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Abstract—The information transfer through a single neuronis  Interestingly, for both coding schemes, it is proved to be a
a fundamental information processing in the brain. This paper discrete distribution with only a finite number of probatyili
studies the information-theoretic capacity of a single neton by mass points. Numerical computations then show that the

treating the neuron as a communication channel. Two differat b f ints i I df this. th itv of
models are considered. The temporal coding model of a neuron NTUMPEr 0F MAsSs poInts IS smail, and from this, the capacity o

as a communication channel assumes the output iswhere r isa @ neuron is computed numerically. The computed capacities
gamma-distributed random variable corresponding to the irter- are consistent with biologically obtained results.

spike interval, that is, the time it takes for the neuron to fire once.

The rate coding model is similar; the output is the actual rae of 11. SINGLE NEURON CHANNEL

firing over a fixed period of time. We prove that for both models o

the capacity achieving distribution has only a finite numberof ~A. Distribution of ISIs

probability mass points. This allows us to compute numericly

the capacity of a neuron. Our capacity results are in a plaugile i YT T AT AT

range based on biological evidence to date. ° . el o o
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I. INTRODUCTION A B

It is widely believed that neurons send information to Oth(?‘—ﬁg 1. Simulated spike trains with gamma distributionse Shape parameter
neurons in the form of spike trains. Although the precise tim, is 0.75 and4.5 in A and B, and the expected values of IS| is 5 and 50 msec
ing of the spikes is important for the transfer of informatio in upper and lower train, respectively.
it appears that spike patterns are noisy [1]. Informatiaotk
shows that when a communication channel is corrupted byThe gamma distribution is known to be a suitable distri-
noise, the rate at which information can be transmittecibdli bution to describe the stochastic nature of ISls [5], [7]t Le
through the channel is limited. The upper bound on the ratefisdenote an ISI. When it follows a gamma distribution, it
known as the channel capacity [2]. When a single neuroni$s denoted asl” ~ I'(x,0). The parameter. > 0 is the
modeled as a communication channel, computing the capadhape parameter ani > 0 is the scale parameter. Some
is one of the fundamental problems in neuroscience. studies have reported of an individual neuron is stable (the

Shortly after the seminal paper of Shannon [2], the capaciglue may depends on the type of neuron), wiiilehanges
of a neuron channel is studied [3]. They assumed a simplgnamically over time. Fig. 1 shows simulated spike trains
noise model and concluded that each spike could carry wth two different shape parameteis (0.75 and4.5). When
to 9 bits of information and that the capacity could be in is small, spike trains become more irregular.
the vicinity of 1000 to 3000 bps. The capacity of a neuron In [7], a statistical indexLy (local index), is defined
channel has also been investigated biologically. Accagrdin to characterize each neuron. From their investigation with
the experimental studies summarized in [4], a single neurbivlogical data, most of the cell€y’s are lying between 0.3
can send at a rate of at most several hundred bps. and 1.2. IfT follows a gamma distribution],,; = 3/(2x+1)

The theoretical capacity of a neuron depends on how thelds and the corresponding interval wfis [0.75,4.5].
neuron is model-led as a communication channel. In thispape o ] )
the gamma distribution is employed to describe the stothadt: COMmMunication Channel, Capacity, and Single Neuron
nature of the inter-spike intervals (ISIs), as is done in the Each neuron is a communication channel since it is believed
neuroscience literature [5], [6]. This differs from that[B].  to be transmitting information with spikes. When a changel i

To obtain a communication channel though, the coding mustisy, only a limited information can be transmitted thrbug
also be described. This has long been a subject for discuss@ channel and this limit is the capacity. We focus on the
The two major ideas are temporal coding and rate coding. Thidormation processing of a single neuron.
paper computes the theoretical channel capacity with oéspe Let X be the input to a noisy channel aidbe the output.
to each of these codings. We assumeX € X C R is a one-dimensional stochastic

As a by-product of determining the capacity, the inputariable and lef’(X) be a cumulative distribution function of
distribution which achieves the channel capacity is dekiveX. Communication channel is described as a stochastic model



p(y|x). Let F be the set of, in which we are interested and where iz (6; F) = /°° p(rl6: ) In qu—
0

the channel capacit¢' is defined as p(riFyk)
b
C  sup I(F) p(ri o) = [ plrltin)dF (o)
FeF a
x The capacity per channel use or equivalently per spike is
I(F) =/ / p(ylw)lnp(%l))du(y)dF(:v), pacly p a y persp
reXJyey Py Cr = sup Ip(F).

wherep(y) = [,y p(ylz)dF(z) and u(y) denotes the mea- Fer

sure ofy € . Since the channel(y|z) is not adjustable, the ~Rate coding _ _ _ o _
mutual information is a function of'(z) and we denote it as !N rate coding, a time window is set and spikes in an interval
the shape parameterof each neuron is fixed, and the scal®f R asp(r|f; x, A), which is defined as follows.

parameted is the only variable parameter. This plays the rolgemma 1. The distributionp(r|6; x, A) has the following

of X. An ISI, T', follows a gamma distribution as form
k—1 _ *
ol = (o) ST g rzo,  plrl ) = Pl AJO) = P((r+ ) AJO).r €2

) ) ) ) here Z* denotes non-negative integers afti«, z) is the
where 6 is a stochastic variable and is a parameter. The regularized incomplete gamma function

expectation ofl" is T = x6f.

Before considering what i¥’, let us consider the family of P(0,2) =1, Pla,z) = L/ t*"tetdt, for a,z > 0.
all the possible distributions of inpdt One natural assumption L'(a) Jo
is that the average 1SI, which dependséandx, is limited When £ = 1, a gamma distribution is an exponential
betweenay andb, (ag andby are set to 5msec and 50 msedglistribution andR follows a Poisson distribution. The mutual
respectively), that is, information of R and# is defined as

— b
ag < T = kO < by, where 0 < ag < by < 0. Ip(F) = / ir(0, F)dF(0), @)

Thus, 6 is bounded iN® (k) = {0 | a(k) < 6 < b(x)}, where o0 (+16: 5. A)
a(k) = ag/k andb(k) = by/k. In the following, a(x), b(k) where ig(6,F) = Zp(r|9; K, A)ln p-F’i’A’
and©(x) are denoted as, b and© respectively. Let us define =0 p(r; Fr s, A)

F(0) as the cumulative distribution function éfand F as b
p3Fok ) = [ plrioin, A)AF (),

o ) ] ] Hence, the capacity per channel use or equivalently/pés
F is right-continuous and non-decreasing®@mandF includes gefined as follows

continuous and discrete distributions.

F={F:R—[0,1|F®) =0,0<a), F(0)=1,(0>b)}.

Now, what is “the output of the channely’, of a neuron Cr= Ps}ll}IR(F)-
communication channel. There are mainly two different &dea ©
in neuroscience. One idea is tHetis the ISI, T, itself. This HI. THEORETICAL STUDIES

is called “temporal coding” (Fig.2). The other is tHatis the A. Steps to Prove the Discreteness of the Capacity Achieving
rate, which is the number of spikes in a fixed time intervaDistribution

This is called “rate coding” (Fig.2). The mutual informatio | this section, we prove the capacity achieving distritmiti
and the capacity depend on coding. The capacity of eagha single neuron channel is a discrete distribution with
coding is formally defined in the following. finite mass points for temporal and rate coding. The capacity
achieving distributions have been proved to be discrete for
some channels [8], [9], [10], [11] and we follow the same step

time interval (A msec)

I I — | I N of them. First, the common steps of the proofs are shown.
T 7 (number of spikes) . . .. .
. ) SupposeX is a normed linear space. In optimization theory,
temporal coding rate coding the space of all bounded linear functionalsXfis called the

normed dual ofX and is denoted *. The weak convergence

Fig. 2. Two types of coding: “temporal coding” and “rate I . X
g P g P 9 ongl is defined as follows.

Temporal coding Definition 1. A sequence(z:} in X* is said to converge
Received information i§” for temporal coding. The mutual weak to the element* if for everyz € X, z (x) — z*(x).
information of 7" and 6 is In this case we writer? (z) > z*(x). (See [13], 5.10).
b
Ip(F) = / ir(0; F)dF (), (1) If X is a real normed .Iinear space of all bounded cprltin-
a uous functions orR, X* includes the set of all probability



measures, and “weak convergence” of probability measufs Discreteness of the Capacity Achieving Distribution for
is “weak® convergence” onX*. The following theorem is Temporal Coding

used to prove the existence and the uniqueness of the gapacif, this subsection, the capacity achieving distribution fo
achieving distribution. temporal coding is shown to be a discrete distribution with a
Theorem 1. Let J be a weak continuous real-valued func- finite number of points. The fO”OWing lemma 2 and theorem
tional on a weak compact subsef of X*. ThenJ is bounded 1 imply the capacity for temporal coding is achieved by a
on S and achieves its maximum ¢h If S is convex and/ is  uUnique distribution inF. The details of proofs will be found
strictly concave, then the following maximum is achieved ty [12].

a uniquez™ in S. (See [8], [9], and [13], 5.10). Lemma 2. I-(F) in eq(1) is a weak continuous function on
C = max J(z*). F € F and strictly concave irf.
z*€S
From the above discussioy is a subset ofX™*. It is
clear thatF is convex. The following proposition states

is compact. Lemma 3. Iy (F) in eq(1) is weakly differentiable iF. The

Proposition 1. F is compact in the &vy metric topology. (See Weak derivative aty € F is
[11], proposition 1). b
) 3 I’}',F()(F) = / ZT(H,Fo)dF - IT(F())

Thus, from theorem 1, iffl(F) (or Ir(F)) is a weak a
continuous function ori” € 7 and strictly concave itF, the  corollary 1. Let E, denote the points of increase &F(6)
capacity is achieved by a unique distributiéh in F. Thisis g g [a,b]. F, is optimal if and only if
the first step of the proof. The Kuhn-Tucker (K-T) condition
on the mutual information is used for the next step of the ir(0; Fo) < Ir(Fy), VO € 0O,
proof. Before showing the K-T condition, let us define the ir(0; Fo) = Ip(Fy), VO € E,.
weak differentiability.

In order to show it is a discrete distribution, the following
lemma and corollary are used.

_— . (This is proved following the same steps in [11], corollary 1
Definition 2. Let J be a function on a convex sé&t. Let I

be a fixed element of, and € [0,1]. Suppose there exists The main result of this subsection is summarized in the

a mapJy : F — R such that following theorem.
, . J(1=n)Fy+nF)— J(Fp) Theorem 2. Under the constrain@ € ©, the channel capacity
Ty (F) = 1;{{} n , Fer of a single neuron channel with temporal coding is achieved

Then J is said to be weakly differentiable i at F, and by a discrete distribution with a finite number of mass points

Jp, (F) is the weak derivative inF at Fy. If J is weakly Proof: The extension of(9; Fy) to the complex plain
differentiable in 7 at Iy for all ' € F, J is said to be : is analytic forRez > 0. Let us denote the function as
weakly differentiable inF. ir(z; Fo).

oo

ir(z Fy) = —kInz — / p(r]2: k) In g(7; Fo, w)dr,
0

And the K-T condition is described as follows,

Proposition 2. Assume/ is a weakly differentiable, concave
functional on a convex sef. If J achieves its maximum on
F at Fy, then a necessary and sufficient condition fr to
attain the maximum is to satisfy the following inequality fo,
all F € F (See [11], proposition 1)

b —_
where g(T;FQ,Ii):/ Wdﬂ)(@).

If Ey in corollary 1 has infinite pointsfy has a limit point.
Hence, the identity theorem impligs(z; Fy) = Ip(Fp) for

Jpg, (F) <0. the regionRe z > 0. This region includes the positive real line
If Ir(F) (or Ir(F)) is weakly differentiable, the K-T and -
condit_ion is derived wilth_ the theorem_. I_:inaIIy, the diseret _/ p(710; %) In g(7; Fy, k)dr = k100 + Ir(Fy),  (3)
ness is proved by deriving a contradiction based on the K- 0

T condition and the assumption thay has infinite points s implied for# > 0. However, it is not difficult to show the
of increase. Thus, in order to show the discreteness of thas of eq.(3) is bounded as follows.
capacity achieving distribution for temporal and rate ogdi

the following properties must be shown. — /O;(Tw; k) Ing(; Fy, k)dr > K0 +klna.
1) Ip(F) and Ir(F) are weak continuous onF and 0 b
strictly concave. The LHS of eq.(3) grows at least witkf /b + const while the
2) Ip(F) andIr(F) are weakly differentiable. RHS isx In 6+ const’. This cannot hold fof € R*. This is a

If they are true, the K-T condition is derived and the diseret contradiction and the optimal distribution has a finite nemb
ness and the finiteness will be checked. of mass points. [ ]



C. Discreteness of the Capacity Achieving Distribution fosection, the capacity and the capacity achieving disiobus
Rate Coding computed numerically for each coding.

The capacity achieving distribution of a Poisson channel The strategy to compute the capacity and the capacity
under peak and average power constraints has been prove@dyeving distributions for temporal and rate coding is as
be discrete with a finite point of supports [10]. This dirgctl follows. Other related works use similar methods [8], [9L]
proves the case = 1 of rate coding. Fok # 1 further study 1) Initialize the number of the point®y/ as 2.
is needed. The following lemma 4 and theorem 1 imply the 2) Set the position and probability of each pointfasand

capacity for rate coding is achieved by a unique distributo 7, (j={1,---,N}), respﬁctively.
in F. The details of proofs will be found in [12]. a<Or <., <On<b Y, ymi=1 7, >0, j€
{1,---,N}.

Lemma 4. Ix(F) in eq(2) is a weak continuous function 3)
on F' € F and strictly concave inF. (The strict concavity
follows the proof in§7.2 of [10].)

Starting from some initial values, maximize the corre-
sponding mutual informationl¢(F) or Ir(F)) with
respect to{6;} and {m;} until convergence with a

Lemma 5. Iz(F) in eq(2) is weakly differentiable iF. The gradient method.
weak derivative af, € F is 4) Check the corresponding K-T condition to see if it is
b the capacity achieving distribution.
]RFO (F) = / ir(0; Fo)dF — Ir(Fyp). (4) 5) If K-T condition is satisfied, exit, otherwise increade
' a by 1 and go to step 2.
(The proof is identical to the proof of lemma 3.) The computation of each step is difficult sinég(6; F') in

eq.(1) orig(6; F) in eq.(2) are not provided in closed forms.
We evaluatedir(0; F') with the Gauss-Laguerre quadrature
andig(6; F') with truncated series. The range 6fis set to
ig(0; Fy) < Ir(Fy), VOeO, 5/k < 6 < 50/k which makes the expected firing rate from
in(0; Fy) = Ir(Fy), V€ Ey. 5msec to 50msec. The capacity and the capacity achieving
distribution for each coding are computed for every 0.05 of
(This is proved following the same steps in [11], corollary 1 < [0.75,4.5].

Corollary 2. Let E, denote the points of increase &% (0)
on# € [a,b]. Fy is optimal if and only if

The following theorem proves that the capacity achieving. Numerical Results
distribution is a discrete distribution with a finite numbsr

X Figure 3 (left) shows the computed capacity for eacfihe
mass points.

information C'1 increases monotonically asincreases. This

Theorem 3. Under the constrainf € ©, the channel capacity iS natural since 1SIs become more regularamcreases and
of a single neuron channel with rate coding is achieved bymore information can be sent. The capacity becomes larger

discrete distribution with a finite number of mass points. than 1 bit whens becomes3.85. The capacity achieving
distributions are shown in Fig. 3 (right). For eaeh the

Outline of proof: The extension ofir(¢; F) to the gistribution has only 2 or 3 points. Moreover, two of them

complex plainz is defined as are both ends of the rang®(x) (ao/x and by/k). If & is
, o) p(r|z: K, A) smaller than 2.10, there are only 2 points. When it is equal
ir(z;F) =Y _p(rlz;x,A)ln D F R A’ to 2.10, the number of points becomes 3. The position of the
Tio b ) )

third point is very stable. The probabilities of both endsdte
p(r|z; 5, A) = P(ri, A/z) — P((r + 1)k, A/2).  to be similar, while the probability of the third point inases

Since P(«, z) andln z is analytic forRez > 0, ig(z; Fp) is gradually ass increases.

analytic forRe z > 0. If Ey in corollary 2 has infinite points,

Ey has a limit point. Hence the identity theorem implies = |
ir(z; Fo) = Ir(Fp) for the regionRez > 0. This region .
includes positive real line and the following is implied o

> p(r)0; K, A) n T e
0; 5, A)In —————— = Ip(F 0 eR™.
TZOP(T| 3 Ry ) np(T';FO,KJ,A) R( O)a €

Fig. 3. CapacityCr (bit per channel use) as a function ef(left). The

The proof is completed by deriving a contradiction. W capacity achieving distribution of each (right): since the range of scales
with x, k6 is taken as an axis. Probability of each point is shown as the

IV. NUMERICAL STUDIES height. The axis for0 is log-scaled for visual clarity.

A. Common Steps In rate coding, the time windowA must be defined. Since
Although the capacity achieving distribution of each cadinthe average time for sending a symbol with temporal coding

is proved to be discrete with a finite number of mass points, around 25msecA is set to 25 msec in the numerical

position and probability of each point are not provided.Hist experiment. Fig. 4 (left) shows the computed channel capaci



for eachk. Cr increases monotonically as increases. The the first proof for the discreteness of the channel capacity
value is larger thaiw'r for the sames. It becomes larger than distribution for everyx > 0.
1 bit whenx becomes 2.15. Interestingly, this paper proved that the capacity achigvi
The capacity achieving distributions are shown in Fig. distributions are discrete and have only a finite nhumber of
(right). For each, the distribution has 2 to 4 discrete pointgprobability mass points. This has several implications. It
and two of them are both ends of the rargé<) (ap/x and allows for the capacity to be computed numerically. Further
bo/k). If k is smaller than 1.25, there are only 2 points. Abovenore, it may prove to be helpful for measuring the capacity of
1.25, there are 3 points and it becomes 4 whehecomes a neuron [4], since it implies that only a few modes of inputs
4.0. The probabilities of both ends tend to be similar, whilare necessary in order to measure the capacity accurately.
the probability of the third point increases gradually s  Even if our models of the neuron are accurate, the resulting
increases. When the number of mass points is 4, two midaigpacity calculations would not be biologically attairegbl
points have similar probability. there is no biological evidence to suggest the input to agreur
follows a discrete distribution, nor is it likely the outpcén
be measured exactly. Nevertheless, we hope our results serv
as a general guide for how much information can be obtained
from a single recording. This may help neurophysiological
experiments where the results of many trials are accuntulate
In terms of further work, we remark that there are many
tunable parameters, such@sA, ag, andby. Their admissible
values are likely to depend on the type of neuron under
consideration. For example, we chose to seto between
0.75 to 4.5, but [5] suggested that it may be as high as 15
Cr andCr, are the maximum information transferred per 5or some cells. Another is_sue is that we have only considered
channel use. It is also important to show the informatioa.raﬂsnoduergggdem sources. This should be extended to correlated

1
big

& 10
09

Fig. 4. CapacityC'r (bit per channel use) as a function ef(left). The
capacity achieving distribution of each(right): Probability of each point is
shown as the height. The axis fef is log-scaled for visual clarity.

In the case of temporal coding, we define the @tebps as

7 = Cr /T, whereT = /-;ijzl m;6; and show it in Fig.5
(left). In the case of rate coding, the maximum information
transferred per time is easily computed sinkes fixed, let
us defineC’; = Cr/A bps, which is shown in Fig.5 (right).
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