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1. INTRODUCTION

Turbo[2] and LDPC (Low-Density Parity Check) codeq[3,
6] are simple and new type of error correction codes which
give a powerful and practical performance of error correc-
tion. Although experimental results show their efficacy, fur-
ther theoretical analysis is necessary, which is not straight-
forward. We have built unified framework of turbo and
L DPC codes based on information geometry[1]. Theframe-
work helpsour intuitive understanding of the codes and opens
anew prospect of further analysis. We have reveded some
properties of these codesin the proposed framework[4]. This
paper summarizes the results.

2. INFERENCE PROBLEM AND INFORMATION
GEOMETRICAL FRAMEWORK

2.1. Unified View

First, we give the unified view of turbo and LDPC codes.
Let x € {—1,+1}", and the ultimate goal of both of the
codes are to compute n, = > q(x) where ¢(x) is the
distribution of = = (z1,--- ,xx)?, defined as

q(x) = Cexpleo(x) + c1(x) + - - - + cn(x)],

here, co(x) consists of linear term of {z;}, and ¢, (x) in-
cludes higher order terms of {z;}. We restrict ourselves to
the case x; is binary, but generalization to multiple symbols
is easy[5]. The forms of ¢,.(x) are different in each code.
The direct computation of n, is not tractable, and both of
the codes utilizes the following distributions

po(x; 0%) =expleo(x) + & -+ -+ & - @ — o(6")]
p1(x; €7) =expleo(x) + (@) + - + &L - @ —1(¢7)]

pr(z; () =expleo(x) + &1 -+ +cr(x) — Yr(Cr)]
po isafactorizable distributions, and if we can choose pg to
be equal to [, ¢(x;), thenno = > xpo(x; 0) = ng, and
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the exact decoding is possible. But generally, both codes
only gives an approximation. In the following two subsec-
tions, we show that turbo and LDPC codes are formulated
in this framework.

2.2. Turbo Codes

Turbo Decoder

Turbo Encoder

Fig. 1. Turbo codes

Letz € {—1,+1}" betheinformation bits, fromwhich
the turbo encoder generates two sets of parity bits, y; =

(y11,- - 7y1L)T, and yo = (Y21, - 7y2L)T: Y1j5,Y25 €
{-1,+1} (Fig.1). Each parity bit is expressed in the form
[Lice,, @i (r = 1,2), where £,; C {1,---,N}. The
codeword (x,y1,y2) is transmitted over a noisy channel,
which we assume a BSC (binary symmetric channel) with
flipping probability o < 1/2,and (&, g1, G2), i, J1;, Jo; €
{—1,+1} arereceived.
Let usconsider theform of thedistribution p(x| &, 91, ¥2)-

From the assumption of the memoryless channel,

(&, Y1, Y2|x) = CexplBT - x + BY1 - y1 + Y2 - Y2
1
o= 5(17 tanh (),
where ‘-’ denotes the inner-product. By assuming the uni-
form prior on x, the posterior becomes
p(:ia glagZ‘m)
Zw p(:ia gh :’}2‘33)

= Cexp[fZ -+ Y1 - y1 + LY2 - Y2]
= Cexpleg(x) + c1(x) + ca(x)].

p(m‘iﬂglvg2) = (1)

C' is the normalizing factor, and co(xz) = &z, ¢ (x) =
BYr-yr, (r = 1,2). The MPM decoding is to compute the



signsof n; (i =1,---, N) defined as

n= (7717 to aTIN)T = mep(w|"iaglag2)

The direct computation of 7 isintractable. Turbo codes uti-
lize two decoders. Each of them gives the soft decoding
based on one of the two sets of the parity bits. For the soft
decoding, the following p,.(x; &) (r = 1,2) isused.

pr(x; &) = expleo(x) +or(x) + & - — ¥ (&)], (D)
& e RN, Y. (&) =Y expleo(x) + o (x) + &, - 2]

Thisdistribution is derived from p(&, g,-|«) and the prior of
x which has the form of

w(@; &) = expl€ -z —v(E)], »(&) =2 ;¥(&)
Thefinal decoding is obtained as sgn(ng), where

Mo = 2. 2po(x;6)

po(x;0) = expleo(x) + 0 - — p(0)], 0 € RN,
2.3. LDPC Codes
Encode Decode

sl or Ll BSC(o) |l H

Fig. 2. Structure of LDPC codes.

The structure of LDPC codes is shown in Fig.2. s =
(s1,--,sm)T, s; € {0,1}, is the information bits. The
parity check matrix is

H = {hy;} = (C1 Cz), H € {01}V,

Cy € {0,1}%M and Cy € {0, 1}5*K are sparse and O
is invertible in mod 2. The code uw = (uy,---,un)? is
generated with GT' € {0, 1}V >*M as

u=G%s, GT= <CL_?{”01> mod 2,
2

where E;; is an identity matrix of size M. The first M
bits of u areidentical to s, and w is sent through a channel.
We assume a BSC with bit-error rate 0. Codeword w is
disturbed and received as @. Let & = (z1,--- ,an)7, z; €
{0, 1} bethe noise vector, and received codeword @ is

w=u+x mod2.

In the decoding, noise vector x is estimated, which yields
an estimate of s. In the decoding process, H is used. Syn-
dromevector y = (y1,--- ,yx)’ isdefined as

g=Hua=HG"s + Hx = Hx = y(z) mod 2.

The decoding isto infer x that satisfies g = y(x).
Inthefollowings, wetreat s, u, @, g, and « in the bipo-

lar ({—1,+1}) formwhile G and H aretill in the binary

form. Each y,. of y(x) iswritten asamonomial in x:

[ee, s Lo =47 |y =1}
We consider the distribution of g conditioned on x
p(glx) =explpy - y(x) — Kip(p)]
=expler(x) + - + cx(x) —
cr(x) =pyryr(z), pER, p>0,

y7(33) =

Ky(p)l, (3

where a positive number p is introduced. We discuss the
“soft constraint” whichinfersx basedonp(g|x). TheLDPC
decoding algorithm generaly usesthe“hard constraint” ¢ =
y(x). But as p becomes larger, both becomes equival ent.

The noise x is bitwise independent, and its error rate is
o = (1/2)(1 — tanh 8). Let wo(z) be defined as follows

wo(z) =exp[B1n - & — N1p(3)] = explco(z) — Ny(B)]
co(x) =P1y - .
As aresult, the posterior distribution becomes
p(x|g) =Cexplco(x) + c1(x) + - -+ + cx (x)].

The goal of the LDPC codesis also the MPM decoding, that
istocomputen = > xp(x|y).

Inthe LDPC decoding, p,-(x;¢,) (r =1, -- -, K), which
iscomposed of p(g,-|x) and prior w(x; ¢,-) isused. We have

p(r|x) =exple,(z) — Y(B)],

w(z; ¢r) =expl(B1n + ) - @ —P(Bin + ()l
pr(m Cr) eXp[Co( ) + C'r( ) +G T — wr(Cr)L
Pr(Cr) =In Y-, expleo(®) + () + ¢ - 2], ¢ € RY.

Now, we have shown that both of the codes are summarized
with the unified view.

3. INFORMATION GEOMETRICAL VIEW

3.1. Preéiminariesof Information Geometry

Let usfirst define the family of distributions S.

$ ={p(@:6,v) = expleo (@) + 6.2 + v-c(z) — (6, V)],
aeé)%”,veé)%L}, (4



here® = (61, -+ ,0,)7, v = (v1,--- ,vp)7, and e(z) =
(ci(zx), -+ ,cr(x))T. S is an exponentia family, where
(6,v) is the natural parameter. Next, let us define a sub-
manifold My C S as

Moy = {po(w;e) = exp[co(@) + 6@ — 1o (0

Each component is independent for the distributions of M
and [T\, q(z;) € My. Thereexistsa#, st., po(z;0) =
[T, g(x;). We define the e— and m—flat submanifolds.

e—flat submanifold: Submanifold M CS iseflat, if r(x;t)
belongsto M for al ¢t € [0, 1], g(x), p(x) € M.

Inr(x;t) = (1 —t)Ing(x) +t Inp(x) + c(t),

m~flat submanifold: Submanifold M C.S ism—flatif r(x;t)
belongsto M for al ¢ € [0, 1], q(x), p(xz) € M.
r(x;t) = (1 —t)q(x) + tp(x).
Fromitsdefinition, M ise—flat. Next, we definem—projection
to an e—flat submanifold.

Definition 1. Let M be an e—flat submanifold in .S, and let
g(x) € S. The distribution in M that minimizes the KL-
divergence from ¢(x) to M is denoted by

IInroq(x) = argmin Dlq(x); p(x)], ©)
p(x)eM

and is called the m~—projection of ¢(x) to M.
Dig; p] isthe Kullback-Leibler divergence defined as

Zr n (m)
Dlg():p(a)] = S ale)n .

Finaly, the m—projection theorem follows.

Theorem 1. Let M be an e-flat submanifold in S and let
q(x) € S. Il roq(x) is unique.

Now, we show that marginalization of ¢(x) isequivalent
to m—projection from ¢(x) to M. Let 8* be the naturd
parameter of M which corresponds to the m—projection of
q(x) to My. From eqg. (5),

po(x;0%) = I, o q(x),

o+ Lt T, © q(xT) = arg;ninD[q(ac);po(ac; 0)].

)| 6en.

Take the derivative of D[q(x); po(x; )] with respect to 6,
and we have

> 2q(x) — Oo1po (6%) = 0. (6)
We have the following relation
0o (0) = OgIn__ explco(x) +0-x] =) xpo(x;0).
Now, we define 1o (0) as the expectation parameter of M,
M0(0) = >_, xpo(x; ) = 0e1)0(0).

Since 6 and )y has one-to-one relation, the m—projection
from ¢(x) to M, is equivdent to margindization of ¢(x).

3.2. Decoding Algorithms

Let us define the following submanifolds

M, = {pr(@:¢) | ¢ € R},

pr(z;¢) = expleo(x) + e (x) + ¢ @
(rert, r=1,--- L.

- %-(Cr)],

pr(x;¢,) 1S an exponential family which includes ¢, (x).
Its natural and expectation parameters are ¢, and n,-(¢-),
respectively, and defined as follows

n-(¢r) = a@»ﬂ’?‘(CT) = Zm zpr(x; ¢r),

Computation of 7,-(¢,) and 7y, o p,-(x; ;) is possible for
every ¢, € R". Usingpo(x; 0') andp,(z;¢f)r = 1,--- , L,
we can rewrite the decoding algorithms as follows[4],

r=1,---,L.

Decoding algorithms
1 Set¢l =0, =0,7=1,---,L.
2. Increaset by 1 and update ¢! asfollows
& = maopr(w;¢F) - ¢ )

3. Update 0'*! and ¢! asfollows

D DL AN P glciss

r’#r T r
4. Repeat 2 and 3 until the convergence.

In turbo codes, L = 2 and step 2 updates one of {&1, &2}
iteratively, while in LDPC codes, L islarge dl of {&,} are
updated simultaneoudly. In the following, we denote the
parameters at the convergent as 0*, {¢’}, and {&*}. Note
that 0! = ¢! + &L holds throughout the algorithm.

3.3. Equilibrium

Theorem 2. [4] The equilibrium (6*, {{;}) satisfies

m~condition: 0* =y, o p,(x; ().
oL ok 1 L s
e—condition: 6* = HZT:l ¢
From eq. (7) and 8* = (! + &, it is clear that m—

condition is satisfied, and e—condition is clear from step 3.
Next, we define two submanifolds M * and £* in S.

- {p(w)‘ pr(w) = Z$p0(33§9*) = 770(9*)}7

B = {p(@)=2( Hpr e |3 ~1},
=0

poa;O



M* and E* are an m—flat and an e—flat submanifolds, re-
spectively. From the definition, M * includes p (x; 8*), and
E* includes po(x;0*) and p,-(x; ), r = 1,--- , L. Now,
2 conditions are redefined as follows,

m~—condition: M* includesp, (x;¢}),r=1,---, L.
e—condition: E* includes g(x).

The m—condition is easily checked and e—condition is also
checked by Settlng to = 7(L — ].), t1=---=tr =1.

At the equilibrium, e— and m~—conditions are satisfied.
If g(x) isincluded in M *, the decoding result is exact, but
q(x) isonly included in E*, and M * differsfrom E*.

3.4. Perturbation Analysis

We have analyzed the accuracy of these decoding algorithms
based on the perturbation analysig[4]. In the following dis-
cussion, we use p(x; 0, v) in eq. (4). From the definition,
po(x; 0), pr(x; ¢r), and g(x) € S. The partial expectation
parameter is

1n(0,v) = 0g?p(0,v) = xp(x;0,v).

We now restrict p(z; 0, v) to belong to M *. In other words,
we set the parameters to satisfy the following equation

n(av U) - 71(9*, 0) - 77(9*)

Under the constraint, 6 is a function of v, as 6(v). We

analyze how 6 changes from 6*, asv movesfromoto1y.
In the perturbation analysis based on the second order

expansion, we used the following two equations.

_d ~ 0nod  On
0= 2510 = 5050 + 5v-
d2
0=——-mn(6,v)
L Pn 96 9Pm 9006 dn 9°6 _ o'n
T T000v0v 0000 Hv dv 90 Bvdv  dvdv’
which yields
o8 1, %6 ,
0(v)=0 T ovlo—o"T2Y Fvow v:ov+0(‘|v” )

~6 oo (0" )0~ 50" Iy (6% (Bn(0"))v. (8

Here, Goo = I '(8)Goy(0) and B = & — Ggo(6*) 5.
For simplicity, we denote the (r, s) component of B? as
B,s = B,Bs. Here, even if (d?/dvdv)n(6*) = o holds,
generally B%n(0*) # o.

So far, we have only considered the m—condition. Now,
we move to the e—condition. The condition is

0 = -3¢ —0%).

Since ¢ = 6(e,), €q. (8) gives
* * 2 * 1 _ * *
¢ —0" = —Gou(0")e, — 510 (6 )Brrm(07)
~ 1 _ * *
0" ~Gou(07)11 + 513 L )Z:Bm.n(e ). (9)
Now we have the following approximation

- 1
0(1L) — 6" ~ —Ggy(6*)1L — 5I(;l(@*) > Brn(6).

1 .
6(xr) ~ —3 1y (6%) X, 4. Bram(67). (10)
Thisyields the following theorem

Theorem 3. Let the expectation of « w.rt g(x) be n, =
n(o, 11,). And we have the following approximation,

* 1 *
ng ~ (") + 3 Zr;ﬁs B.sn(67).

When every c,.(x) is a monomia of {z;}, we further
have the following result.

Theorem 4. [7] When any pair ¢,.(x) and ¢, (x), does not
have more than one common z;, -, .. Brsn(6*)/2=0.

4. CONCLUSION

We have shown our information geometrical framework of
turbo and LDPC codes. Base on the framework, we have
shown the perturbation analysis result. We also have stud-
ied the local convergence properties and analysis of related
algorithmsin [4, 5].

5. REFERENCES

[1] S. Amari and H. Nagaoka. Methods of Information Geometry.
AMS and Oxford University Press, 2000.

[2] C.Berrou, A. Glavieux, and P. Thitimgjshima. Near Shannon
limit error-correcting coding and decoding: Turbo-codes. In
Proc. IEEE Int. Conf. on Commun., pages 1064—1070, 1993.

[3] R. G. Gallager. Low density parity check codes. IRE Trans.
Inform. Theory, 1T-8:21-28, 1962.

[4] S. lkeda, T. Tanaka, and S. Amari. Information geometry of
turbo and low-density parity-check codes. IEEE Trans. In-
form. Theory, 50(6):1097-1114, 2004.

[5] S. Ikeda, T. Tanaka, and S. Amari. Stochastic reasoning,
free energy, and information geometry. Neural Computation,
16(9):1779-1810, 2004.

[6] D.J. C.MacKay. Good error-correcting codes based on very
sparse matrices. |IEEE Trans. Inform. Theory, 45(2):399-431,
March 1999.

[7] T. Tanaka, S. Ikeda, and S. Amari. Information-geometrical
significance of sparsity in Gallager codes. In T. G. Dietterich,
S. Becker, and Z. Ghahramani, editors, NIPS 14, pp. 527-534.
MIT Press, 2002.



