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Abstract— A fundamental problem in the field of motor reaching tasks (Sec.lV) of a two-joints arm (Sec.lll). We
neuroscience is to understand how our brain generates ap- show the resulting motor commands possess typical charac-

propriate motor commands for precise movements effortlesg.  tqyistics of the human reaching movements through simdilate
The problem seems difficult since there are infinitely many .
experiments (Sec.V).

possible trajectories and our musculo-skeltal system is gerally - ]
redundant. We focus on the motor command representationand ~ We further discuss the emergence of synergies. The muscle
show that a simple strategy can solve the problem for a planar synergies are defined as the coherent activations of a group
two-joints arm model. We also discuss the emergence of the of myscles [7]. We show that the motor commands obtained
muscle synergies, which may enable us to make natural motor through our strategy form groups of motor commands which
behaviors with smaller degrees of freedom. 2 . .

are similar to muscle synergies (Sec.V-C). Finally the pape

I. INTRODUCTION is concluded with a short discussion (Sec.VI).
In daily life, humans can effortlessly control an arm to
reach a target. Although there are infinitely many candi- 1. OPTIMIZING MOTOR COMMAND
dates of paths and velocity profiles which achieve the task, REPRESENTATION

typical hand paths are gently curved and velocity profiles

are bell-shaped. Also, our muscle system to drive the arm Every motor command is a time series sent from brain to
is redundant. One of the fundamental problems of motdnuscles. Here, we pose a question, “how can brain create
neuroscience is to understand how our brain generates a 88¢l send time series?” The answer to this question has not
of appropriate motor commands to achieve the task. been made clear in the motor neuroscience.

In 1980’s, it was shown that criteria based on physical In this paper, we assume the functional representation of
guantities, such as the minimum jerk [1] and the minimunthe motor command as a linear combination of a prefixed
changes in joint torques [2], explain hand paths and velocibasis, more precisely as follows
profiles well. In 1998, Harris and Wolpert reported that
the assumption of signal dependent noise describes many ui(t) = Zwijfbj(t), w;; > 0,
characteristics of the motor control [3]. Recently, Haruno J

and Wolpert showed that the signal dependent noise gives a ) _
clue to solve the muscle redundancy [4]. whereu; is the motor command to musdend{¢;} is the

In this paper, we solve the problem from a different viewasis. SincéV=(w;;) defines the motor command, we call

point. In order to move an arm to a target, there are infinitell} @ ‘Motor command representation.” The basis is defined
many possible trajectories. Moreover every trajectory caS @ Set of synchronizing patterns with different durations
be realized with multiple motor commands because of th&hich is similar to what is discussed in [8].

redundant muscle system. Therefore, choosing a singlermoto NOW, our problem is to select a single motor command
command, which we call “motor planning,” is the planningr€Presentationi’’. We solve this problem by assuming spar-
not only of a trajectory, but also of a particular activatiorsity- Olshausen and Field assumed sparsity on the visual
pattern of muscles. In order to solve the problem, we dEgpresentation and discussed the optimal basis, whickeg®ss
not consider any physical quantities, such as jerk or torque characteristics of the simple cells observe_d in the gmym
change, nor noise, but assume the functional form of motdfsual cortex [9]. Here, we assume the basis and compute
commands with some parameters. Each motor command({® optimal representation based on sparsity. We define the
uniquely represented with the parameters. We call it “motdPllowing cost function

command representation,” and define a cost function which

describes a preference of the representation. We propose Preference(W;Ai, Aa) = A Y wij + X2 Y wi,

a strategy to choose a single motor command based on ij ij

the preference (Sec.ll). The new proposal is examined with where Ay, Ay > 0.
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Fig. 1. Two joints arm model with six muscles. The upper arrfiLisk 1” (length 11 is 0.275 m and the moment of inertid; is 0.029 kgm?). The
forearm is “Link 2" (2 = 0.345 m, Iz = 0.042 kgm?, and the weighinz is 1.077 kg). The upper arm is connect to the shoulder and the forearm via
two joints. The torques of two joints are produced by 6 musdigach muscle is connected to each joint as in the figure wlagre - - , ag) = (3.5 cm,

4.1 cm, 2.7 cm, 2.0 cm, 2.9 cm, 4.3 cm, 2.5 cm, 2.3 cm). The parameters are the same as those in [13].

We give a simple example. Supposgés the input of the torque vector, £;: shoulder,: elbow). The parameters are
following linear forward dynamics of;, given as

t=azx+bult)=azxz+b ijqﬁj(t), M(6) = a1 + 2a9cosby g + g cos by
J a3 + ag cos by o3

Assuming®;(t) is the response of the system when= 0(079): ( —02(20, +0) ) Qs sinfy, B = (ﬁll 612)
$;(t), then from the linearity of the system, Qg + ap cos b P P
a1 =0 + L +maol}, as=malis2, az=1D,
,T(t) = ijfbj(t). ) ) ] ] )
J where, I; is the moment of inertia of each linkyy is

Wh h hi ¢ Ki | d with a f . the weight of link 2,/; is the length of linki, so is the
en the achievement of a task is evaluated with a unc“;))ﬂstance from the joint center to the center of the mass of

Error(x(t)) of x(t), such as t_hg e_ndpoint error, our proposag 5 () 162 cm), and By = 1.445, Bis = Bay = 0.301,
is to select thew; } which minimizes P22 = 1.383. The parameters are the same as those in [13].
Cost = Error(z(t)) + Preference(W; Ay, \o) The forward dynamics is computed with the modified Euler

method, where the updating intervalismsec.
= Error(W : {®;(¢)}) + Preference(W; A1, A2). w updating interv sec

If Error(z(t)) is a linear or quadratic function af(t), Cost B Torque and Moment Arm

becomes a quadratic function ¢fv;}, and optimalWV is A set of motor commandsy(t) = (u1(t), - ,ue(t))”,
solved with a quadratic programming (QP) method. (ui(t) > 0) activates 6 muscles and their tensions are
In the following, we use a two-joints arm, which is acombined to give the two dimensional torqué). Figure 2
nonlinear system, to show how the proposed strategy workschematically shows the model of the process. We assumed
u(t) is processed through 2 low-pass filters (1st-order low-
1. MODEL pass filters withT; = 30 msec and T, = 40 msec. These
values were chosen according to [3]). We assume the tension

_ ) o of each muscle is proportional to the output of low-pass
In this paper, we consider a 2-joints (shoulder and e|bOV\ﬁ|terS’ which we defineu/(t). Since each muscle has a

6-muscle arm (Fig.1) [11], [12], [13]. The inverse dynamicgjifferent strength depending on the cross-sectional areg,

A. Two-joints Arm

of the arm in the horizontal plane is lessu/(t) is correctly scaled to give the tensidf(t) as
M(6)6 + C(6,6) + BO = T(t). 1) T(t) = Du'(1),
The forward dynamics becomes
6= —M(G)_l(C(B, 6)+B6 - (1), Votor Gommana 1+1T1s " 1+1T2s | MomentAm —'T:r(;z.e

where6(t) = (01(t),02(t))T € R? is the angle vectoré:
shoulderd,: elbow), andq-(t) = (11 (t), T2(t))T c R? is the Fig. 2. The process from motor command to torque.



where D is a diagonal matrix withdiag(d;,---,ds) = ment of the task with the endpoint error.

(840 N, 800 N, 560 N, 480 N, 200 N, 240 N). The diagonal | [Ty

elements correspond to the maximum tension of the muscles, Error(w) = — / 0(t; w) — O7|dt,
computed by the cross-sectional area of each muscle [14] and Ty Jr.

. . : . D)
the maximum tension per unit area (we set iGBN/cm”).  whereT, is the desired movement time affy is the post-
Finally T'(t) is multiplied by the moment arm (Fig.1) to give moyement stationary time. Since we are working with a

the torque as discrete time, Error is redefined as
T(t)=AT(t)=A D u(t),
where Error(w) = T L+ L Y Z |0(t1; w) — 67, @)
A= aq —as9 0 0 as —dag
—\0 0 as —ag ay —ag) where ¢, =T, + lf .
We assumed a constant moment arm, thatlisyas fixed.  the motor command is representeddyand the command
C. Motor Command which achieves the reaching task can be computed by min-

As described in section Il, we assume that the motor. jpizing Error(w). However, it does not give a unique
smce the muscles are redundant.

command is represented as a linear combination of a basis,
As is discussed in the section I, we further assume a

which is a set of pre-fixed time series. In this paper, w f th t hich is defined
defined a basis with 3 kinds of single-shot positive squal%re erence on the parametars which is defined as
Preference(w; A1, A2) = Mt Z Wijk + A2 Z wijk'

wave (with length of0.05, 0.1, and 0.2 sec) shown in
Fig.3(a). Let us denote them &g(t), i = 1,2, and 3. We P P

assume the basis is created with a synchronous tiffiingc )
generated by the brain. In our experimefitjs set to0.3 sec. ~ NOt€ that the second term shows the powewofvhile the

Thus, a motor command;(t) is written as first term adds the sparsity to. o .
Therefore, the cost function we have defined in Sec.ll is

K 2 written as follows
=3 wirdy(t — kT, wik >0, (2) ’

k=0 j=1 Cost(w; A1, A\2) = Error(w) + Preference(w; A1, A2)
The output of the low-pass filters(¢) is written with a )
linear mixture of{¢/(¢)} which are the low-passed version ST @TD > 16(ti;w) — 07|
of {¢;(¢)}. Figure 3(b) shows the function, / =0

+ A\ Z Wijk + A2 Z wfjk

K 3
=323 st - 4T
k=0 j=1 The optimalw, which minimizes the cost function, gives the
Note thatu,(t), u}(t) > 0 from the definition. motor command for the given reaching task.
1 6 w = argmin{Cost('w; A, )\2)}. (4)
] ) w
5
OJ z B. Minimizing Cost Function
OO e P OO e Since#(¢; w) is a nonlinear function otw, it is difficult
to solve eq.(4) analytically. We locally approximaé; w)
(a) (b) :
with
Fig. 3. Basis of the motor command: (a) a set of function fortano dO(t' ’w)
commande; (t), (b) the outputs of each function through low-pass filters O(t; Wi k) + A) ~ 0(15; w) + A g ,
@ (t). : Wik

wherew ;) +A denotes that\ is added taw;;,. We define

Finally, the motor command(t) becomes a function of A1, as the solution of the following optimization problem.

{wi;r}. Let us denotgw;;x } with w, and motor command
is u(t; w). We also note thaf(¢) is a function ofw, that d6(t;; w
is, 6(t;w). The motor planning is to compute the which ~ min |:Tf D) Z’Z +9(tz;’w)—9T

2
. . dw ik ’
achieves the given task &f(t; w).

IV. OPTIMAL MOTOR COMMAND FOR A1 D (wign + Agr) + Ao D (wigk + Az—jk)r“},
REACHING TASK ijh igk
A. Reaching Task and Cost Function subject o Agjr > —wijp.

The task of reaching is to move the hand from an initiaThis problem is easily solved with a QP method. The
positioné; to a target positior. We evaluate the achieve- derivativedf(t; w)/dw; ;i is approximated by adding a small



positive perturbatio to w;;, and computing the resulting motor commands are sparse, and the redundancy of muscles
differential equation ob, that is are clearly removed.
do(t;w) 1 C. Synergies
PUE) 2@t +6) - 0(t:w)). Inerg
dwijp, 4 Furthermore, we observe some groups of muscles tend to
After optimizing A, ., everyw;y, is renewed asv;x + A ., be activated simultaneously. This observation motivates u

and the process is iterated until convergence. If the madel i to give further analysis. The idea of muscle synergies has
linear control system, the state of the system becomes lindigen discussed in [7]. The muscle synergies aredblesfent
w.r.t. {w;;;,} and no iteration is needed. From the experimenfctivations, in space or time, of a group of muscles;” which
we see it converges surprisingly well after 3 or 4 iteratidhs 1S considered to beftilding blocks that could smplify the

implies the control system in eq. (1) is not strongly nordine construction of motor behaviors,” (from [7]). In [7], the
NMF-type (Nonnegative Matrix Factorization) analysis is

V. EXPERIMENT applied to the measured EMG. In our case, we apply NMF-
A. Task Set type approach to the coefficients of the motor commands,
and see if we observe some interesting results.
The motor commands(t) is represented by eq. (2). We
first define the normalized coefficient vectof, as follows,

1 T
Wi = (wuk,wuk, T aw63k) .
|(witk, wizk, -, We3k)|

wy, IS a vector of each time step and its dimension is (# of
basis functionsx # of muscles)= 3 x 6 = 18. Non-zero

wy, are collected from the results of 380 reaching tasks, and
renumbered to form a matri¥” as

06

04

Y [m]

0.2

W= (w1, - ,wn).

In our case,N = 1140(= 3 x 380), which shows each
s 02 i o4 o6 of 380 tasks has 3 non-zet,, and W is a matrix with a
size of 18 x 1140, where every component is positive and
Fig. 4. Candidates of the initial and terminal points. the squared length of each column is 1.
We define synergy vectors,, - -- , sy, M < 18, where
We computed the optimal motor commands for a set of,,, is an 18 dimensional vector with positive components.
initial-target position pairs (Fig.4 shows the points whare Let us define a synergy matri§ = (s1,---,sx), and
used as initial and target positions). We first set a fan shajpssume
region, the range @ is 0 < #; < 2x/3, 62 = 0 and distance - . MxN
from the origin is between.2l, to O.éla, wherel, = ; + 5. W= SH, where H = (hmn) € Ry 7.
We chose grids every 1é@n on the horizontal plane, and if We would like to computeS and H when W is given. This
the grid falls into the fan shape region, it is a candidate d the NMF problem [15]. We solved the following problem

the initial and terminal points. min[ |W — SH|Z + /\Zsim},
i,m

Every pair of points is chosen if the distance between them
is more than or equal to 2@n. There are 380 pairs which
satisfies the condition, and we used all of them. This is the
task set. where || - || is the Frobenius norm and the second term

The valuesL, T, and T} in eq.(3) are set to 8).4 sec, makesS sparse X is set tol x 107°). The problem is
and0.4 sec, respectively, and; and )\, in eq.(4) are set to easily solved with a QP method. We applied a QP method
2 x 1079 and1 x 1075, respectively. to computeH and.S iteratively. Although the algorithm has
B. Results the initial condit_ion dependencg, it monotonically commes

) ) to a local minimum. We variedM from 4 to 8, and
‘Out of 380 reaching tasks, 4 results are summarized ghmputed the synergies with different initial values. leasy
Fig.5. The results in Fig.5(a) show slightly curved tragect {5 jmagine that as the number of the synergies increases,
ries, which are the typical characteristics of reachingdas |7 _ SH|2 becomes smaller, but the synergies become
The velocity profiles in Fig.5(b) clearly form bell-shapes;sgjated commands on each muscle. Figure 6 shows the low-
which are also typically observed in real experiments. passed outputs of synergies, whehis set to5.

Figure 5(c) shows the low-passed motor commands of 6 \yjith this set of synergie§7, W is reconstructed as

muscles. Many of the motor commands become 0, that is, the .
Wy, = Shy,

N o . . .

o Ao, T g “where A = (hu, - .hy). The average squared erro
tion sparse. ooy lwn — @n|?/N is 5.1%.

subject to s;,,, > 0, Ay >0,
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(c) Low-passed motor commands of 6 muscles

Fig. 5. Results: 4 reaching tasks out of 380 are shown. Eathisaas follows (denoted with-y coordinate £ cm, y cm)) : Task 1; from(0, 20) to
(—10, 40), Task 2; from(0, 40) to (0, 20), Task 3; from(30, 0) to (30, 30), and Task 4; from(—10, 30) to (20, 30), (a) shows the trajectories, where
red and blue dots are initial and terminal points, respelsti(b) the velocity profile of each task, (c) the low-passedtor commands of 6 muscles.
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Fig. 6. Synergies.



D. Arbitrary Initial and Target Positions VI. DISCUSSION AND CONCLUSION

It is difficult to imagine that brain is optimizing the motor It has been shown that a simple assumption on the
command representation for every motor planning. A morpreference of the motor command representation solves the
plausible idea is that brain stores learned motor commandsotor planning for a reaching task. The resulting motor
and somehow creates a mapping function from task tommands are represented with a set of coefficients of the
motor command based on the learned motor commands. \Wasis. The coefficients are sparse, and a synergy-liketgteuc
consider such an extension of our proposal. is observed. This idea might be useful for robotics to create

In our model, the motor command is represented withuman-like movements.

a finite number of positive coefficients, and the mapping We note that we did not assume any noise [3] nor feedback

function should have a form [12]. It is clear that there are noises and a feedback coistrol
necessary for precise control. Our approach can be extended
w = f(0r,67). naturally to implement them, and it is one of our future

We have already computed the motor commands for gridgorks. Also, biologically plausible basis functions stabbke
(Fig. 4). Leta or b denote the index of each grid, where theconsidered. Although the arm was restricted to the horaont

initial and target points are indexed@sande?. respectively. Plane, we believe extension to three dimensional space with
When a new pair of an initial and a target po{fly, 67) 9ravity is not difficult.
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