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Abstract
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Belief propagation (BP) is an efficient algorithm
to solve the inference problem of graphical mod-
els. We give theinformation geometrical view of
the algorithm, and propose a new cost function
which yields a new agorithm.

1 Introduction

Although Pearl’s belief propagation a gorithm[3] was only
proved to give the exact inference for tree graphs, alot of
applications suggest it also works well for loopy graphs.

We have given the information geometrical framework [1]
to analyze the BP decoding algorithms of turbo codes and
LDPC coded[2, 4]. In this article, we extend our results to
the BP algorithm on general graphs. The main results are
the characterization of the fixed points and geometrical ex-
planation about the cause of error of the inference. We also
gives anew cost function which yields a new algorithm.

2 Belief Propagation

(2@
b

Figure 1. An example of undirected graphs. each circle
shows a node, and doubl e circles are the observed nodes.

We discuss the inference of undirected graphs in this ar-
ticle. Let {z1,---,x,} be the set of nodes and £ be
that of links. Each z; is a binary stochastic variable
x;€{—1,+1}, and we set first m nodes to be hidden and
the rest to be observed. InFig.l, m = 4, n = 6, L =
{(17 2)a (17 3)7 (17 5)7 (2a 4)7 (23 6)7 (374)7 (37 5)a (47 6)}

We consider only the binary stochastic variablesin this ar-
ticle, but the results of this article can be easily generalized
to any discrete stochastic variables.

Thejoint probability distribution of x is given asfollows,
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where Z is the normalization factor and ;;(x;, z;) > 0.
Let y = (v1,---,2,)7 denote hidden variables, and
z = (Tmi1,- ,2,)T denote observed nodes (7' repre-
sents transpose), and let us consider ¢(y|z),

m

a(y) < q(ylz) = H ) T ¢iuinv):

i=1 (7, J)EL:,j<m

where w; (y;) is defined as follows,

wi(yi) < H Vij (Yir 2j—m)-

ji(i,5)ELA<m,j>m

The goal of the BP algorithmisto infer the marginal distri-
bution, ¢(y;), of ¢(y). Weinfer ¢(y;) asb;(y;). Generaly,
the marginalization of ¢(y) is NP-hard, but for tree graphs,
the BP agorithm is efficient and gives the exact inference.
The original BP algorithm is given bel ow following the no-
tations of Yedidiaet.al[6].

BP algorithm

1. Sett = 0,andm};(y;) = 1/2,forv(i, j) € L.

2. Fort =1,2,---, update messages as follows,

t+1 yj Z sz Yi wzj Yiy Yj Hka yz (2)
kEN (i)\j
here Z normaizesas >°, m; ' (y;) = 1, N (i) isthe
set of nodes connected to nodez Bellef isgiven as

b; (yl = ZUL yz H mt+1 (3)
keN (1)

3. Repeat step 2 until b;(y;) converges.

It is well-known that, for loopy graphs, the BP algorithm
does not necessarily converge, and b;(y;) is not exactly
equal to q(y,) evenif it converges.

3 Preliminaries of Information Geometry

We give the preliminaries of information geometry.

Since every multinomial distribution is an exponential
family[1], the set of all the probability distributions on y
isan exponential family.

Sdef{

>OZp }

Next, we define e—flat and m—flat submanifolds of S.



e—flat submanifold: M CS ise—flat, whenr(y; s) belongs
to M foral q(y), p(y) € M,
Inr(y;s) = (1 - s)Ing(y)+s Inp(y)+c(s), s€R,
where c(s) isthe normalization factor.

m~flat submanifold: M CS is m—flat, when r(y; s) be-
longsto M fordl q(y),p(y) € M,

r(y;s) = (1 - s)q(y) + sp(y),

Next, we define the m—projection.

Definition 1. Let M CS, andg(y)€S. The pointin}M that
minimizes the KL divergence fropty) to M,

p*(y) = argmin Dq(y); p(y)], 4
p(y)eM

s€l0,1].

is called them—projection ofg(y) to M.

The m—projection theorem follows[ 1].

Theorem 1. Let M be ane—flat submanifold ir5, and let
q(y)€S. Them—projection ofg(y) to M is unique.

The KL divergence, D[-; -] is defined as follows,

: _ L 1)
D q(y);p(y)] = zy:q(y)l o) 2%

if ¢(y) = p(y) holdsfor every y, D[q(y); p(y)] = 0.

4 Information Geometrical View of BP

4.1 Information Geometrical View of Belief

Sinceeachy; € {—1,+1}, wecandefineb;(y;) as,

bi(y:) i (yi; 0") = exp (ki (yi) + 0'yi — ¢:(67)),  (5)

where §'cR is the natural parameter[1] and ¢;(0°) is

the normalization factor. From eq.(3), we set k;(y;) =

In w;(y;). Let us consider the distribution of y, where the

distribution of each y; isb;(y;; 6°) and isindependent.

po(y; 0) = [ biwis 0) = exp(ko(y) + 0 -y — ()
=1

ko(y)= Z ki(yi), 0o (0)= Z ¢i(6"),0=(0",--

=1 =1

We define the manifold of pg(y

o7
;0) as

Mo={po(y: 8)=exp (ko(y) + 0y — ¢0(9))[6 € R™ |

M, is an e—flat submanifold. Next, we define another co-

ordinate system no = (101, - ,Mom)” called the expecta-
tion parameter(1]
Mo = Epo(y;e)[ ] 89900 , Noi = Z b yu yza

where E,[-] is the expectation with respect to p. We denote
1o as 1o (0) for the following of the article, since i is a
function of 6. Theideal goal of the BP algorithm isto infer
apointin M which correspondsto the product of marginal

distributions, that is, [ [, ¢(v:). Now, we redefine ¢(y) in
eg.(1) as

> ). ©

(i,7)€L

ay) = e (koly) +

where c;;(y) = Ini; (yi, yj)-
Proposition 1. Marginalized distribution of;(y), that is,
IL; ¢(v:), is them—projected point frong(y) to M.

Proof. The m—projection from ¢(y) to M, minimizes the
KL divergence D[q(y); po(y; 0)]. Since M is e—flat, the
point is unique. The derivative of the KL divergence with
respect to 0 is,

9 D]q(y); po(y; 0)] = 10(0) — Eyy) [yl

As the stationary condition we have, 10(0) = Eq [y].
The m—projection of ¢(y) to M, does not change the ex-
pectation of y and equivalent to the marginaization of
q(y). We define the operator s, which gives the m—
projected parameter as

T, © q(y) = arg;ninD[q(y);po(y; 0). O

4.2 Messages and Links

o o
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Figure 2: A: Bélief graph, B: Graph with asingle link, C:
Graph with al the links.

Figure 2 shows 3 important graphsin BP. The belief graph
in Fig.2.A corresponds to po(y;0), and next, we con-
sider the distribution p,.(y), which includes a single link
¥i; (v, y;) (Fig.2.B). We start with reconsidering eg.(3) in
terms of ¢ of belief (eq 5)

yz H M yz

keN (1)
= exp(ki(yi) + 0" - yi — ¢ (0")),

from the fact k;(y;) = Inw;(y;), therest of the problem is
the relation between my,; (y;) and 6°. We introduce 1., as

b (yla 9

mei(yi) 1 .
m_z(t h(phyi) + 1),

bi(yi; 0') = exp <ki(yi)+z phyi—di( Y M%))

keN (1) keN (1)



my; (y;) and pi have one to one relation, and 6° is rewrit-
tenas ¢’ = 3, ;) Hj. Inorder to make the following

discussion clear, we redefinethe {14 } as,

&=, .

)T,0=>"¢,.

07/1/;'707"' 707Mg707
" 2 rel

i J
Here, r is the new index to indicate (i,5). Since p.(y)
includes ’l/)ij(yi,yj), the messages mij(yj) and mﬂ(yl)
should be eliminated. The parameter of p,.(y) is (. =
6 — &, andp,(y; ¢,) isdefined as

pr(y§ Cr)zexp(ko(y) + Cr(y) +Cry — SDT(CT))a
er(y) CIn Vi (Yi> yj)-

The definitions of an e—flat submanifold M., which is
the family of p,(y; ), and of the expectation parameter
n-(¢,) aregiven asfollowsfor r € L,

M, = {p(y:¢) | Germ Y,
)= Py ¢y = .0 (Cr)-
Yy

Now, we show the information geometrical view of the
BP algorithm. Let us reconsider eq.(2) by multiplying

@ (Y;) [lenr(jni M, (y;) on both sides of eq.(2). The
right hand side is rewritten as,

sz yz W j yj),lzblj Yi, Yj Hka Yj Hmm yz

RENG\Ni kENTi\]
= Z pr(y; €1,
Yr:k#E]

whilethe left hand side s,
1
ij(yj)mffl(yj) 1T 7k (w))

keEN (H)\i
= po(y: 0" — €8 + €= poly; ¢t + £,
Yi:k#J Yi:k#J
From Proposition 1 and by assuming the case m ;; (y;) and
m;i(y;) are updated simultaneously, eq.(2) is rewritten as
follows,

¢+ Ef-ﬂ = a1, © pr(y; CL).

In summary, the BP agorithm is expressed as follows in
terms of information geometry.

Information geometrical view of the BP algorithm

1 Sett=0,0"=0,¢l=¢ =o0,r L.

2. Fort=1,2,---,update ¢.+1, asfollows,
E =m0 pr(y; CL) — L
6 =3, & and ¢ = 01 — gl

3. If €11 does not converge, t+1—t and go to 2.

4.3 Fixed Points of BP

The fixed points of the BP algorithm satisfy the following
conditions,

1) no(0%) =n.(¢),reL ()
=Y g==3¢ ®
rel rel

where * denotes the fixed point and L is the number of the
links. Let us define two submanifolds, one is an m—flat
submanifold M *,

{ !Zp Yy = 1700*)}

Expectation of y is the same for every p(y)e M *, and m—
projection from p(y)€ M™* to M coincideswith po(y; 6*).
The other is an e—flat submanifold £*

E :{ (y) :—Po (%) t”Hp

Thedistributions po(y; 0*), p-(y; ¢F) (r € L) areincluded
in M*. Moreover, we can check that ¢(y) is included in
E*. Thisresult leads us to the following theorem.

R, t0+2tr71}

rel

Theorem 2. At the fixed points of the BP algorithm,
po(y; 0%) andp,(y; ¢), (r € £) are included in then—flat
submanifoldM *, while thee—flat submanifoldZ* includes

po(y; 0*), pr(y; ¢*), (r € £), andq(y).

If M* includes ¢(y), po(y;0*) gives the true belief, but
q(y) isonly included in E*, and generally there is a dis-
crepancy between M * and E* for loopy graphs. Thisdis-
crepancy gives the difference between the true and the in-
ferred beliefs.

5 New Cost Function

The fixed point of the BP algorithm is characterized with
egs.(7) and (8).

Some BP related algorithms, such as CCCP[7], obtain the
fixed point by double loops agorithms. The inner loop ad-
justs parametersto satisfy eq.(7), and the outer loop adjusts
them to satisfy eg.(8). Thisis one ideato have a general
convergence, but we consider another possibility. We con-
strain the parameters to satisfy eq.(8), and search for the
parameters which satisfy eq.(7). In order to make this pos-
sible, we start with proposing a new cost function as

{C7 Z Hno

rel

—n(¢)I[%.

If the cost function is minimized under the constraint, @ =
> rer /(L — 1), both of eq.(7) and eq.(8) are satisfied
a the minimum point, where F' = 0. A naive method to



minimize ' is the gradient descent. Under the constraint
of eq.(8), the gradient is

OF
= —2I,(¢) (o (8)—n-(¢r))
oo ©)
2

——=16(6) > (m0(6)—7, (G,)):
Here, Ip(0) and I,.(¢,) are the Fisher information matrices
of po(y; 0) and p,-(y; ¢-), respectively. If the derivetiveis
available, ¢, and @ are updated as,

oF 1
Ct+1 _ Ct _ 5 , 0t+1 _ Ct+1'
r r 09 726

rel

+

where § isasmall positive learning rate. Since po(y; 0) is
factorisable distribution, it is easy to calculate no(0) from
no(0) = >, po(y; 0)y. Also Io(0) is simply calculated
$a

Io(8) = po(y:0)(y —no(0))(y — no(0))"

With the BP agorithm, 7y, o p,-(y; ¢!) is tractable, and
n-(¢,) is caculated from the relation,

777-(4}) = "70(77Mo Opr(y; Cﬁ))
We have shown the calculations of 7(8), n.(¢-), and

1y(0) are tractable. The rest of the problem is to calculate
the first term of eq.(9). Fortunately, we have the relation,

I,(¢)h = lim N (¢r + ah) — nr(cr)'
a—0 (0%
If h is substituted with (10(6)—n..(¢,)), this becomes the

first term of eq.(9). Now, we propose a new algorithm.

New algorithm

1. Sett=0,0"=0,¢l =0,7r € L.
2. Ca'CUlateT]()(e), I()(O), and T]r(Cr)a r € L with BP.

3. Let hr:nO(e)_nr(CT) and calculate 771"(C7'+04hr)
for re L, where a>0 is small. Then calculate

_ N (G + ah) — 0. (Cr)

r .

«

4. Fort=1,2,---,update {!*! asfollows,
2
¢ = ¢l 6(-290 + 7—10(6) Y )

ot — Z C£+1/(L _ 1)

rel

5.1 F({G})=3" e |Im0(8)—nr(C)II* > € (eisthe
threshold) holds, t+1—¢ and go to 2.

This algorithm does not include double loops, which is dif-
ferent from CCCP, but includes new adjustable parameters
6 and a.. The choice of them is one of our future works.
Another issue is the minimization techniques. Itispossible
to apply quasi-Newton methods.

6 Conclusion and Future Work

We have shown an information geometrical framework to
understand and to analyze the BP agorithm in this article.
The information geometrical structure of the fixed point is
summarized in Theorem 2. It showsthat the e—flat subman-
ifold E* and the m—flat submanifold M * play animportant
role for the BP algorithm. The conditions of the BP fixed
points are summarized in eg.(7) and eq.(8). Recently, many
BP related agorithms are proposed[5, 7], and information
geometrical will help to give a uniform view of them.

We also proposed a new variant with a new cost function.
In this community, the Bethé free energy is a well-known
cost function[6]. It has been shown the Bethé free energy
is deeply related to the BP agorithm, but the property of it
is not well understood. In Section 5, we proposed a new
cost function. It is clearly shown that the cost function
is O a the fixed points of the BP algorithm, and it is the
minimum. We have shown the gradient descent algorithm
for minimizing the new cost function, which does not have
double loops. The BP algorithm is used twice to calculate
the gradient. There are a lot of possible extensions in this
direction. We can consider similar quadratic cost functions
with different measures, and can apply other minimization
techniques. These are a part of future works.

This paper gives a first step to the information geometri-
cal understanding of the BP agorithm. We believe further
study in this direction will lead us to better understanding
and improvements of the BP agorithm.
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