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ABSTRACT

In order to categorize a set of data which consists of some categories, it is important to know the
probability distribution of the data of each category. Using these probability distributions, we can
classify the data. In most cases, such as speech and image recognition problems, the data for training
are categorized in advance. But there are some cases that only the uncategorized data are available. For
example, when a baby learns phonation, it is hard to give it the samples of each phone separately. It learns
the number of the phones and how to phonate each of them through observing only the uncategorized data
and making communication with the parents or the teacher. In this article, the authors give an algorithm
for this situation. In the algorithm, the distribution of whole data is described with a finite mixture
model. The model can observe only the uncategorized data but can make a kind of communication with
the teacher (which is the probability source). The parameters of the model are estimated using the EM
algorithm and the number of the categories are determined through a communication with the teacher.
A numerical simulation of a simple image recognition problem is given.

1. Introduction

Suppose that there is a set of data which consists
of some categories, and that we want to know the
categories of new data. For this purpose, it is im-
portant to know the probability distribution of the
data of each category. Using the probability density
functions, their categories can be judged. We can
find this kind of problems in constructing speech or
image recognition systems. In such cases, we usu-
ally have some data whose categories are known in
advance. Therefore, each probability distribution
can be estimated respectively.

But there are different cases that the categorized
data are not available. In such cases, one good ap-
proach is to make a model for whole data with finite
mixture model, and estimate its parameters[3].

Here is an example. When a baby learns the
phonation, it doesn’t know how many phones there
are, nor how to phonate each of them. The par-
ents and the teacher cannot tell it the number of
the phones and it is hard to give it the samples of
each phone separately. This corresponds to what
is mentioned above. What is different is that the
baby can make a kind of communication with the
teacher. It phonates ambiguous sounds according
to its own model, and the teacher corrects them.

In this article, the authors treat a problem that
only uncategorized data are available, but the model,
which is described with a finite mixture model, can
make a kind of communication with the teacher

which is a probability source (we call this the source).
If the number of the categories is assumed, then
the parameters of the model can be estimated us-
ing the EM algorithm described in Section 2. The
number of the categories are determined through
communication with the source. The concept of
the algorithm is shown in Section 3. The algorithm
is applied for a simple image recognition problem,
and made a good result. The results are shown in
Section 4.

2. EM algorithm

The data {x} is supposed to have some categories,
but we cannot observe them. In such situation, one
good approach to estimate probability distribution
of each categories, is to describe the distribution of
whole data with a finite mixture model, and esti-
mate the parameters. Then each component distri-
bution will correspond to each category’s distribu-
tion. Because the number of the categories is un-
known, we assume the number is m, each category
is denoted by z, (z = 1, · · · ,m). The component
density function of category z is pz(x|θz) and the
mixing weights are πz, (

∑
z πz = 1). Then the dis-

tribution of x is described as finite mixture model
[3]

p(x|θ) =
n∑

z=1

πmpz(x|θz), (1)
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where θ = (π1, · · · , πm, θ1, · · · , θm). When we have
a new datum x, we should decide that the category
it belongs to is z which maximizes πzpz(x|θz).

When we have {x1, x2, · · · , xN} for estimating
θ, we can use maximum likelihood method where θ
is chosen to maximize

∏N
s=1 p(xs|θ) which is equiv-

alent to maximizing
∑

s log p(xs|θ) =
∑

s l(xs|θ).
But in this case, we have the hidden variable z.
Therefore, it is hard to find the θ directly by solv-
ing it. We can use the EM algorithm to solve this
problem [2].

The EM algorithm generates, from some initial
point θ0, a sequence {θt} of estimates. Each itera-
tion consists of the following double step:

• E-step
Evaluate Eθt [l(x, z|θ)]xs , which is

Q(θ, θt) =
1
N

N∑
s=1

{∑
z

l(xs, z|θ)p(z|xs, θ
t)

}

(2)
• M-step

Find the θt+1 which maximizes Q(θ, θt),

θt+1 = argmax
θ

Q(θ, θt). (3)

where

p(z|x, θ) =
p(z, x|θ)
p(x|θ) =

πzpz(x|θz)∑
z′ πz′pz′(x|θz′)

l(x, z|θ) = log p(x, z|θ) = log πz + log pz(x|θz).

It can easily be proved that
∑

s l(xs|θt+1) ≥∑
s l(xs|θt)[2]. Thus, we can obtain the maximum

likelihood estimators by iterating these two steps.

3. Determine the number of the cate-
gories

In section 2, it is shown that if the number of the
categories is defined and the structure of the com-
ponent densities are given, we can estimate the pa-
rameters by the EM algorithm. We presume that
the structure of each component densities are given.
Then, the remaining problem is to determine the
number of the categories.

To estimate the number of the categories, we
can use some information criteria, such as AIC[1].
But it is hard to believe that a baby is calculating
AIC when it learns phonation. There must be some
kind of criteria, but it might not exactly the same
as AIC.

The authors assume that the number of the cat-
egories are determined by communicating with the
source. Starting from the mixture model which has
only 1 category, the model makes communication,
and decides whether to make more categories. Iter-
ating this, the model determines the number of the
categories.
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Fig. 1. Behavior of The Probability Source

First, we describe the behavior of the source and
the way the model makes communication with the
source. As mentioned above, the source doesn’t give
the information of the categories directly but give
a new datum x̂ according to his own distribution
q(x|ψ) =

∑
i′ ξi′qi′(x|ψi′ ) when a datum x is given.

The source’s behavior is shown in Figure 1 and is
described as follows:

1. Receives x from the model.
2. Judge the category i to which the datum is

belonging based on its own probability dis-
tribution q(x|ψ) =

∑
i′ ξi′qi′(x|ψi′ ).

3. Generate x̂ according to probability density
function qi(x|ψi), and give it to the model.

The model makes communication with this source
as follows:

1. Choose the category z to ask the source at
random, according to the mixing weights πz .
Then generate x according to the density
function pz(x|θz), and ask it to the source.

2. Receive the x̂ from the source.
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Fig. 2. Behavior of d(x, x̂)

We are now going to show that by observing x
and x̂), we can determine the number of the cate-
gories.

By Maximum Likelihood Estimate, we try to
maximize

∑
s l(xs|θt+1). This means we are trying

to maximize, E[l(x|θ)] =
∫
q(x) log p(x|θ)dx. This

can also mean we are trying to minimize,

D(q(x), p(x|θ))
=

∫
q(x) log q(x)dx −

∫
q(x) log p(x|θ)dx

=
∫
q(x) log

q(x)
p(x|θ)dx. (4)



Here D(, ) is the Kullback-Leibler Divergence.
But now, we have the data {x} and {x̂}. There-

fore we should consider the marginal distribution
of {x} and {x̂}. Thus we should choose the model
which would minimize

Dx̂x(q, p) = D(q(x, x̂), p(x, x̂|θ))
=

∫
q(x, x̂) log

q(x, x̂)
p(x, x̂|θ)dxdx̂. (5)

=
∫
q(x, x̂) log q(x, x̂)dxdx̂

−
∫
q(x, x̂) log p(x, x̂|θ)dxdx̂ (6)

To make our idea clear, it is better to describe
the behavior of Dx̂x(q, p). Dx̂x(q, p) is a kind of
distance between probabilistic distributions. There-
fore, if the two distributions are “close”, Dx̂x(q, p)
will be small, otherwise, it is large. Suppose that
the source’s probability distribution is also a finite
mixture model. If the categories of the model is less
than the source, the source can represent the data
more strictly than the model. On the other hand,
if the model has more categories than the source,
the model seems to have some categories which do
not exist in the source. In both cases the value
Dx̂x(q, p) will be larger than the model which has
correct number of categories(Figure 2). Therefore,
by observing the value of Dx̂x(q, p), we can get a
kind of criteria for selecting the number of the cat-
egories.

But here is the problem. We cannot know the
value of Dx̂x(q, p). The first term of (6) is common
to every model and we do not have to calculate.
The second term can be written as∫

q(x, x̂) log p(x, x̂|θ)dxdx̂

=
∫
q(x̂|x)q(x) log p(x, x̂|θ)dxdx̂. (7)

By substituting q(x) of (7) with p(x|θ), we can es-
timate the value of (7).

Consequently, we get the algorithm to estimate
the number of categories.

1. Define the number of the categories and esti-
mate the parameters by EM algorithm.

2. With the parameter θ∗, ask the source {x}
and receive {x̂}

3. Estimate the value∫
q(x̂|x)p(x) log p(x, x̂|θ)dxdx̂

as
∑

s log p(xs, x̂s|θ). And estimate the num-
ber of the categories.

4. Simulation

Figure 3 schematically shows the problem of the
simulation. Each pattern is an n bits pattern of

{1, 0}. The source has only m patterns {Mz =
(M1

z , · · · ,Mn
z )t : z = 1, · · · ,m} of 2n. These m

patterns are corresponding to the categories. For
each i, there defined an error rate ez (ez < 0.5)
with which each bit turns around independently.
Thus, we cannot observe the categories directly.
Through communication with the source, the cor-
rect patterns, mixing weights and error rates are
estimated(Figure 3). The conditional probability
densities of a pattern x = (x1, · · · , xn)t to category
z is

pz(x|θz) = ez
d(x,Mz)(1 − ez)(n−d(x,Mz)). (8)

where, d(x,Mz) is

d(x,Mz) =
n∑

i=1

(xi −M i
z)

2. (9)

and the probability distribution p(x|θ) is

p(x|θ) =
∑

z

πzpz(x|θz). (10)

Now we have to know the form of the distribution
p(x̂, x|θ).

p(x, x̂|θ) = pθ(x̂|x)p(x|θ) (11)

=
∑

z

pθ(x̂, z|x)p(x|θ)

=
∑

z

pθ(x̂|z)pθ(z|x, θ)p(x|θ)

=
∑

z

pz(x̂|θz)
pθ(x, z|θ)
p(x|θ) p(x|θ)

=
∑

z

πzpz(x̂|θz)pz(x|θz)

=
∑

z

{
πzez

(d(x,Mz)+d(x̂,Mz))

×(1 − ez)(2n−d(x̂,Mz)−d(x̂,Mz))
}

(12)

In the simulation, the source has the categories
shown in Figure 4. Each pattern is 9 × 9 (n = 81)
bits pattern. For each category, as shown in the
figure, the mixing weights and the error rates are
different. We prepare 100 data for parameter esti-
mation in advance. For parameter estimation, we
used the EM algorithm. We do not give the con-
crete expression of the algorithm, but it can easily
be derived from (2) and (3).

If the number of the categories is assumed to be
3, the model is estimated as shown in Figure 5. In
this case, it is shown that the model tries to cover
more than one category of the source’s with one
category by letting error rates and mixing weights
large.

On the other hand, Figure 6 shows an example
in which the number of the categories is 6. Appar-
ently, this result is affected by the initial condition.
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Fig. 3. The problem

error rate .12 .11 .14 .17 .23
ξi .22 .17 .18 .25 .18

Fig. 4. The Source

In most cases, one of the six categories is dimin-
ished into one of the other categories. Otherwise,
the results are something like the figure that one of
the categories is constructed for a few specific data,
and it is corresponding to a category which doesn’t
exist in the source.

The procedure to select the categories is shown
below.

1. Choose z to ask the source at random, ac-
cording to the mixing weights πz .

2. Generate x according to the density function
pz(x|θz), and ask it to the source. Then
receive x̂ from the source.

3. Repeat 1 and 2 k times and calculate (13),
using (12).

s =
1
k

k∑
s=1

log p(x̂s, xs|θ) (13)

In the simulation, k is set to be 100. The results
are shown in Table 1. According to the results,
the model with 5 categories is selected because the
result of it is the smallest. The model is shown in
Figure 7.

Figure 7 shows that the selected model consists

error rate .33 .22 .10
πz .36 .39 .25

Fig. 5. Mixture model with 3 mixture

error rate .15 .11 .10 .14 .19 .22
πz .20 .17 .25 .22 .02 .13

Fig. 6. Mixture model with 6 mixture

Categories s
1 102.1870
2 91.7141
3 78.2310
4 72.7628
5 65.4223
6 65.5311

source 66.3330

Table 1. The value s of each model

of correct number of categories and almost correct
patterns.

error rate .23 .14 .15 .11 .10
πz .16 .22 .20 .17 .25

Fig. 7. Final Model

5. Conclusion

In this article we proposed a method to construct
the model by exchanging data with the source. In
real world, there are many problems in which there
must exist some categories but we cannot know it
directly. We have given a learning algorithm for
such problems and made a good result.

We are now thinking of applying this algorithm
to more complicated problems. And also, we have
to give statistical analysis to this algorithm.
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