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ABSTRACT
In this article, we propose an Blind Source Separation al-
gorithm for convolutive mixture of signals. We propose a
method of separating signals in the time-frequency domain.
We apply the decorrelation method proposed by Molgedey
and Schuster on spectrogram and reconstruct separated sig-
nals focusing on the temporal structure of the signals. We
show some results of experiments with both artificially con-
trolled data and speech data recorded in the real environ-
ment.
KEYWORDS: Convolutive mixtures, Windowed
Fourier Transform

1. Introduction
In this paper, we propose a blind source separation (BSS)
method for speech signals recorded in a real environment.
Speech signals have a temporal structure that it is stationary
for a short period but not stationary for a long term[6]. We
use this time structure to build an algorithm.

The problem of BSS[2, 5] is defined as follows. Source sig-
nals are denoted by a vector �(t) = (s1(t), · · · , sn(t))T and
it is assumed that each component of �(t) is independent
to each other and mean 0. Recorded signals are �(t) =
(x1(t), · · · , xn(t))T , where they are instantaneous mixture
which can be written with an n × n real matrix A as,

�(t) = A�(t).

But for the recorded speech signals, we usually simulate a
real-room recording with FIR filters, s.t. the observations
are convolutive mixtures of source signals,

�(t) = A ∗ �(t) =

��
k

aik ∗ sk(t)

�
,

aik ∗ sk(t) =

τmax�
τ=0

aik(τ )sk(t − τ ),

(1)

where A(t) is a function of time, aik ∗sk(t) is the convolution
of aik(t) and sk(t), where aik(t) is the impulse response from
source signal k to sensor i. The goal of BSS is to separate
signals into the components which are mutually independent
without knowing operator A and source signals �(t).

Basic BSS approaches have been developed for instantaneous
mixtures. For convolutive mixtures, there are some trials[3].
We use the windowed-Fourier transform, which is known as
the name spectrogram, as in [7, 9] to transform mixed source
signals into the time-frequency domain. After that we ap-
ply Molgedey and Schuster’s decorrelation algorithm[8] to the
signals of each frequency independently. Most of the BSS ap-
proaches usually ignore the ambiguities of the amplitude and
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Figure 1: The problem: Convolutive Mixtures

the permutation, but we have to remove these ambiguities
to reconstruct the separated signals. Our idea is to use the
inverse of the decorrelating matrices and the envelope of the
speech signal.

2. Decorrelation Algorithm for Instantaneous
Mixture

First we explain the decorrelation algorithm by Molgedey and
Schuster [8] which was proposed for instantaneous mixtures,
i.e. �(t) = A�(t) where A is an n × n matrix. The goal is to
find a matrix B which is equivalent to the inverse matrix of
A with the ambiguity of amplitude and permutation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

 Time(sec)

 x
1
(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

 Time(sec)

 x
2
(t)

Correlation

τ=0 τ=1 τ=2

Figure 2: Correlation of original inputs: On the top, the
original inputs are shown. On the bottom side, these signals
are plotted with different time delays

The correlation matrix of observations is written as�
�(t)�(t + τ )T

�
= Rxx(τ )

=A
�
�(t)�(t + τ )T

�
AT = ARss(τ )AT , (2)

where Rxx(τ ) and Rss(τ ) are correlation matrices. Since each
component of �(t) is independent, Rss(τ ) is diagonal for any



τ . Molgedey and Schuster showed that the BSS problem of
finding B is reduced to solve the eigenvalue problem�

Rxx(τ1)Rxx(τ2)
−1
�
B = B

�
Λ1Λ

−1
2

�
. (3)

This problem can also be solved by simultaneous diagonal-
ization of matrices, where the number of the matrices doesn’t
have to be 2 but any number,

BRxx(τi)B
T = Λi, i = 1, . . . , r. (4)

Although from the effect of the noise and small correlations
among the source signals, (4) does not hold in practice. We
implemented in the way to minimize the off-diagonal com-
ponents of the matrices BRxx(τi)B

T . In order to obtain
B, we use the algorithm which only needs straightforward
calculations[10]. It consists of two procedures, sphering and
rotation(Fig.3).
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Figure 3: Decorrelation algorithm

Sphering is a procedure to obtain a matrix V which satisfies,

V Rxx(0)V T = I. (5)

This procedure corresponds to Principal Component Analy-
sis(PCA). Figure 4 shows the signals after sphering.
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Figure 4: Correlations of the signals after sphering

Rotation is a procedure to remove off-diagonal elements of
correlation matrices with an orthogonal transformation. This
can be realized by an orthogonal matrix C which minimizes

r�
l=1

�
i�=k

���(CV Rxx(τl)V
T CT )ik

���2 , (6)

where (∗)ik is the ik-element of a matrix. Cardoso and
Souloumiac gave an implementation [1] with Jacobi-like al-
gorithm to obtain C. Finally, matrix B is given by B = CV .
The decorrelated signals are shown in Fig.5. An advantage
of this method is that it uses only the second order statistics
and fixed amount of computation.
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Figure 5: Correlations of the outputs

3. Proposed Method
In this section, the detail of the algorithm is shown along
with the flow of it. First, the windowed-Fourier transform is
applied to convolutive mixed signals,

�̂(ω, ts) =
�

t

e−jωt
�(t)w(t − ts),

ω = 0, 1
N

2π, . . . , N−1
N

2π, ts = 0, ∆T, 2∆T, . . .

(7)

where ω denotes the frequency and N denotes the number
of points of the discrete Fourier transform, ts denotes the
window position, w is a window function (we used Ham-
ming window) and ∆T is the shifting interval of moving win-
dows. Let us redefine an �̂(ω, ts) for a fixed frequency ω
as �̂ω(ts) = �̂(ω, ts). If the window length is long enough
compared to the impulse response of A(t), the relationship
between observations and sources can be approximated as,

�̂ω(ts) = Â(ω)�̂(ω, ts),

where Â(ω) is the Fourier transform of operator A(t), and
�̂(ω, ts) is the windowed-Fourier transform of �(t). This
shows that for fixed ω, a convolutive mixture is simply an
instantaneous mixture. We extend the algorithm in the last
section to complex values by substituting a Hermite matrix
and a unitary matrix for a symmetric matrix and an orthogo-
nal matrix respectively, and apply it for each frequency. As a
result, we have a separated time sequence for each frequency,

�̂ω(ts) = B(ω)�̂ω(ts).

Since BSS algorithms cannot solve the ambiguity of ampli-
tude and permutation, even if we put each component of
�̂ω(ts) along with ω, amplitudes are irregular and different
independent sources will be mixed up. The problem of irreg-
ular amplitude can be solved by putting back the separated
independent components to the sensor input with the inverse
matrices B(ω)−1. Let us define �̂ω(ts; i) as,

�̂ω(ts; i) = B(ω)−1(0 . . . 0, ûi,ω(ts), 0 . . . 0)T , i = 1, . . . , n
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Figure 6: Windowed-Fourier Transform (spectrogram)



where v̂k,ω(ts; i) represents the input of i-th independent
component of �̂ω(ts) into the k-th (k = 1, . . . , n) sensor.
We applied B(ω) and B(ω)−1 to obtain �̂ω(ts; i), therefore
�̂ω(ts; i) has no ambiguity of amplitude.
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Figure 7: Solving the permutation ambiguity

Remaining problem is permutation. We assumed that even
for different frequencies, if the original source is the same,
the envelopes are similar, and utilize this idea for solving the
permutation. E is an operator to take the envelope as,

E �̂ω(ts; i) =
1

2M

ts+M�
t′s=ts−M

n�
k=1

|v̂k,ω(t′s; i)|, (8)

where M is a positive constant and v̂k,ω(ts; i) denotes the k-
th element of �̂ω(ts; i). Inner product and norm are defined
as

E �̂ω(i) · E �̂ω′(k) =
�
ts

E �̂ω(ts; i)E �̂ω′(ts; k), (9)

‖E�ω(i)‖ =
�

E �̂ω(i) · E �̂ω(i), (10)

and we define the similarity among all the envelopes in the
same frequencies by,

sim(ω) =
�
i�=k

E �̂ω(i) · E �̂ω(k)

‖E �̂ω(i)‖‖E �̂ω(k)‖ . (11)

With these operations, the permutation is solved (see Fig.7):

• Sort ω in order of the weakness of correlation between
independent components in ω. This is done by sorting
in increasing order of sim(�) as,

sim(ω1) ≤ sim(ω2) ≤ · · · ≤ sim(ωN ). (12)

• For ω1, assign �̂ω1(ts; i) to �̂ω1(ts; i) as it is:

�̂ω1(ts; i) = �̂ω1(ts; i), i = 1, . . . , n (13)

• For ωk, find the permutation σ(i) which maximizes the
correlation between the envelope of ωk and the aggre-
gated envelope from ω1 through ωk−1. This is achieved
by maximizing

n�
i=1

E �̂ωk(σ(i)) ·
�

k−1�
j=1

E �̂ωj (i)

�
(14)

within all the possible permutations σ of i = 1, . . . , n.

• Assign the appropriate permutation to �̂ωk (ts; i):

�̂ωk (ts; i) = �̂ωk(ts; σ(i)). (15)

As a result, we obtain separated spectrograms as �̂ω(ts; i).
Applying inverse Fourier transform, finally we get a set of
separated sources

�(t; i) =
1

2π
· 1

W (t)

�
ts

�
ω

ejω(t−ts)
�̂ω(ts; i), i = 1, . . . , n

where W (t) =
	

ts
w(t − ts). Note that each yk(t; i) repre-

sents a separated independent component i on sensor k, and	
i �(t; i) = �(t) holds. And finally we obtain n × n signals

from n dimensional inputs.

4. Experimental Results
4.1. Artificial Data
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Figure 8: The source signals: each signal was spoken by a
different male and recorded with sampling rate of 16kHz.
s1(t) is a recorded word of “good morning” and s2(t) is a
Japanese word “konbanwa” which means “good evening”.

There are some parameters in the proposed algorithm, and
we have to define appropriate values for them. We used a
set of data which were recorded separately and mixed on a
computer, and tested source separation with different param-
eters. The parameters to be set are:

∆T : Shifting time of the window function (in (7)).

r : Number of the matrices used for the simultane-
ous diagonalization (in (4)).

M : The number of the time steps for taking the
moving average (in (8)).

WindowLength : The length of the window function used
in windowed-Fourier Transform.

∆T , r, and M are mutually related. Speech signals can be
regarded as stational for a several 10msecs, but not station
if it is longer than 100msec. Therefore, ∆T × r should stay
within a several 10msecs. Also the time for taking the moving
average, which is defined as ∆T × (2M + 1) should also be
around a few 10msecs.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

 Time(sec)

 x
1
(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

 Time(sec)

 x
2
(t)

Figure 9: The instantaneous mixture

a) Instantaneous Mixtures Figure 8 shows the sources
which were recorded separately on the computer. First, we
made instantaneous mixtures with these source signals with
a matrix A as follows. The mixed signals are shown in Fig.9.

�(t) = A�(t) =



a11 a12

a21 a22

�
�(t) =



1 0.7

0.3 1

�
�(t),

Since we know the true sources and the mixing rates, we
can evaluate the performance using the Signal to Noise Ratio
(SNR) which is defined as
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Figure 10: The SNR11 for instantaneous mixtures: the win-
dow lengths and ∆T were varied, r (the number of the ma-
trices for simultaneous diagonalization) was fixed to 30.

signali(t; j) = aijsj(t) (16)

errori(t; j) = yi(t; j) − signali(t; j) (17)

SNRij = 10 log10

	
t signali(t; j)

2	
t errori(t; j)2

. (18)

First, we tried to choose the right values of the window length
and ∆T . The SNRij ’s are measured by changing the win-
dow length from 4msec to 32msec and ∆T from 0.625msec
to 2.5msec. We used the Hamming window for the window
function. Results of SNR11 is shown in Fig.10. It is clear
from the graph that the window length with 8msec gave re-
sults better than the others and we confirmed this fact for
other ij and r with experiments not shown here. Therefore,
we defined window length as 8msec for this experiment.

We still have to define ∆T and r. Theoretically, r can be
2 or any larger number. However, small r gives an unstable
solution, and large r leads to a wrong solution because time
difference between correlation matrices will be too larger for
the stationarity of speech signals. We changed ∆T and r
and calculated SNRij . Figure 11 shows the result of SNR11

with changing ∆T from 0.625msec to 2.5msec and r from 2
to 70. There is a peak on each row. ∆T × r is the interval of
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Figure 11: The SNR11 for instantaneous mixtures: the win-
dow lengths was fixed to 8msec, ∆T and r were varied.

time within which the matrices are diagonalized. This value
should not go beyond the stationarity of the speech signals.
We can see there is a peak between 30 and 50msec. It is
said that speech signals are stationary around 40msec, and
this matches the result we obtained here. This feature is also
true for other ij’s. We can see that the combination of ∆T
= 1.25msec and r = 40 is the best. The position of the peaks
are almost the same for other ij’s, and we decided to use
these values for ∆T and r. SNR11 for this combination is
18.9 (crosstalk is 1/77.6).

The parameter M in (8) is used to make the moving average
of signals to make the envelopes. From some results, we found
that if the time for taking the moving average is longer than
20msec, permutation ambiguity was solved properly, and we
used ∆T × (2M + 1) to be around 40msec. Because ∆T was
defined as 1.25msec, M was set to be 15, Finally, we obtained
the separated signals which is shown in Fig.12.Crosstalk is
small and it is hard to see them.
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Figure 12: The separated signals using the proposed algo-
rithm: the window length was 8msec, ∆T = 1.25msec and
r = 40.

b) Separating convolutive mixtures Our main aim of
this paper is not to separate instantaneous mixtures, but to
separate convolutive mixtures as in (1). We also made convo-
lutive mixture signals on the computer and used these signals
for experiment to set the parameters and to assess how our
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Figure 13: Virtual room for making convolutive mixtures:
unit for the length is meter, and the sonic speed is 340m/sec.
The strength of the reflection is 0.1 in power for any fre-
quency, and the strength of sounds varies in proportion to the
inverse square of the distance. Because the second reflection
is small, only the first reflection are taken into accounted.

algorithm works.

We wanted to simulate the general problem of recording
sounds in a real environment. In order to simulate it, we
built a virtual room as Fig.13 and calculated reflections and
delays. In Fig.14, the impulse response from source 1 to mi-
crophone 2 is shown. Also we show the window function
with different lengths in the graph. The impulse response is
rather long. We have to set the window length longer than
the impulse response. But if we make it long, the SNR will
be worse. There is a trade-off between the window length
and SNR for the convolutive mixture. The source signals are
the same as Fig.8. The convolutive mixtures in this virtual
room are shown in Fig.15.

For the separation, we applied our algorithm, changing the
window length from 8msec to 32msec, and evaluated the re-
sult with the SNRs. In this case, (16) was modified as,

signali(t; j) = aij(t) ∗ sj(t). (19)

The SNRs of these results are shown in Tab.1. Our approach
with the window length of 32msec gave the best SNRs. Sepa-
rated signals are shown in Fig.16(window length was 32msec,
∆T was 1.25msec, r was 40.).

4.2. Real-room Recorded Data

The proposed algorithm is applied to the data recorded in a
real environment. The data was provided by Prof. Kota
Takahashi in the University of Electro-Communications.
Two males were repeating different phrases simultaneously
in a room and their voices were recorded with two micro-

0

0 5 10 15 20 25 30 35
Time(msec)

inpuls response
window (8msec)

(16msec)
(32msec)

Figure 14: The impulse response from the source 1 to the
microphone 2 in a virtual room
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Figure 15: The mixed signals in a virtual room

phones with 44.1kHz for 5sec then down-sampled to 16kHz.
Inputs are shown in Fig.17. Window length was 32msec (512
points), ∆T was 1.25msec and r was 40. The result is shown
in Fig.18. We heard them and they were separated clearly.

5. Discussion and Conclusion
We proposed a blind source separation algorithm based on
the temporal structure of speech signals. Our algorithm only
uses straightforward calculations, and it includes only a few
parameter to be tuned. This is possible because of the short
range and long range temporal structure of natural acoustic
signals. On the experiments, the algorithm worked very well
for the artificial data and the real-room-recorded data.

Blind source separation of convolutive mixtures is a problem
of estimating a filter matrix from sources to each sensors. In
our algorithm, we use the parameterization of a filter matrix
in the frequency domain (cf. [4, 9]) as

A(ω) =

K�
k=0

Akδ(ω−ωk) δ(ω−ωk) =

�
0 ω �= ωk

1 ω = ω
. (20)

Ak is a matrix estimated for each frequency independently.
This is the reason we can build our algorithm with only
straightforward calculations. In order to separate the sig-
nals, we need the inverse filter, and we can estimate the in-
verse process easily by calculating A−1

k . A problem with this
parameterization occurs when one of the source signals does
not have any frequency component on a frequency ωk. In
our algorithm, we cannot estimate A−1

k since Ak is a singular
matrix. We have to treat these cases separately.
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Figure 16: The separated signals: the proposed algorithm
was applied with the window length of 32msec, ∆T =
1.25msec and r = 40.



Table 1: SNRs (dB) for Separated Signals (∆T is 1.25msec
and r in (4) is 40)

SNR11 SNR12 SNR21 SNR22

8msec 4.36 6.32 11.94 11.66
Window 16msec 4.72 6.65 12.66 12.52
length 32msec 6.47 7.30 14.40 13.19

Another major approach for convolutive mixtures is to pa-
rameterize the impulse response from each source to each
sensor with an FIR filter. This approach estimates the pa-
rameters of the filters and build inverse filters to separate
the signals (e.g. [3]). The impulse responses from sources to
sensors are defined in matrix form,

AFIR(t) =
L�

l=0

AFIRlδ(t − tl), (21)

where AFIRl is a matrix which corresponds to the tl-time de-
layed component of the mixing process. The Fourier trans-
form of the filter is defined as


AFIR(ω) =
L�

l=0

AFIRle
√−1ωtl . (22)

One of the advantages to this parameterization is that some
sort of continuity across different frequencies can be included

naturally because the Fourier transform 
AFIR(ω) for any ω

depends on all the mixing matrices 
AFIRl ’s. A disadvantage
of the approach is that, in order to estimate the parameters
AFIRl , usually some kind of iterative procedures is necessary,

and after estimating 
AFIRl , it needs inverse filters to separate
the signals. The inverse filters are defined as


A−1
FIR(ω) =

�
L�

l=0

AFIRle
√−1ωtl

�−1

(23)

This inverse filter generally doesn’t have finite impulse re-
sponse and we also have to be careful with their causality.
And, we cannot calculate this for each frequency indepen-
dently.

There are some problems to be solved in our algorithm. We
have three major parameters, the window length, the shift
∆T and the number of correlation matrices r. We showed
that window length can be defined independent of the other
two parameters, but if the mixing process has a long impulse
response, window length has to be correspondingly longer,
and it will make the performance worse because it will go
beyond the stationary range of the source signals. There is
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Figure 17: Recorded Signals in a Real Room
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Figure 18: Separated Signals

another problem, that is, the sampling rate. We only used a
sampling rate of 16kHz. From the sampling theorem, it fol-
lows that the data includes signals whose frequency compo-
nent is below 8kHz. Usually, speech signals have some power
for every component under 8kHz. Our algorithm applies the
decorrelation algorithm for every frequency component, but
if even one component doesn’t have any power, the decorre-
lation algorithm fails. Therefore, if we use 44.1kHz for the
sampling rate of speech signals, there will be a lot of com-
ponents which cannot be separated correctly. We need some
other technique to solve this problem.
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