A Learning Machine That Evolves

Kaoru NAKANO, Hideaki HIRAKI and Shiro IKEDA
Department of Mathematical Engineering and Information Physics
Faculty of Engineering, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
E-mail: hiraki@bcl.t.u-tokyo.ac.jp

ABSTRACT

In this article we propose a simple model of a learning machine that evolves.

When

a classification problem is given, a Perceptron-like learning machine obtains a proper set of
feature-detecting cells through mating, mutation, and natural selection. Computer simulation
showed the expected results. This is one of our trials to approach the evolutionary system in

the real world.

1. Introduction

This is a “synthetic approach” to the evolutionary
system. If a model is constructed whose behavior
is very similar to that of the evolutionary system in
the real world, the essential mechanism of the sys-
tem will be estimated from the model. We call it the
“synthetic approach.” In the approach it is desir-
able to construct a complete model of the evolution-
ary system, but this is difficult, so we accumulate
trials to construct models for partial mechanisms of
the system.

According to this idea, we have proposed a
model for self-organization, where various robots
are automatically produced from several kinds of
elements through mating and mutations[2]. In the
model, it is presumed that if a structure of the el-
ements (robot) is given, it will have a specific abil-
ity. There must be structure information in order
for self-organization to occur. We call it a “system
description.” We devised the system descriptions
such that two of them are mated and are affected
by mutations into a new system description which
describes a new able robot. We did not consider
natural selection in that model.

Now, in this article we don’t focus on the system
description. In self-organization, it is also impor-
tant to study the mechanism of evolution. Prac-
tically we applied the method to Perceptron-like
learning machines. As explained in the next sec-
tion, a Perceptron can learn to categorize patterns
if it has suitable set of feature-detecting cells[1]. Tt
1s hard to choose the right set of feature-detecting
cells. Back-propagating error-correcting method is
effective for the case. Hidden cells become suit-
able for the given classification problem (the task)
through learning. But the method has two demer-
its. One is that the learning not always converges

to the optimal point but is trapped in local min-
ima. The other is that, usually, the number of the
hidden cells needed for the given problem has to be
determined beforehand.

Our evolutionary method was applied to that
matter instead of the backpropagation. As a result
of it, both of the number of the feature-detecting
cells and the function of each cells became suitable
although evolutionary computation took a lot of
time.

2. A Perceptron and Back-Propagating
Method

A Perceptron is a learning machine with a neu-
ral network structure proposed by F. Rosenblatt[3]
and studied well by M. Minsky and S. Papert[1]. Tt
learns to judge whether a given pattern belongs to
a certain category or not. A typical structure of a
Perceptron consists of an input layer, a hidden layer
and an output cell as shown in Fig.1. Patterns are
shown to the input layer. A cell in the hidden layer
is connected to some cells in the input layer (they
form the “receptive field” of the cell) and extracts
a feature of the given pattern. If the corresponding
feature is detected by the cell (suppose that black
points are 1’s and white points are 0’s), it outputs
1, otherwise 0. The output cell is connected to all
the cells in the hidden layer, and outputs 1 if the
weighted sum of their outputs is larger than the
threshold value. Therefore the output is considered
to be a logical function of the outputs of the input
layer and also of the outputs of the hidden layer.
Training is to change the weights and the threshold
value whenever the judgement is wrong. Although
explanation of the detail of the training is omitted,
the learning is proved to converge in finite itera-
tions if the training method is appropriate and the

Fig. 1

logical function of the outputs of the hidden layer
is linearly-separable.

By M. Minsky and S. Papert, every logical func-
tion has a positive normal form. It means there ex-
ists a set of mask-type feature-detecting cells that
can make an arbitrary logical function linearly-
separable. The mask-type feature-detecting cell
means that the output of the cell is a conjunction
function (AND gate) of the inputs. Our evolution-
ary algorithm is based on the idea of searching over
this kind of cells.

A Perceptron can learn any classification of
patterns if there are feature-detecting cells (hid-
den layer cells) enough to make the task linearly-
separable. But the learning is done only on the out-
put cell. Enormous feature-detecting cells must he
prepared if they are chosen at random. The general-
ized delta rule and back-propagating-error method
were proposed to solve the problem[4], where hid-
den layer cells can learn according to the steepest
gradient method. But there is no general method
to estimate how many hidden layer cells are needed.
Moreover, it is known that convergence of the learn-
ing is often trapped in local minima.

Instead of using the backpropagation we apply
our evolutionary algorithm to this problem as ex-
plained in the next section.

3. Evolutionary Algorithm

In this section, we describe the evolutionary al-
gorithm that is applied to a Perceptron. Details of
the process are described in Examples 1 and 2 in
the next section.

In evolution of living things, we think that sim-
ple cells gather to form a structure with compli-
cated functions. In our model, evolution begins
from simple feature-detecting cells that detect the

brightness on a cell in the input layer. Individ-

" 0, prop. is false.
t =
rpropos |on_| { 1, prop. is true

Perceptron. (The same feature-detecting cells are assumed to be located in parallel at every place of the layer.)

uals (learning machines) obtain feature-detecting
cells with larger receptive fields through genera-
tions. In the mutation described below, feature-
detecting cells generated at random are added to
individuals. Each of the feature-detecting cells will
have a receptive field consisting of arbitrary number
of points which are selected to be black or white at
random. Each pattern in the receptive field corre-
sponds to the feature of each cell. Examples of the
features with adjacent points are shown in Fig.2.
Generally, the points do not need to be adjacent.

In order to recognize complicated patterns, a set
of many kinds of feature-detecting cells will be nec-
essary. By the mating described below, increasing
and decreasing the number of the feature-detecting
cells are realized. Using our evolutionary algorithm,
a reproduction system is coustructed. Each genera-
tion includes a population of individuals. From the
first generation, two individuals are chosen and are
mated (sometimes with mutations) into an individ-
ual of the next generation. The process is repeated
until the necessary population of the next gener-
ation is attained. In the same manner the repro-
duction process proceeds to further generations. If
natural selection is added to this process, evolution
will be realized.

3.1. Mating

Two individuals (parents) are mated into an indi-
vidual (child) in the reproduction process. In the
process partial information of the two system de-
scriptions of the parents are exchanged. Generally,
a system description describes the structure of an
individual. In this case a system description is a set
of feature-detecting cells itself. As the mating, we
devised the “mixing pot method” (see Fig.3).

The sets of feature-detecting cells of the parents
A and B are in pot A and pot B respectively. We

Il

gy -
nly E

WEE ...

0 0 0000
Fig. 2

cells.

Receptive fields and functions of feature-detecting

pour the contents into a mixing pot and shake it
well. Then a cell is taken out and put into pot 1 or
pot 2 with equal probability p = 1/2. The process
is repeated until no cell is in the mixing pot. It is
not permitted for the cells with same features to be
put into one pot. In such cases, they are separated
into pot 1 and pot 2. Pot 2 is discarded and pot
1 is given to the child. By this method, number
of feature-detecting cells of an individual can grad-
ually increase and decrease. If natural selection is
added to this method, it will be expected that min-
imum number of feature-detecting cells necessary
for the given task are attained.

3.2. Mutation

The mutation is also necessary for the evolution.
Without it, the variety of feature-detecting cells
would be limited. In our model mutations play the
role to introduce new feature-detecting cells into
the system.
a certain probability.

A mutation occurs at random with
When it occurs, a feature-
detecting cell is added to a learning machine, whose
receptive field and function are chosen at random.
So there is the possibility that individuals obtain
complicated feature-detecting cells with large re-

probability 1/2

pot 1 pot 2

Fig. 3 The mixing pot method.

ceptive fields. We assumed that larger receptive

fields have less probability to be chosen.

3.3. Natural Selection

When a new generation is produced, each individ-
ual learns patterns certain learning times. Then a
score of perception is counted. The score is defined
to be the ratio of correct answer divided by the
number of the feature-detecting cells. The higher
the score of an individual is, the more probable it
is that the individual is selected as a parent. We
permit the same parents to be selected. By this
method, we expect the child to reflect the char-
acters of the parents. Consequently, through gen-
erations, the child is expected to obtain the set
of feature-detecting cells with suitable number and
functions.

4. Computer Simulation

We made simple experiments to ensure that the
evolutionary algorithm works well. The tasks are
to distinguish black-and-white patterns on 6 times
6 pixel screen. For simplicity, it is assumed that
every receptive field consists of less than 4 adjacent

L theincorrect patterns: the machines should answer O for these.

the correct pattern : the machines should answer 1 for this.

Fig. 4 The given

theratio of
correct answer

(o 0o
another individual E 78%

thetotal number of feature detecting
cells included in the 25 individuals

20

answer
an individual
in the generations

DI

10

rrectly.)
D

task in example 1.

threshold

after learning
(10 correct patternsand - 09 weights after
40incorrect onesareall ' learning

46—

-.04
)i [m)

| T T

(39in 50 pattternsare
answered correctly.)

COE® @ @ S O000C

1~5th generation 6~10th generation

Fig. 5

cells in the input layer (the upper 3 rows in Fig.2).
The first example is to distinguish a certain pattern
“horns” from the others. The second is to distin-
guish patterns in the category “hollow rectangle”
from the others.

4.1. Example 1

See Fig.4. We let the learning machines try to dis-
tinguish the left pattern (correct pattern) from the
others. The location of the pattern is arbitrary. It
is assumed that the same feature-detecting cells are
located in parallel at every place of the layer. Con-
sequently, when a feature-detecting cell is added in
mating and mutation, it is applied to the entire in-
put layer. Presume that in each generation there
are b individuals. After all the individuals in a gen-
eration have been produced, each individual learns
50 patterns 50 times. Those patterns contain 10
correct patterns (all are the same) and 40 incorrect
ones. Ratio of correct answer is calculated for these
50 patterns after the learning. We assume that in
mutations, probability of selecting cells with the re-
ceptive field of 1 point is 0.5, 2 points 0.3 and 3

11~20th generation 21~30th generation
(5individualsarein a generation.)

The results of example 1.

points 0.2. In the first generation we assume that
every individual has no feature-detecting cells. Also
we assume the occurring probability of a mutation
(in reproduction of an individual) is 0.3.

The results of the experiment are in Fig.5.
The graphs show number of each kind of feature-
detecting cells through all the individuals in
each 5 generations (25 individuals). Above each
graph, two examples are shown with their feature-
detecting cells and with the ratio of correct answer.

We can see that individuals have obtained the
suitable sets of feature-detecting cells. At the
early stage of generations, they obtained feature-
detecting cells with small receptive fields (1 or 2
points). The individuals tried to calculate the
number of black points because the correct pat-
tern is just one fixed pattern. As the reproduc-
tion advanced, each individual obtained a feature-
detecting cell sensitive to three adjacent points both
sides of which are black. With the cell it can rec-
ognize the horns and the ratio of correct answer
rose to 100%. The evolution did not completely
converge because mutations occurred. If we grad-

ually decrease the occurring probability of muta-
tions, it will converge. But it is not essential to the
evolution. It is also seen that the individuals with
feature-detecting cells at the left side of the graph
(frequency is high) have high ratio of correct an-
swer. The feature-detecting cells at the right side
of the graph (frequency is low) come in and go out
of the system by mutations through generations.

4.2. Example 2

See Fig.6. We let the individual learning machines
try to distinguish hollow rectangles (for example,
the upper row in the figure) from the other pat-
terns (the lower row). In this example, we assume
that a generation includes 10 individuals and that
there are 50 patterns containing 10 correct patterns
and 40 incorrect ones. The results shown in Fig.7
are given by summing up the individuals of every
10 generations. Other parameters are the same as
Example 1. In this case correct patterns form a
category, so the task is more difficult than Example
1. The individuals obtained more feature-detecting
cells.

5. Conclusions

Evolutionary algorithm was applied to Perceptron-
like machines. Although the algorithm is very sim-
ple, it is flexible. The machine automatically got a
set of cells with suitable number and functions.

Evolutionary computation needs much comput-
ing time and it does not converge because mutations
occur. That means evolutionary system is always
dynamic and can adapt to the change of the circum-
stance. We believe that the essential mechanism of
evolution was shown in our trials. Through this
kind of trials, we are trying to elucidate evolution-
ary systein.

We express our hearty thanks to Katsumi KON-
ISHI, Hiroki YOKOYAMA and Shingo UCHI-
HASHTI for their assistance.

References

[1] M. Minsky and S. Papert, Perceptrons, FEu-
panded Editron. MIT Press, 1988.

[2] K. Nakano, S. Uchihashi, N. Umemoto, and
H. Nakagama, “An approach to evolutional sys-
tem,” in ICEC’94, pp. 781-786, 1994.

[3] F. Rosenblatt, Principles of Neurodynamics,
perceptrons and the theory of brain mechanisms.
Spartan, 1961.

[4] D. E. Rumelhart, G. E. Hinton, and R. J.
Williams, “Learning representations by back-
propagating errors,” Nature, vol. 323, pp. 533
536, 1986.

T
N the correct patterns
N oo : the machines should answer 1 for these.
] [TT 1T
| N theincorrect patterns
| ©® 6 : the machines should answer 0 for these.
[] [T 11

Fig. 6 The given task in example 2. (Discriminating “hollow rectangles” from the other patterns.)

total number
outcl)gol-OOmdlwduaJs 70% mOo M G| oo

50fF

-

000 COORE 00 00O

1~10th generation 11~20th generation

threshold weights after
.03 -« after learning learning

-42 .10 .50 .30 -1.06 -.02 .22 </

(w0 Bm g B oo
['DHEH:EF]WO% [luﬂmljﬂjﬂjleFJm%

100¢

50fF

-9@®O@®G@0®"- 0060000V OOCOME

21~30th generation 31~40th generation
(10individualsarein a generation.)

Fig. 7 The results of example 2.

