
INFORMATION GEOMETRY OF TURBO AND LDPC CODES

Shiro Ikeda

Institute of Statistical Mathematics
4-6-7 Minami-Azabu, Minato-ku, Tokyo, 106-8569, Japan

1. INTRODUCTION

Turbo[2] and LDPC (Low-Density Parity Check) codes[3,
6] are simple and new type of error correction codes which
give a powerful and practical performance of error correc-
tion. Although experimental results show their efficacy, fur-
ther theoretical analysis is necessary, which is not straight-
forward. We have built unified framework of turbo and
LDPC codes based on information geometry[1]. The frame-
work helps our intuitive understanding of the codes and opens
a new prospect of further analysis. We have revealed some
properties of these codes in the proposed framework[4]. This
paper summarizes the results.

2. INFERENCE PROBLEM AND INFORMATION
GEOMETRICAL FRAMEWORK

2.1. Unified View

First, we give the unified view of turbo and LDPC codes.
Let x ∈ {−1, +1}N , and the ultimate goal of both of the
codes are to compute ηq =

∑
x q(x) where q(x) is the

distribution of x = (x1, · · · , xN )T , defined as

q(x) = C exp[c0(x) + c1(x) + · · · + cL(x)],

here, c0(x) consists of linear term of {xi}, and cr(x) in-
cludes higher order terms of {xi}. We restrict ourselves to
the case xi is binary, but generalization to multiple symbols
is easy[5]. The forms of cr(x) are different in each code.
The direct computation of ηq is not tractable, and both of
the codes utilizes the following distributions

p0(x; θ∗) = exp[c0(x) + ξ∗
1 · x + · · · + ξ∗

L · x − ψ0(θ∗)]
p1(x; ζ∗

1 ) = exp[c0(x) + c1(x) + · · · + ξ∗
L · x − ψ1(ζ∗

1 )]
...

pL(x; ζ∗
r ) = exp[c0(x) + ξ∗

1 · x + · · · + cL(x) − ψL(ζ∗
L)].

p0 is a factorizable distributions, and if we can choose p0 to
be equal to

∏
i q(xi), then η0 =

∑
x xp0(x; θ) = ηq , and
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the exact decoding is possible. But generally, both codes
only gives an approximation. In the following two subsec-
tions, we show that turbo and LDPC codes are formulated
in this framework.

2.2. Turbo Codes
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Fig. 1. Turbo codes

Let x ∈ {−1, +1}N be the information bits, from which
the turbo encoder generates two sets of parity bits, y1 =
(y11, · · · , y1L)T , and y2 = (y21, · · · , y2L)T , y1j, y2j ∈
{−1, +1} (Fig.1). Each parity bit is expressed in the form∏

i∈Lrj
xi, (r = 1, 2), where Lrj ⊂ {1, · · · , N}. The

codeword (x, y1, y2) is transmitted over a noisy channel,
which we assume a BSC (binary symmetric channel) with
flipping probability σ < 1/2, and (x̃, ỹ1, ỹ2), x̃i, ỹ1j , ỹ2j ∈
{−1, +1} are received.

Let us consider the form of the distribution p(x|x̃, ỹ1, ỹ2).
From the assumption of the memoryless channel,

p(x̃, ỹ1, ỹ2|x) = C exp[βx̃ · x + βỹ1 · y1 + βỹ2 · y2]

σ =
1
2
(1− tanh β),

where ‘·’ denotes the inner-product. By assuming the uni-
form prior on x, the posterior becomes

p(x|x̃, ỹ1, ỹ2) =
p(x̃, ỹ1, ỹ2|x)∑
x p(x̃, ỹ1, ỹ2|x)

(1)

= C exp[βx̃ · x + βỹ1 · y1 + βỹ2 · y2]
= C exp[c0(x) + c1(x) + c2(x)].

C is the normalizing factor, and c0(x) = βx̃·x, cr(x) =
βỹr ·yr, (r = 1, 2). The MPM decoding is to compute the



signs of ηi (i = 1, · · · , N) defined as

η = (η1, · · · , ηN )T =
∑

xxp(x|x̃, ỹ1, ỹ2).

The direct computation of η is intractable. Turbo codes uti-
lize two decoders. Each of them gives the soft decoding
based on one of the two sets of the parity bits. For the soft
decoding, the following pr(x; ξ) (r = 1, 2) is used.

pr(x; ξr) = exp[c0(x) + cr(x) + ξr · x − ψr(ξr)], (2)

ξr ∈ �N , ψr(ξr) = ln
∑

x exp[c0(x) + cr(x) + ξr · x].

This distribution is derived from p(x̃, ỹr|x) and the prior of
x which has the form of

ω(x; ξ) = exp[ξ · x − ψ(ξ)], ψ(ξ) =
∑

iψ(ξi).

The final decoding is obtained as sgn(η0), where

η0 =
∑

xxp0(x; θ)

p0(x; θ) = exp[c0(x) + θ · x − ψ0(θ)], θ ∈ �N .

2.3. LDPC Codes
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Fig. 2. Structure of LDPC codes.

The structure of LDPC codes is shown in Fig.2. s =
(s1, · · · , sM )T , si ∈ {0, 1}, is the information bits. The
parity check matrix is

H = {hij} = (C1 C2), H ∈ {0, 1}K×N .

C1 ∈ {0, 1}K×M and C2 ∈ {0, 1}K×K are sparse and C2

is invertible in mod 2. The code u = (u1, · · · , uN )T is
generated with GT ∈ {0, 1}N×M as

u = GT s, GT =
(

EM

C−1
2 C1

)
mod 2,

where EM is an identity matrix of size M . The first M
bits of u are identical to s, and u is sent through a channel.
We assume a BSC with bit-error rate σ. Codeword u is
disturbed and received as ũ. Let x = (x1, · · · , xN )T , xi ∈
{0, 1} be the noise vector, and received codeword ũ is

ũ = u + x mod 2.

In the decoding, noise vector x is estimated, which yields
an estimate of s. In the decoding process, H is used. Syn-
drome vector y = (y1, · · · , yK)T is defined as

ỹ = Hũ = HGT s + Hx = Hx = y(x) mod 2.

The decoding is to infer x that satisfies ỹ = y(x).
In the followings, we treat s, u, ũ, ỹ, and x in the bipo-

lar ({−1, +1}) form while GT and H are still in the binary
form. Each yr of y(x) is written as a monomial in x:

yr(x) =
∏

j∈Lr
xj , Lr = {j | hjr = 1}.

We consider the distribution of ỹ conditioned on x

p(ỹ|x) = exp[ρỹ · y(x) − Kψ(ρ)]
= exp[c1(x) + · · · + cK(x) − Kψ(ρ)], (3)

cr(x) =ρỹryr(x), ρ ∈ �, ρ > 0,

where a positive number ρ is introduced. We discuss the
“soft constraint” which infers x based on p(ỹ|x). The LDPC
decoding algorithm generally uses the “hard constraint” ỹ =
y(x). But as ρ becomes larger, both becomes equivalent.

The noise x is bitwise independent, and its error rate is
σ = (1/2)(1 − tanh β). Let ω0(x) be defined as follows

ω0(x) = exp[β1N · x − Nψ(β)] = exp[c0(x) − Nψ(β)]
c0(x) =β1N · x.

As a result, the posterior distribution becomes

p(x|ỹ) =C exp[c0(x) + c1(x) + · · · + cK(x)].

The goal of the LDPC codes is also the MPM decoding, that
is to compute η =

∑
x xp(x|ỹ).

In the LDPC decoding, pr(x; ζr) (r = 1, · · · , K), which
is composed of p(ỹr|x) and prior ω(x; ζr) is used. We have

p(ỹr|x) = exp[cr(x) − ψ(β)],
ω(x; ζr) = exp[(β1N + ζr) · x − ψ(β1N + ζr)],
pr(x; ζr) = exp[c0(x) + cr(x) + ζr · x − ψr(ζr)],

ψr(ζr) = ln
∑

x exp[c0(x) + cr(x) + ζr · x], ζr ∈ �N .

Now, we have shown that both of the codes are summarized
with the unified view.

3. INFORMATION GEOMETRICAL VIEW

3.1. Preliminaries of Information Geometry

Let us first define the family of distributions S.

S =
{
p(x; θ, v) = exp[c0(x) + θ·x + v·c(x) − ψ(θ, v)],

θ ∈ �n, v ∈ �L
}
, (4)



here θ = (θ1, · · · , θn)T , v = (v1, · · · , vL)T , and c(x) =
(c1(x), · · · , cL(x))T . S is an exponential family, where
(θ, v) is the natural parameter. Next, let us define a sub-
manifold M0 ⊂ S as

M0 =
{

p0(x; θ) = exp[c0(x)+θ ·x−ψ0(θ)]
∣∣ θ ∈ �n

}
.

Each component is independent for the distributions of M 0

and
∏n

i=1 q(xi) ∈ M0. There exists a θ, s.t., p0(x; θ) =∏n
i=1 q(xi). We define the e– and m–flat submanifolds.

e–flat submanifold: Submanifold M⊂S is e–flat, if r(x; t)
belongs to M for all t ∈ [0, 1], q(x), p(x) ∈ M .

ln r(x; t) = (1 − t) ln q(x) + t ln p(x) + c(t),

m–flat submanifold: Submanifold M⊂S is m–flat if r(x; t)
belongs to M for all t ∈ [0, 1], q(x), p(x) ∈ M .

r(x; t) = (1 − t)q(x) + tp(x).

From its definition, M0 is e–flat. Next, we define m–projection
to an e–flat submanifold.

Definition 1. Let M be an e–flat submanifold in S, and let
q(x) ∈ S. The distribution in M that minimizes the KL–
divergence from q(x) to M is denoted by

ΠM◦q(x) = argmin
p(x)∈M

D[q(x); p(x)], (5)

and is called the m–projection of q(x) to M .

D[q; p] is the Kullback-Leibler divergence defined as

D[q(x); p(x)] =
∑

x q(x) ln
q(x)
p(x)

.

Finally, the m–projection theorem follows.

Theorem 1. Let M be an e–flat submanifold in S and let
q(x) ∈ S. ΠM◦q(x) is unique.

Now, we show that marginalization of q(x) is equivalent
to m–projection from q(x) to M0. Let θ∗ be the natural
parameter of M0 which corresponds to the m–projection of
q(x) to M0. From eq. (5),

p0(x; θ∗) = ΠM0 ◦ q(x),

θ∗ def= πM0 ◦ q(x) = argmin
θ

D[q(x); p0(x; θ)].

Take the derivative of D[q(x); p0(x; θ)] with respect to θ,
and we have ∑

x xq(x) − ∂θψ0(θ∗) = 0. (6)

We have the following relation

∂θψ0(θ) = ∂θ ln
∑

x exp[c0(x) + θ ·x] =
∑

x xp0(x; θ).

Now, we define η0(θ) as the expectation parameter of M0,

η0(θ) =
∑

x xp0(x; θ) = ∂θψ0(θ).

Since θ and η0 has one-to-one relation, the m–projection
from q(x) to M0 is equivalent to marginalization of q(x).

3.2. Decoding Algorithms

Let us define the following submanifolds

Mr =
{

pr(x; ζr)
∣∣ ζr ∈ �n

}
,

pr(x; ζr) = exp[c0(x) + cr(x) + ζr · x − ψr(ζr)],
ζr ∈ �n, r = 1, · · · , L.

pr(x; ζr) is an exponential family which includes cr(x).
Its natural and expectation parameters are ζr and ηr(ζr),
respectively, and defined as follows

ηr(ζr) = ∂ζrψr(ζr) =
∑

x xpr(x; ζr), r = 1, · · · , L.

Computation of ηr(ζr) and πM0 ◦ pr(x; ζr) is possible for
every ζr ∈ �n. Using p0(x; θt) and pr(x; ζt

r) r = 1, · · · , L,
we can rewrite the decoding algorithms as follows[4],

Decoding algorithms

1. Set ξt
r = 0, ζt

r = 0, r = 1, · · · , L.

2. Increase t by 1 and update ξ t+1
r as follows

ξt+1
r = πM0◦pr(x; ζt

r) − ζt
r. (7)

3. Update θt+1 and ζt+1
r as follows

ζt+1
r =

∑
r′ �=r

ξt+1
r′ , θt+1=

∑
r

ξt+1
r =

1
L − 1

∑
r

ζt+1
r .

4. Repeat 2 and 3 until the convergence.

In turbo codes, L = 2 and step 2 updates one of {ξ1, ξ2}
iteratively, while in LDPC codes, L is large all of {ξr} are
updated simultaneously. In the following, we denote the
parameters at the convergent as θ∗, {ζ∗

r}, and {ξ∗
r}. Note

that θt = ζt
r + ξt

r holds throughout the algorithm.

3.3. Equilibrium

Theorem 2. [4] The equilibrium (θ∗, {ζ∗
r}) satisfies

m–condition: θ∗ = πM0 ◦ pr(x; ζ∗
r ).

e–condition: θ∗ =
1

L − 1
∑L

r=1 ζ∗
r .

From eq. (7) and θ∗ = ζ∗
r + ξ∗

r , it is clear that m–
condition is satisfied, and e–condition is clear from step 3.
Next, we define two submanifolds M ∗ and E∗ in S.

M∗ =
{
p(x)

∣∣∣ ∑
x

xp(x) =
∑

x

xp0(x; θ∗) = η0(θ∗)
}
,

E∗ =
{
p(x)=Z(t)p0(x; θ∗)t0

L∏
r=1

pr(x; ζ∗
r )tr

∣∣∣
L∑

r=0

tr=1
}
,



M∗ and E∗ are an m–flat and an e–flat submanifolds, re-
spectively. From the definition, M ∗ includes p0(x; θ∗), and
E∗ includes p0(x; θ∗) and pr(x; ζ∗

r ), r = 1, · · · , L. Now,
2 conditions are redefined as follows,

m–condition: M ∗ includes pr(x; ζ∗
r ), r = 1, · · · , L.

e–condition: E∗ includes q(x).

The m–condition is easily checked and e–condition is also
checked by setting t0 = −(L − 1), t1 = · · · = tL = 1.

At the equilibrium, e– and m–conditions are satisfied.
If q(x) is included in M ∗, the decoding result is exact, but
q(x) is only included in E∗, and M ∗ differs from E∗.

3.4. Perturbation Analysis

We have analyzed the accuracy of these decoding algorithms
based on the perturbation analysis[4]. In the following dis-
cussion, we use p(x; θ, v) in eq. (4). From the definition,
p0(x; θ), pr(x; ζr), and q(x) ∈ S. The partial expectation
parameter is

η(θ, v) = ∂θψ(θ, v) =
∑

x xp(x; θ, v).

We now restrict p(x; θ, v) to belong to M ∗. In other words,
we set the parameters to satisfy the following equation

η(θ, v) = η(θ∗, 0) = η(θ∗).

Under the constraint, θ is a function of v, as θ(v). We
analyze how θ changes from θ∗, as v moves from 0 to 1L.

In the perturbation analysis based on the second order
expansion, we used the following two equations.

0 =
d

dv
η(θ, v) =

∂η

∂θ

∂θ

∂v
+

∂η

∂v
.

0 =
d2

dvdv
η(θ, v)

= 2
∂2η

∂θ∂v

∂θ

∂v
+

∂2η

∂θ∂θ

∂θ

∂v

∂θ

∂v
+

∂η

∂θ

∂2θ

∂v∂v
+

∂2η

∂v∂v
,

which yields

θ(v)=θ∗+
∂θ

∂v

∣∣∣
v=0

v+
1
2
vT ∂2θ

∂v∂v

∣∣∣
v=0

v + o(||v||3)

�θ∗−G̃θv(θ∗)v−1
2
vT I−1

0 (θ∗)(B2η(θ∗))v. (8)

Here, G̃θv = I−1
0 (θ)Gθv(θ) and B = ∂

∂v − G̃θv(θ∗) ∂
∂θ .

For simplicity, we denote the (r, s) component of B 2 as
Brs = BrBs. Here, even if (d2/dvdv)η(θ∗) = 0 holds,
generally B2η(θ∗) �= 0.

So far, we have only considered the m–condition. Now,
we move to the e–condition. The condition is

θ∗ = −∑L
r=1(ζ

∗
r − θ∗).

Since ζ∗
r = θ(er), eq. (8) gives

ζ∗
r − θ∗ ≈− G̃θv(θ∗)er − 1

2
I−1
0 (θ∗)Brrη(θ∗)

θ∗ ≈G̃θv(θ∗)1L +
1
2
I−1
0 (θ∗)

∑
r

Brrη(θ∗). (9)

Now we have the following approximation

θ(1L) − θ∗ ≈ −G̃θv(θ∗)1L − 1
2
I−1
0 (θ∗)

∑
rs

Brsη(θ∗).

θ(1L) ≈ −1
2
I−1
0 (θ∗)

∑
r �=s Brsη(θ∗). (10)

This yields the following theorem

Theorem 3. Let the expectation of x w.r.t q(x) be ηq =
η(0, 1L). And we have the following approximation,

ηq ≈ η(θ∗) +
1
2

∑
r �=s Brsη(θ∗).

When every cr(x) is a monomial of {xi}, we further
have the following result.

Theorem 4. [7] When any pair cr(x) and cr′(x), does not
have more than one common xi,

∑
r �=s Brsη(θ∗)/2=0.

4. CONCLUSION

We have shown our information geometrical framework of
turbo and LDPC codes. Base on the framework, we have
shown the perturbation analysis result. We also have stud-
ied the local convergence properties and analysis of related
algorithms in [4, 5].
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