗.

Theorem 2. Let η(θ,v) = Ep(x;θ,v)[x], then, η̂ = Eq(x)[x] is approximated by the

decoding result η(θ∗,) = Ep0(x;θ∗)[x] as follows

η̂ ' η(θ∗,) +
1

2

∑

r 6=s

BrBsη(θ,v)|(θ,v)=(θ∗,).

where

Br =
∂

∂vr

∣

∣

∣

v=
−

∑

i

g̃ir(θ
∗)

∂

∂θi

∣

∣

∣

θ=θ∗

, G̃θv(θ) = {g̃ir(θ
∗)} = −

∂θ

∂v
.

2.4. Free Energy. The following free energy is important role to understand the
loopy BP

(1) F(θ, ζ1, · · · , ζL) = (L− 1)ψ0(θ) −
∑

r

ψr(ζr) +
[

∑

r

ζr − (L− 1)θ
]

· η0(θ).

The above function is rewritten in terms of the KL–divergence as,

F(θ, ζ1, · · · , ζL) = D[p0(x; θ); q(x)] −
∑

r

D[p0(x; θ); pr(x; ζr)] + C,

where C is a constant. The following theorem is easily derived.
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Theorem 3. The equilibrium (θ∗, ζ∗
r ) of BP is a critical point of F(θ, ζ1, · · · , ζr).

Proof. By calculating
∂F

∂ζr

= ,

we have the m–condition, that is
∑

x

xpr(x; ζr) =
∑

x

xp0(x; θ),

By calculating
∂F

∂θ
= ,

we are led to the e–condition (L− 1)θ =
∑

r ζr. �

2.5. Local Stability of Fixed Points. Let I0(θ) be the Fisher information matrix
of p0(x; θ), and Ir(ζr) be that of pr(x; ζr), r = 1, · · · , L. Since they belong to the
exponential family, we have the following relations:

I0(θ) =∂θθψ0(θ), Ir(ζr) = ∂ζrζr
ψr(ζr) r = 1, · · · , L.

The local stability of the fixed points of BP algorithm, is influenced by the updating
order in the step (2). We show the results when we update all the ζr, r = 1, · · · , L
simultaneously[6].

Theorem 4. Let us define T as follows

T =













O I0(θ)−1I2(ζ2) −En · · · I0(θ)−1IL(ζL) −En

I0(θ)−1I1(ζ1) −En O
...

...
. . .

...

I0(θ)−1I1(ζ1) −En · · · · · · O













,

where En is the n dimensional identity matrix. When |λi| < 1 for all i, where λi

are the eigenvalues of the matrix T , the equilibrium point is locally stable.

3. Relation to Other Propagation Algorithms

3.1. CCCP. Since the equilibrium of BP is characterized with the e– and the
m–conditions, there are two naive algorithms to find the equilibrium. One is to
constrain the parameters always to satisfy the e–condition, and search for the pa-
rameters which satisfy the m–condition (e–constraint algorithm), the other is to
constrain the parameters to satisfy the m–condition, and search for the parameters
which satisfy the e–condition (m–constraint algorithm).

It is easy to see that BP is an e–constraint algorithm since the e–condition is
satisfied at each step, but its convergence is not necessarily guaranteed.

The other possibility is the m–constraint algorithm. We show that CCCP[14] is
an m–constraint algorithm.

CCCP is an iterative double loop procedure to obtain the minimum of an energy
function[13], and the idea was applied to the inference problem of loopy graphs,
where the free energy in eq. (1) is the energy function [14]. The CCCP algorithm
is defined as follows in information geometrical framework.

Information geometrical view of CCCP

inner loop: Given θt, calculate {ζt+1
r } by solving

(2) πM0
◦ pr(x; ζt+1

r ) = Lθt −
∑

r

ζt+1
r , r = 1, · · · , L.



INFORM. GEOM. OF PROP. ALGO. AND APPROXIMATE INFERENCE 5

outer loop: Given a set of {ζt+1
r } as the result of the inner loop, calculate

(3) θt+1 = Lθt −
∑

r

ζt+1
r .

From eqs. (2) and (3), one obtains

θt+1 = πM0
◦ pr(x; ζt+1

r ), r = 1, · · · , L,

which means that CCCP enforces the m–condition at each iteration. On the other
hand, the e–condition is satisfied only at the convergent point, which can be easily
verified by letting θt+1 = θt = θ∗ in eq. (3) to yield the e–condition (L − 1)θ∗ =
∑

r ζ∗
r . Therefore, we can see that the inner and outer loops of CCCP solve the

m–condition and the e–condition, respectively.
The following theorem [7] shows CCCP has a good convergent property.

Theorem 5. Let K be defined as follows

K =
1

L

∑

r

√

I0(θ)Ir(ζr)
−1

√

I0(θ).

Let λi i = 1, · · · , n be the eigen values of K, and the equilibrium of CCCP is stable

when the eigen values of the following K satisfies

λi > 1 −
1

L
, i = 1, · · · , n.

Under the m–constraint, the Hessian of F(θ) at an equilibrium point is equal to
√

I0(θ)
[

LK − (L− 1)E
]
√

I0(θ),

so that the stability condition for CCCP is equivalent to the condition that the
equilibrium is a local minimum of F under the m–constraint.

3.2. Adaptive TAP approximation. We show that the adaptive TAP (Thouless
Anderson Palmer) approximation is also formulated in a similar way by informa-
tion geometry. We first summarize the results given by Opper and Winther[10].
Consider

q(x) =
1

Z

n
∏

r=1

ρ(xr) exp
[

h · x +
1

2
xTJx

]

.(4)

J is a symmetric matrix where diagonal elements are 0. ρ(xr) can take a lot of
kinds of functions, and in this extended memo, we consider the case ρ(xr) is strictly
positive and integrable for xr ∈ <.

The aim of the adaptive TAP approach is to infer Eq [xr] and Eq [x
2
r ]. Let mr be

the inference of Eq [xr], and let us define pr(xr) as follows,

pr(xr) =
1

Z
(r)
0

ρ(xr) exp

[

(

n
∑

s=1

Jrsms − Vrmr + hr

)

xr +
Vr

2
x2

r

]

,(5)

where Z
(r)
0 is the normalization factor to make the integral of pr(xr) equal to 1.

The summary of adaptive TAP equations is given as follow.

mr =

∫

xrpr(xr)dxr(6)

[

(S − J)−1
]

rr
=

∫

(xr −mr)
2pr(xr)dxr =

∫

x2
rpr(xr)dxr −m2

r .(7)

It is possible to view adaptive TAP equations as an variation of BP through
information geometrical framework of BP. Here, we need to extend xi from binary
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variable to real variable. We consider the case where ρ(xr) is strictly positive for
xr ∈ <. Equation (4) can be rewritten as

q(x) = exp[c0(x) + c1(x) + · · · + cn(x) − ψq],

c0(x) =
1

2
xTJx, cr(x) = cr(xr) = ln ρ(xr) + hrxr , ψq = lnZ.

Next, we define p0 as the distribution whose sufficient statistics are xr, x
2
r , r =

1, · · · , n. Natural choice is Gaussian distribution, which is defined as

p0(x; µ, S) = exp
[

c0(x) + µ · x −
1

2
xTSx − ψ0(µ, S)

]

,

S = diag(s1, · · · , sn), ψ0(µ, S) =
n

2
ln 2π − ln det(S − J) +

1

2
µT (S − J)−1µ.

We set M0 as

M0 = {p0(x; µ, S) | µ ∈ <n, S = diag(s1, · · · , sn), si > 0}

Now, ultimate goal of our problem is to obtain the m–projection of q(x) to M0.
Let us define pr(x; µ\r, S\r) as follows

pr(x; µ\r, S\r) = exp
[

c0(x) + cr(xr) + µ\r · x\r −
1

2
x\r

TS\rx\r − ψr(µ\r, S\r)
]

,

S\r = diag(s1, · · · , sr−1, sr+1, · · · , sn) ∈ <(n−1)×(n−1),

µ\r = (µ1, · · · , µr−1, µr+1, · · · , µn)T ∈ <n−1,

x\r = (x1, · · · , xr−1, xr+1, · · · , xn)T ∈ <n−1.

We define Mr as

Mr = {pr(x; µ\r, S\r)}.

It is easy to show the e–condition holds,

q(x) =
1

Z

∏n

r=1 pr(x; µ\r, S\r)

p0(x; µ, S)n−1
.

Moreover, we can show that the m–condition corresponds to the adaptive TAP
equations.

Proposition 2. The m–condition is

p0(x; µ, S) = πM0
◦ pr(x; µ\r, S\r), r = 1, · · · , n,

and it is satisfied, if and only if the following equations hold.

mr =

∫

xrpr(xr; µ\r, S\r)dxr(8)

[(S − J)−1]rr =

∫

x2
rpr(xr ; µ\r, S\r)dxr −m2

r(9)

r = 1, · · · , n, where m = (S − J)−1µ.

Now we move to the adaptive TAP equations

Lemma 1. Equations (8) and (9) are equivalent to (6) and (7).
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Proof. Let us set Jr, K\r, and J\r as follows

J\r =





















0 · · · J1(r−1) J1(r+1) · · · J1n

...
. . .

...
J(r−1)1 J(r−1)n

J(r+1)1 J(r+1)n

...
. . .

...
Jn1 · · · Jn(r−1) Jn(r+1) · · · 0





















K\r = (S\r − J\r), Jr = (Jr1, · · · , Jr(r−1), Jr(r+1), · · · , Jrn)T

We can rewrite p0(x; µ, S) and pr(x; µ\r, S\r) as follows,

p0(x; µ, S) = p0(xr ; µ, S)N (K\r
−1(µ\r + Jrxr),K\r

−1)

pr(x; µ\r, S\r) = pr(xr; µ\r, S\r)N (K\r
−1(µ\r + Jrxr),K\r

−1)(10)

It is easily proved that pr(xr) in (5) is equivalent to pr(xr; µ\r, S\r) in (10), which
proves the equivalence to the adaptive TAP equations. �

4. Conclusion

We have shown the summary of the information geometrical framework to an-
alyze the BP algorithm[6, 7]. Since the idea of loopy BP is widely used in many
fields, we hope further understanding of BP will be given from our framework. We
have also shown that other types of propagation algorithms can be explained in this
framework. This shows the generality of our information geometrical framework.
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