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Abstract—The channel conditions vary over time in wireless
communications. In order to transmit information efficiently,
digital wireless communication systems choose the modulation
scheme and coding adaptively. This framework is called the
adaptive modulation and coding (AMC). The key problem of
the framework is how to design the switching strategy. In this
paper, we discuss the practical strategy for AMC by comparing
the channel capacity, achievable rates with common modulation
schemes, and the actual rates with AMC. The channel capacity
is defined for a combination of the noisy channel and the
constraint on the information source. The noisy channel we
assume in this paper is the discrete-time complex-valued additive
white Gaussian noise channel (AWGNC). For the constraint, we
focus on the peak power instead of the average power since
a practical communication transmitter often suffers from the
peak power. We compare the capacity and achievable rates with
practical modulation schemes. Furthermore, we simulate AMC
and evaluate the actual rates numerically.

I. INTRODUCTION

In digital wireless communication systems, it is important
to use appropriate modulation scheme and coding in order to
transmit information efficiently. The conditions of a wireless
communication channel change over time and a single set of
modulation scheme and coding may not be efficient for all
the conditions. In order to realize an efficient transmission,
adaptive modulation and coding (AMC) [1] is utilized, where
modulation scheme and coding are switched adaptively ac-
cording to the channel conditions. In this paper, we discuss
the switching scheme of AMC.

We first show the channel capacity. The channel capacity
is defined as the supremum of the mutual information between
input and output [2], where the supremum is taken under
a constraint on the input. In the following, the channel is
assumed to be a complex-valued additive white Gaussian noise
channel (AWGNC). For a band-limited channel, a well-known
result is the Shannon-Hartley theorem, that is, the capacity
W log(1 + SNR) (SNR: signal-to-noise ratio) for an AWGNC
with a bandwidth of W under the average power constraint
on the input. This is an important formula, found in almost
all textbooks on communication theory. However, a real-world
communication system suffers from limitations other than the
average power. From an engineering viewpoint, the peak power
constraint is important, because the power amplifier of a

communication system has an absolute peak power (amplitude)
limitation. We also note that power efficiency of an amplifier
largely depends on the peak value of the continuous-time
input signal [3]. Under the peak power constraint, the quantity
W log(1 + SNR) is no longer the capacity. Theoretically, the
channel capacity and the capacity achieving distribution (CAD)
for an AWGNC under the peak power constraint have been
studied [4], [5]. The CAD is proved to be discrete and the
channel capacity is computed numerically.

Although the CAD is discrete, they may not be identical
to the modulation scheme of digital communication systems.
Thus, the channel capacity is compared to the achievable
rates with typical modulation schemes, such as phase shift
keying (PSK), quadrature amplitude modulation (QAM) and
amplitude and phase shift keying (APSK). These modulation
schemes are typically used in AMC. Therefore, this numerical
simulation shows the practical bound for AMC. It is demon-
strated that if a modulation scheme is chosen properly, the
discrepancy between the capacity and the best achievable rate
is not large.

The achievable rates provide a useful guideline to choose
the best modulation scheme. After choosing the modulation
scheme, we need to choose the coding. In order to see how
close we can reach by choosing the coding, some numerical
results are shown. They show the rate of AMC can be fairly
close to the achievable rates if the coding is chosen properly.

From these comparisons, we reveal the fact that the best
achievable rates are surprisingly close to the capacity and the
rates with AMC can be close to the achievable rates. Our
results imply that a well-designed AMC can achieve a rate
which is very close to the capacity.

II. CAPACITY

The channel capacity is the upper bound of the transmission
rate. In this section, the capacity and the CADs of this com-
munication channel are shown under reasonable constraints on
the inputs are reviewed.

A. AWGNC and Peak Power Constraints

In this paper, we consider a discrete-time complex-valued
AWGNC, which is memoryless and having an isotropic inde-
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where XI and XQ denote in(I)- and quadrature(Q)-phase
input components, respectively.

In order to compute the capacity, a constraint on the
input must be defined. Although the average power constraint
is commonly assumed, we take the peak power constraint.
There are mainly two reasons. Firstly, for the single-carrier
transmitter, the average power consumption of the amplifier is
dominated by back-off [3], and it is therefore more reasonable
to compare different modulation schemes, in other words
signal constellations, by aligning their amplitudes in terms
not of their average power but of their peak power. Secondly,
the capacity log(1 + SNR) is achieved only by a Gaussian
input distribution whose support is unbounded. This cannot be
realized under peak power constraint.

There are two distinctive natural forms of peak power con-
straint for wireless digital communications systems, according
to different implementations of the transmitter front-end. Let
us assume that amplifiers of a system have equal peak power
bounds. If each of XI and XQ has an amplifier separately, a
natural form of peak power constraint is the component-wise
constraint X2

I , X
2
Q ≤ Emax/2. We call this the box constraint.

Another implementation is that the sum of the components is
amplified at once. The peak power constraint in this case is
formulated as X2

I +X2
Q ≤ Emax, which we call the circular

constraint.

Let pSNR = Emax/σ
2 denote the ratio of peak input power

to the noise variance, which we call peak SNR. Under the
peak power constraint, the capacity of the AWGNC defined in
eq. (1) must be smaller than log(1 + pSNR) for two reasons:
i) pSNR ≥ SNR holds and ii) the input distribution cannot be
Gaussian. It is known that the CAD for the AWGNC under
peak power constraint becomes discrete. This phenomenon was
first shown for a scalar AWGNC [4], and has been extended for
many channels with different constraints [5]–[8]. Using these
results, we numerically evaluate the capacity under each of the
box and circular constraints in the following subsections.

B. Box Constraint

Under the box constraint, the I- and Q-components of the
channel defined in eq.(1) suffer from independent Gaussian
channel noises as well as independent peak power constraints.
Accordingly, the channel is decomposed into two independent
real-valued AWGNCs under the respective peak power con-
straints X2

I ≤ Emax/2 and X2
Q ≤ Emax/2. The capacity of

the complex-valued AWGNC is thus attained by the direct
product of CADs of the two real-valued AWGNCs under peak
power constraint.

The capacity of a real-valued AWGNC under the peak
power constraint has been studied by Smith [4]. He has proved
that the capacity is achieved by a discrete input distribution
with a finite number of probability mass points. Although
no analytical solution is known for the capacity itself, nor
the CAD, one can evaluate them numerically via the method

described in [4] with Gauss-Hermite integration. Figure 1a
shows the positions of the probability mass points of the
CAD versus pSNR. The points are symmetrically positioned
around 0 and two points are always located at the boundaries
±
√
Emax/2. The number of the probability mass points of

the CAD is 2 for low enough pSNRs and increases as pSNR
becomes larger. It is in contrast with the case under average
power constraint, where the CAD is Gaussian and remains
essentially the same irrespective of noise level.
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(a) Locations of mass points of CADs for a real-
valued scalar AWGNC.
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(b) CAD for pSNR = 1.
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(c) CAD for pSNR = 16.
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(d) Capacity under box constraint.

Fig. 1. CADs and capacity for AWGNC under box constraint.

The CAD for the complex-valued AWGNC under the box
constraint is obtained by taking the direct product of the above
CADs. One immediate consequence from Fig. 1a is that QPSK
is the optimal modulation scheme for small enough pSNR
(Fig. 1b). For a larger pSNR, the CAD becomes similar to
nQAM, where n = m2 (m ≥ 2;m ∈ N) (Fig. 1c). Note that
probability masses of the points of a CAD are generally not
equal for m > 2. The capacity is computed numerically and
plotted in Fig. 1d.

C. Circular Constraint

The capacity and the joint distribution of XI and XQ which
achieves the capacity under the circular constraint have been
studied in [5]. The result is best described with the polar
coordinate. Reparameterizing XI and XQ with the radius r
and the phase ϕ, the CAD is uniform for ϕ and discrete with
a finite number of probability mass points for r. Consequently,
the CAD consists of concentric circles centered at the origin.
The number of the circles and their radii, as well as their
probability weights vary with pSNR. Analytical solution is
not available, however, one can compute the capacity and the
CAD numerically via the method described in [5] with Gauss-
Laguerre integration.
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(a) Locations of mass points of CADs in radial
coordinate under circular constraint.
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(b) CAD for pSNR = 1.
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(c) CAD for pSNR = 16.
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(d) Capacity under circle constraint.

Fig. 2. CADs and capacity for AWGNC under circular constraint.

Figure 2 shows the numerically computed CADs under the
circular constraint X2

I +X2
Q ≤ Emax. Figure 2a shows radial

positions of probability masses of the CADs. The number
of the radial points is 1 for small enough pSNRs, while it
increases as pSNR becomes larger. One of the points is always
located at the boundary r =

√
Emax. Accordingly, the CAD

is a single circle for a small pSNR (Fig. 2b) and multiple
concentric circles for a larger pSNR (Fig. 2c). The capacity
is computed numerically and plotted in Fig. 2d. It becomes
larger than that in Fig. 1d because the admissible region of
X2

I +X2
Q ≤ Emax is bigger than X2

I , X
2
Q ≤ Emax/2.

III. ACHIEVABLE RATES WITH WIDELY USED
CONSTELLATIONS

A list of modulation schemes are prepared in AMC, and
one of them is chosen from the list. Thus, the maximum of the
achievable rates with these modulation schemes will provide
the upper bound of the AMC. The achievable rates with typical
modulation schemes are compared to the capacity.

A. Box Constraint

Figure 3 shows the achievable rates with nQAMs and the
capacity under the box constraint. One can observe that each
of the achievable rates comes very close to the capacity around
intermediate pSNR values, and that the pSNR range in which
the achievable rate with nQAM comes close to the capacity
shifts rightwards as n increases. This observation is ascribed
to the fact that the nQAMs are similar in their shapes to the
CADs under the box constraint in the respective pSNR ranges.

The above results also indicate that appropriate switching
between nQAMs with different n will achieve rates that are
close to the capacity under the box constraint. For example,
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Fig. 3. Achievable rates with QPSK, 16QAM, and 64QAM compared with
capacity under box constraint.

among QPSK, 16QAM, and 64QAM, the best is QPSK for
pSNR smaller than 6, 16QAM for pSNR values between
6 and 35, and 64QAM for larger pSNR. From Fig. 3, the
degradation of the achievable rate with the above discrete
adaptive modulation from the capacity in terms of pSNR for
the rates 1, 2, and 3 are 0.0, 1.0, and 0.012 dB, respectively.

B. Circular Constraint

The achievable rates with different modulation schemes are
shown along with the capacity under the circular constraint
in Fig. 4. The achievable rate with QPSK is very close to
the capacity for small pSNRs. One also observes that 16PSK,
although not popular in current communications systems, has
the achievable rate closer to the capacity up to a moderate value
of pSNR. Increasing the number n of signal points in nPSK
makes the achievable rate closer to the capacity up to a yet
larger pSNR value, but the rate becomes falling off from the
capacity beyond that pSNR value (Fig. 4). Figure 2a explains
the reason. As the number n of nPSK increases, the input
distribution approaches a single circle, while the number of
the circles increases for the CAD.
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Fig. 4. Achievable rates with QPSK, 16PSK, and 16APSK compared with
capacity under circular constraint.

As is the case under the box constraint, one can expect
that a higher rate should be achievable by designing the input
distribution so as to make it similar to the CAD under the
circular constraint. The shapes of CADs under the circular con-
straint imply that amplitude and phase shift keying (APSK)-
type modulations work better than PSKs for a larger pSNR.
Use of APSK modulations under the circular constraint has
been studied in [9]. As an example, we consider in this paper



16APSK, where the 16 points are defined as follows,

(XI , XQ) =
√
Emax

(
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, k = 0, . . . , 11,

√
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3
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4
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4

)
, l = 0, . . . , 3,

which is intended to mimic the CAD with pSNR ∼ 10
consisting of two circular components. The achievable rate
with 16APSK is compared with those of PSKs and the capacity
under the circular constraint in Fig. 4. As we have expected, the
achievable rate with 16APSK is worse than those of PSKs for a
pSNR less than around 5 but is very close to the capacity under
the circular constraint for a larger pSNR up to around 20. Note
that pSNR of 5 corresponds to the point where the number of
the circles of the CAD increases from 1 to 2 in Fig. 2a. Thus
we expect the APSK with more amplitude shifts would have
good achievable rates for a larger pSNR and that curves like
those shown in Fig. 4 would indicate the corresponding pSNR
to switch between them.

IV. ADAPTIVE MODULATIONS AND CODES

In this section, we evaluate the rates with practical schemes,
namely, the combined use of the discrete modulations and
low-density parity check codes (LDPCC), under peak power
constraint. The rates are computed numerically, and com-
pared with the achievable rates with corresponding modulation
schemes shown in section III. The LDPCCs used in the
simulation are the codes employed in the DVB-S2 standard
[10], where the codeword length is 64800 and the coding rates
are 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, and
9/10. Gray coded bit mapping is used for QPSK, 16QAM, and
16PSK, while the mapping defined in the DVB-S2 standard is
used for 16APSK.
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Achievable rate with QPSK

Rate with adjusted coding rate (LDPC) via QPSK

Fig. 5. Rates with adjusted coding rate LDPCC via QPSK versus pSNR.

Figure 5 shows the numerical results of the rates with
adjusted coding rate LDPCC via QPSK versus pSNR. The
rate of the practical scheme is defined as

rate =
Sblck

Tblck
r log2 n,

where r denotes coding rate, Tblck the number of LDPCC
blocks sent from the transmitter, Sblck the number of LDPCC
blocks received without errors, and n is the number of points of
the constellation. The achievable rate with QPSK is also shown
as a reference. From the figure, we see that, by appropriate
choice of the coding rate, the practical modulation and coding,

i.e., QPSK and LDPCC, achieve the rate close to the achievable
rate with QPSK, which is very close to the achievable rate.
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Rate with LDPC via QPSK

Rate with LDPC via 16QAM

Rate with LDPC via 64QAM

Box capacity

Fig. 6. Achievable rates with QPSK, 16QAM, and 64QAM compared with
capacity under box constraint.

The rates with LDPCC via QPSK, 16QAM, and 64QAM
versus pSNR are shown in Fig. 6, where the capacity under the
box constraint is also plotted. The qualitative characteristics is
very similar to Fig. 3, and as expected in section III-A, it is
possible to achieve rates close to the capacity by switching
modulation schemes and coding rates appropriately. Note that
the switching thresholds of pSNR agree well with those
expected from Fig. 3.
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Rate with LDPC via QPSK

Rate with LDPC via 16PSK

Rate with LDPC via 16APSK

Circle capacity

Fig. 7. Achievable rates with QPSK, 16PSK, and 16APSK compared with
capacity under circular constraint.

Finally, the rates with LDPCC via QPSK, 16PSK, and
16APSK versus pSNR are shown in Fig. 7 with the capacity
under circular constraint. The results agree with those in Fig. 4
again, which demonstrates the validity of the discussion in
section III-B even for the case with practical discrete adaptive
modulation and coding.

These results indicate a possible strategy for AMC. When
a pSNR, which reflects the channel condition is given, the
modulation can be chosen according to the achievable rate of
each modulation scheme and then, the coding rate is chosen
in order to achieve the rate close to the capacity. This is
different from the strategy used in general, where modulation
and coding rate are optimized jointly for a given channel
quality.

V. CONCLUSION

For digital communications systems, choosing an appropri-
ate modulation scheme is a key issue. We can find some plots
for comparison in literature (see [11, Sec. 11.3] for example),



where the achievable rates for the AWGNC with practical
modulation scheme, such as PSKs and QAMs, are shown
versus SNR. Such a plot usually includes a curve indicating
Shannon’s capacity log(1+SNR), which is the capacity for the
AWGNC under the average input power constraint. A natural
observation from such a plot is that the achievable rates with
nQAM (n ≥ 16) input constellations are almost always closer
to the capacity than those with PSKs. This implies that, if
we assume a system with adaptive modulation which can use
QPSK, 16PSK, and 16QAM, then such a system should always
choose 16QAM, neglecting the complexity in implementation.

The above comparison is well-known, but not appropriate
in practice. In this paper, we have compared the capacity, the
achievable rates, and the rates of AMC under peak power (Box
and Circular) constraints on input. The importance of the peak
power constraint has been realized, but it has mostly been
considered only indirectly via the peak-to-average power ratio
(PAR) [12]. Indeed, typical conventional arguments define the
capacity under the average power constraint, and discuss the
peak power (or the power efficiency) only via PAR. On the
other hand, the direct approach in this paper allows us to
evaluate quantitatively how close the achievable rates to the
theoretical limit posed by the capacity under a practical con-
straint on input. The proposed approach provides a fresh look
at the problem of comparing performance between different
modulation schemes. A major weakness with our approach
would be that one can no longer expect a simple closed-
form expression for the capacity, such as W log(1 + SNR),
so that evaluation of the capacity itself might be elaborative
and computationally intensive. We nevertheless believe, despite
this weakness, the significance of our approach in view of
better understanding of the room for improvement toward the
theoretical limit under practical constraints.

In order to demonstrate the significance of our approach,
we have studied, as an example, the capacity of a complex-
valued AWGNC under peak power constraint on discrete-time
signal and compare it with the achievable rates with practical
modulation schemes and rates with AMC. We have observed
that the achievable rates with nQAM are very close to the
capacity under the box constraint for some range of pSNR,
and that the range shifts to larger pSNR as the modulation
level n of nQAM increases. We have also observed that the
achievable rates with nPSK are very close to the capacity
under the circular constraint for small pSNR. Our results have
also suggested that APSK-type modulation is expected to have
an achievable rate close to the capacity under the circular
constraint for larger pSNR. The achievable rate with 16APSK
has been computed to support this expectation. These results,
as well as the results in [9] show that the practical discrete
adaptive modulation has the potential to achieve the rate very
close to the capacity. The simulated AMC proves the well-
designed AMC can achieve a rate close to the capacity.

In this paper, we have considered only the case with a
single (peak power) constraint on input. As an extension,
we can consider the cases in which both average power
and peak power are simultaneously constrained [4], [5]. It is
straightforward to study such complicated cases by rewriting
the conditions, and similar results will be observed. This is
because the CAD becomes discrete in many cases for many

types of channels and constraints [7]. Similar comparisons
between achievable rates and capacities under those conditions
will provide useful guidelines for adaptive modulations. This
could not be possible with the indirect approach in which the
capacity is derived in terms of average power of input and
constraints are discussed separately.

We have also restricted our discussion to the discrete-time
input. To the best of our knowledge, there has been no direct
comparison in the literature between the achievable rates with
different constellations and the capacity under peak power
constraint even in the case with a discrete-time AWGNC, the
only exception being [9] and as we have demonstrated, the
direct comparison for the discrete-time channel has yielded
several novel quantitative observations regarding gaps between
achievable rates with practical constellations and the capacity
under peak power constraint. On the other hand, it has now
been a common practice in the indirect approach to study
the PAR in continuous-time domain, typically in terms of
the complementary cumulative distribution function (CCDF)
of PAR values. Another important direction of extending our
analysis is therefore to consider peak power constraint on
continuous-time input in the direct approach as well.
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