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Abstract

Belief propagation (BP) is an efficient algorithm
to solve the inference problem of graphical mod-
els. We give the information geometrical view of
the algorithm, and propose a new cost function
which yields a new algorithm.

1 Introduction

Although Pearl’s belief propagation algorithm[3] was only
proved to give the exact inference for tree graphs, a lot of
applications suggest it also works well for loopy graphs.

We have given the information geometrical framework [1]
to analyze the BP decoding algorithms of turbo codes and
LDPC codes[2, 4]. In this article, we extend our results to
the BP algorithm on general graphs. The main results are
the characterization of the fixed points and geometrical ex-
planation about the cause of error of the inference. We also
gives a new cost function which yields a new algorithm.

2 Belief Propagation
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Figure 1: An example of undirected graphs: each circle
shows a node, and double circles are the observed nodes.

We discuss the inference of undirected graphs in this ar-
ticle. Let {x1, · · · , xn} be the set of nodes and L be
that of links. Each xi is a binary stochastic variable
xi∈{−1,+1}, and we set first m nodes to be hidden and
the rest to be observed. In Fig.1, m = 4, n = 6, L =
{(1, 2), (1, 3), (1, 5), (2, 4), (2, 6), (3, 4), (3, 5), (4, 6)}.

We consider only the binary stochastic variables in this ar-
ticle, but the results of this article can be easily generalized
to any discrete stochastic variables.

The joint probability distribution of x is given as follows,

q(x) =
1
Z

∏
(i,j)∈L

ψij(xi, xj),

where Z is the normalization factor and ψij(xi, xj) > 0.
Let y = (x1, · · · , xm)T denote hidden variables, and
z = (xm+1, · · · , xn)T denote observed nodes (T repre-
sents transpose), and let us consider q(y|z),

q(y) def= q(y|z) =
1
Z

m∏
i=1

�i(yi)
∏

(i,j)∈L:i,j≤m

ψij(yi, yj), (1)

where �i(yi) is defined as follows,

�i(yi)
def=

∏
j:(i,j)∈L:i≤m,j>m

ψij(yi, zj−m).

The goal of the BP algorithm is to infer the marginal distri-
bution, q(yi), of q(y). We infer q(yi) as bi(yi). Generally,
the marginalization of q(y) is NP-hard, but for tree graphs,
the BP algorithm is efficient and gives the exact inference.
The original BP algorithm is given below following the no-
tations of Yedidia et.al[6].

BP algorithm

1. Set t = 0, and mt
ij(yj) = 1/2, for ∀(i, j) ∈ L.

2. For t = 1, 2, · · · , update messages as follows,

mt+1
ij (yj) =

1
Z

∑
yi

�i(yi)ψij(yi, yj)
∏

k∈N (i)\j

mt
ki(yi), (2)

here Z normalizes as
∑

yj
mt+1

ij (yj) = 1, N (i) is the
set of nodes connected to node i. Belief is given as

bi(yi) =
1
Z
�i(yi)

∏
k∈N (i)

mt+1
ki (yi). (3)

3. Repeat step 2 until bi(yi) converges.

It is well-known that, for loopy graphs, the BP algorithm
does not necessarily converge, and b i(yi) is not exactly
equal to q(yi) even if it converges.

3 Preliminaries of Information Geometry

We give the preliminaries of information geometry.

Since every multinomial distribution is an exponential
family[1], the set of all the probability distributions on y
is an exponential family.

S
def=

{
p(y)|p(y) > 0,

∑
y

p(y) = 1
}
.

Next, we define e–flat and m–flat submanifolds of S.



e–flat submanifold: M⊂S is e–flat, when r(y; s) belongs
to M for all q(y), p(y) ∈ M ,

ln r(y; s) = (1 − s) ln q(y)+s ln p(y)+c(s), s∈R,
where c(s) is the normalization factor.

m–flat submanifold: M⊂S is m–flat, when r(y; s) be-
longs to M for all q(y), p(y) ∈ M ,

r(y; s) = (1 − s)q(y) + sp(y), s∈[0, 1].

Next, we define the m–projection.

Definition 1. LetM⊂S, andq(y)∈S. The point inM that
minimizes the KL divergence fromq(y) toM ,

p∗(y) = argmin
p(y)∈M

D[q(y); p(y)], (4)

is called them–projection ofq(y) toM .

The m–projection theorem follows[1].

Theorem 1. LetM be ane–flat submanifold inS, and let
q(y)∈S. Them–projection ofq(y) toM is unique.

The KL divergence, D[·; ·] is defined as follows,

D [q(y); p(y)] =
∑

y

q(y) ln
q(y)
p(y)

≥ 0,

if q(y) = p(y) holds for every y, D[q(y); p(y)] = 0.

4 Information Geometrical View of BP

4.1 Information Geometrical View of Belief

Since each yi ∈ {−1,+1}, we can define bi(yi) as,

bi(yi)
def= bi(yi; θi)= exp(ki(yi) + θiyi − φi(θi)), (5)

where θi∈R is the natural parameter[1] and φi(θi) is
the normalization factor. From eq.(3), we set k i(yi) =
ln�i(yi). Let us consider the distribution of y, where the
distribution of each yi is bi(yi; θi) and is independent.

p0(y; θ) def=
m∏

i=1

bi(yi; θi) = exp
(
k0(y) + θ · y − ϕ0(θ)

)

k0(y)=
m∑

i=1

ki(yi), ϕ0(θ)=
m∑

i=1

φi(θi),θ=(θ1, · · · , θm)T .

We define the manifold of p0(y; θ) as

M0=
{
p0(y; θ)= exp

(
k0(y) + θ·y − ϕ0(θ)

)∣∣θ ∈ Rm
}
.

M0 is an e–flat submanifold. Next, we define another co-
ordinate system η0 = (η01, · · · , η0m)T called the expecta-
tion parameter[1]

η0 = Ep0(y;θ)[y] = ∂θϕ0(θ), η0i =
∑
yi

bi(yi; θi)yi,

where Ep[·] is the expectation with respect to p. We denote
η0 as η0(θ) for the following of the article, since η0 is a
function of θ. The ideal goal of the BP algorithm is to infer
a point inM0 which corresponds to the product of marginal
distributions, that is,

∏
i q(yi). Now, we redefine q(y) in

eq.(1) as

q(y) =
1
Z

exp
(
k0(y) +

∑
(i,j)∈L

cij(y)
)
. (6)

where cij(y) = lnψij(yi, yj).
Proposition 1. Marginalized distribution ofq(y), that is,∏

i q(yi), is them–projected point fromq(y) toM0.

Proof. The m–projection from q(y) to M0 minimizes the
KL divergence D[q(y); p0(y; θ)]. Since M0 is e–flat, the
point is unique. The derivative of the KL divergence with
respect to θ is,

∂θD[q(y); p0(y; θ)] = η0(θ) −Eq(y)[y].

As the stationary condition we have, η0(θ) = Eq(y)[y].
The m–projection of q(y) to M0 does not change the ex-
pectation of y and equivalent to the marginalization of
q(y). We define the operator πM0 which gives the m–
projected parameter as

πM0 ◦ q(y) = argmin
θ

D[q(y); p0(y; θ)].

4.2 Messages and Links

A B C

Figure 2: A: Belief graph, B: Graph with a single link, C:
Graph with all the links.

Figure 2 shows 3 important graphs in BP. The belief graph
in Fig.2.A corresponds to p0(y; θ), and next, we con-
sider the distribution pr(y), which includes a single link
ψij(yi, yj) (Fig.2.B). We start with reconsidering eq.(3) in
terms of θi of belief (eq.(5))

bi(yi; θi) =
1
Z
�i(yi)

∏
k∈N (i)

mki(yi)

= exp
(
ki(yi) + θi · yi − φi(θi)

)
,

from the fact ki(yi) = ln�i(yi), the rest of the problem is
the relation between mki(yi) and θi. We introduce µi

k as

mki(yi)∑
yi
mki(yi)

=
1
2
(tanh(µi

kyi) + 1),

bi(yi; θi) = exp
(
ki(yi)+

∑
k∈N (i)

µi
kyi−φi

( ∑
k∈N (i)

µi
k

))
.



mki(yi) and µi
k have one to one relation, and θ i is rewrit-

ten as θi =
∑

k∈N (i) µ
i
k. In order to make the following

discussion clear, we redefine the {µi
k} as,

ξr=(0, · · · , 0, µi
j

∧
i

, 0, · · · , 0, µj
i

∧
j

, 0, · · · , 0)T ,θ =
∑
r∈L

ξr.

Here, r is the new index to indicate (i, j). Since pr(y)
includes ψij(yi, yj), the messages mij(yj) and mji(yi)
should be eliminated. The parameter of pr(y) is ζr =
θ − ξr, and pr(y; ζr) is defined as,

pr(y; ζr)= exp(k0(y) + cr(y) + ζr · y − ϕr(ζr)),

cr(y) def= lnψij(yi, yj).

The definitions of an e–flat submanifold Mr, which is
the family of pr(y; ζr), and of the expectation parameter
ηr(ζr) are given as follows for r ∈ L,

Mr =
{
pr(y; ζr)

∣∣∣ ζr∈Rm
}
,

ηr(ζr) =
∑

y

pr(y; ζr)y = ∂ζrϕr(ζr).

Now, we show the information geometrical view of the
BP algorithm. Let us reconsider eq.(2) by multiplying
�j(yj)

∏
k∈N (j)\im

t
kj(yj) on both sides of eq.(2). The

right hand side is rewritten as,

1
Z

∑
yi

�i(yi)�j(yj)ψij(yi, yj)
∏

k∈N (j)\i

mt
kj(yj)

∏
k∈N (i)\j

mt
ki(yi)

=
∑

yk:k �=j

pr(y; ζt
r),

while the left hand side is,

1
Z
�j(yj)mt+1

ij (yj)
∏

k∈N (j)\i

mt
kj(yj)

=
∑

yk:k �=j

p0(y; θt − ξt
r + ξt+1

r )=
∑

yk:k �=j

p0(y; ζt
r + ξt+1

r ).

From Proposition 1 and by assuming the case m ij(yj) and
mji(yi) are updated simultaneously, eq.(2) is rewritten as
follows,

ζt
r + ξt+1

r = πM0 ◦ pr(y; ζt
r).

In summary, the BP algorithm is expressed as follows in
terms of information geometry.

Information geometrical view of the BP algorithm

1. Set t = 0, θt = , ζt
r = ξt

r = , r ∈ L.

2. For t = 1, 2, · · · , update ξt+1
r , as follows,

ξt+1
r = πM0 ◦ pr(y; ζt

r) − ζt
r.

θt+1 =
∑

r∈L ξt+1
r and ζt+1

r = θt+1 − ξt+1
r .

3. If ξt+1
r does not converge, t+1→t and go to 2.

4.3 Fixed Points of BP

The fixed points of the BP algorithm satisfy the following
conditions,

1) η0(θ∗) = ηr(ζ∗
r ), r ∈ L (7)

2) θ∗ =
∑
r∈L

ξ∗
r =

1
L− 1

∑
r∈L

ζ∗
r , (8)

where ∗ denotes the fixed point and L is the number of the
links. Let us define two submanifolds, one is an m–flat
submanifold M ∗,

M∗ =
{
p(y)

∣∣ ∑
y

p(y)y = η0(θ∗)
}
.

Expectation of y is the same for every p(y)∈M ∗, and m–
projection from p(y)∈M ∗ toM0 coincides with p0(y; θ∗).
The other is an e–flat submanifold E ∗

E∗=
{
p(y)=

1
Z
p0(θ∗)t0

∏
r∈L

pr(ζ∗
r )tr

∣∣t∗∈R, t0+
∑
r∈L

tr=1
}
,

The distributions p0(y; θ∗), pr(y; ζ∗
r ) (r ∈ L) are included

in M∗. Moreover, we can check that q(y) is included in
E∗. This result leads us to the following theorem.

Theorem 2. At the fixed points of the BP algorithm,
p0(y; θ∗) andpr(y; ζ∗

r ), (r ∈ L) are included in them–flat
submanifoldM ∗, while thee–flat submanifoldE∗ includes
p0(y; θ∗), pr(y; ζ∗), (r ∈ L), andq(y).

If M∗ includes q(y), p0(y; θ∗) gives the true belief, but
q(y) is only included in E∗, and generally there is a dis-
crepancy between M ∗ and E∗ for loopy graphs. This dis-
crepancy gives the difference between the true and the in-
ferred beliefs.

5 New Cost Function

The fixed point of the BP algorithm is characterized with
eqs.(7) and (8).

Some BP related algorithms, such as CCCP[7], obtain the
fixed point by double loops algorithms. The inner loop ad-
justs parameters to satisfy eq.(7), and the outer loop adjusts
them to satisfy eq.(8). This is one idea to have a general
convergence, but we consider another possibility. We con-
strain the parameters to satisfy eq.(8), and search for the
parameters which satisfy eq.(7). In order to make this pos-
sible, we start with proposing a new cost function as

F ({ζr})=
∑
r∈L

||η0(θ)−ηr(ζr)||2.

If the cost function is minimized under the constraint, θ =∑
r∈L ζr/(L − 1), both of eq.(7) and eq.(8) are satisfied

at the minimum point, where F = 0. A naive method to



minimize F is the gradient descent. Under the constraint
of eq.(8), the gradient is

∂F

∂ζr
= − 2Ir(ζr)(η0(θ)−ηr(ζr))

+
2

L− 1
I0(θ)

∑
r

(η0(θ)−ηr(ζr)).
(9)

Here, I0(θ) and Ir(ζr) are the Fisher information matrices
of p0(y; θ) and pr(y; ζr), respectively. If the derivative is
available, ζr and θ are updated as,

ζt+1
r = ζt

r − δ
∂F

∂ζt
r

, θt+1 =
1
L

∑
r∈L

ζt+1
r .

where δ is a small positive learning rate. Since p0(y; θ) is
factorisable distribution, it is easy to calculate η0(θ) from
η0(θ) =

∑
y p0(y; θ)y. Also I0(θ) is simply calculated

as,

I0(θ) =
∑

y

p0(y; θ)(y − η0(θ))(y − η0(θ))T .

With the BP algorithm, πM0 ◦ pr(y; ζt
r) is tractable, and

ηr(ζr) is calculated from the relation,

ηr(ζr) = η0(πM0 ◦ pr(y; ζt
r)).

We have shown the calculations of η0(θ), ηr(ζr), and
I0(θ) are tractable. The rest of the problem is to calculate
the first term of eq.(9). Fortunately, we have the relation,

Ir(ζr)h = lim
α→0

ηr(ζr + αh) − ηr(ζr)
α

.

If h is substituted with (η0(θ)−ηr(ζr)), this becomes the
first term of eq.(9). Now, we propose a new algorithm.

New algorithm

1. Set t = 0, θt = , ζt
r = , r ∈ L.

2. Calculate η0(θ), I0(θ), and ηr(ζr), r ∈ L with BP.

3. Let hr=η0(θ)−ηr(ζr) and calculate ηr(ζr+αhr)
for r∈L, where α>0 is small. Then calculate

gr =
ηr(ζr + αh) − ηr(ζr)

α
.

4. For t = 1, 2, · · · , update ζ t+1
r as follows,

ζt+1
r = ζt

r − δ
(−2gr +

2
L− 1

I0(θ)
∑

r

hr

)

θt+1 =
∑
r∈L

ζt+1
r /(L− 1).

5. If F ({ζr})=
∑

r∈L ||η0(θ)−ηr(ζr)||2 > ε (ε is the
threshold) holds, t+1→t and go to 2.

This algorithm does not include double loops, which is dif-
ferent from CCCP, but includes new adjustable parameters
δ and α. The choice of them is one of our future works.
Another issue is the minimization techniques. It is possible
to apply quasi-Newton methods.

6 Conclusion and Future Work

We have shown an information geometrical framework to
understand and to analyze the BP algorithm in this article.
The information geometrical structure of the fixed point is
summarized in Theorem 2. It shows that the e–flat subman-
ifoldE∗ and them–flat submanifoldM ∗ play an important
role for the BP algorithm. The conditions of the BP fixed
points are summarized in eq.(7) and eq.(8). Recently, many
BP related algorithms are proposed[5, 7], and information
geometrical will help to give a uniform view of them.

We also proposed a new variant with a new cost function.
In this community, the Bethé free energy is a well-known
cost function[6]. It has been shown the Bethé free energy
is deeply related to the BP algorithm, but the property of it
is not well understood. In Section 5, we proposed a new
cost function. It is clearly shown that the cost function
is 0 at the fixed points of the BP algorithm, and it is the
minimum. We have shown the gradient descent algorithm
for minimizing the new cost function, which does not have
double loops. The BP algorithm is used twice to calculate
the gradient. There are a lot of possible extensions in this
direction. We can consider similar quadratic cost functions
with different measures, and can apply other minimization
techniques. These are a part of future works.

This paper gives a first step to the information geometri-
cal understanding of the BP algorithm. We believe further
study in this direction will lead us to better understanding
and improvements of the BP algorithm.
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