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Abstract—The information transfer through a single neuron is
a fundamental information processing in the brain. This paper
studies the information-theoretic capacity of a single neuron by
treating the neuron as a communication channel. Two different
models are considered. The temporal coding model of a neuron
as a communication channel assumes the output isτ where τ is a
gamma-distributed random variable corresponding to the inter-
spike interval, that is, the time it takes for the neuron to fire once.
The rate coding model is similar; the output is the actual rate of
firing over a fixed period of time. We prove that for both models,
the capacity achieving distribution has only a finite numberof
probability mass points. This allows us to compute numerically
the capacity of a neuron. Our capacity results are in a plausible
range based on biological evidence to date.

I. I NTRODUCTION

It is widely believed that neurons send information to other
neurons in the form of spike trains. Although the precise tim-
ing of the spikes is important for the transfer of information,
it appears that spike patterns are noisy [1]. Information theory
shows that when a communication channel is corrupted by
noise, the rate at which information can be transmitted reliably
through the channel is limited. The upper bound on the rate is
known as the channel capacity [2]. When a single neuron is
modeled as a communication channel, computing the capacity
is one of the fundamental problems in neuroscience.

Shortly after the seminal paper of Shannon [2], the capacity
of a neuron channel is studied [3]. They assumed a simple
noise model and concluded that each spike could carry up
to 9 bits of information and that the capacity could be in
the vicinity of 1000 to 3000 bps. The capacity of a neuron
channel has also been investigated biologically. According to
the experimental studies summarized in [4], a single neuron
can send at a rate of at most several hundred bps.

The theoretical capacity of a neuron depends on how the
neuron is model-led as a communication channel. In this paper,
the gamma distribution is employed to describe the stochastic
nature of the inter-spike intervals (ISIs), as is done in the
neuroscience literature [5], [6]. This differs from that in[3].

To obtain a communication channel though, the coding must
also be described. This has long been a subject for discussion.
The two major ideas are temporal coding and rate coding. This
paper computes the theoretical channel capacity with respect
to each of these codings.

As a by-product of determining the capacity, the input
distribution which achieves the channel capacity is derived.

Interestingly, for both coding schemes, it is proved to be a
discrete distribution with only a finite number of probability
mass points. Numerical computations then show that the
number of mass points is small, and from this, the capacity of
a neuron is computed numerically. The computed capacities
are consistent with biologically obtained results.

II. SINGLE NEURON CHANNEL

A. Distribution of ISIs
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Fig. 1. Simulated spike trains with gamma distributions. The shape parameter
κ is 0.75 and4.5 in A and B, and the expected values of ISI is 5 and 50 msec
in upper and lower train, respectively.

The gamma distribution is known to be a suitable distri-
bution to describe the stochastic nature of ISIs [5], [7]. Let
T denote an ISI. When it follows a gamma distribution, it
is denoted asT ∼ Γ(κ, θ). The parameterκ > 0 is the
shape parameter andθ > 0 is the scale parameter. Some
studies have reportedκ of an individual neuron is stable (the
value may depends on the type of neuron), whileθ changes
dynamically over time. Fig. 1 shows simulated spike trains
with two different shape parameterκ’s (0.75 and4.5). When
κ is small, spike trains become more irregular.

In [7], a statistical indexLV (local index), is defined
to characterize each neuron. From their investigation with
biological data, most of the cells’LV ’s are lying between 0.3
and 1.2. IfT follows a gamma distribution,LV = 3/(2κ+1)
holds and the corresponding interval ofκ is [0.75, 4.5].

B. Communication Channel, Capacity, and Single Neuron

Each neuron is a communication channel since it is believed
to be transmitting information with spikes. When a channel is
noisy, only a limited information can be transmitted through
a channel and this limit is the capacity. We focus on the
information processing of a single neuron.

Let X be the input to a noisy channel andY be the output.
We assumeX ∈ X ⊆ R is a one-dimensional stochastic
variable and letF (X) be a cumulative distribution function of
X . Communication channel is described as a stochastic model



p(y|x). Let F be the set ofF , in which we are interested and
the channel capacityC is defined as

C = sup
F∈F

I(F )

I(F ) =

∫

x∈X

∫

y∈Y

p(y|x) ln
p(y|x)

p(y)
dµ(y)dF (x),

wherep(y) =
∫

x∈X
p(y|x)dF (x) andµ(y) denotes the mea-

sure ofy ∈ Y. Since the channelp(y|x) is not adjustable, the
mutual information is a function ofF (x) and we denote it as
I(F ). What areX and Y of a neuron channel? We assume
the shape parameterκ of each neuron is fixed, and the scale
parameterθ is the only variable parameter. This plays the role
of X . An ISI, T , follows a gamma distribution as

p(τ |θ; κ) =
(τκ−1

θκ

)exp[−τ/θ]

Γ(κ)
, κ, θ > 0, τ ≥ 0,

where θ is a stochastic variable andκ is a parameter. The
expectation ofT is T = κθ.

Before considering what isY , let us consider the family of
all the possible distributions of inputθ. One natural assumption
is that the average ISI, which depends onθ andκ, is limited
betweena0 andb0 (a0 andb0 are set to 5 msec and 50 msec,
respectively), that is,

a0 ≤ T = κθ ≤ b0, where 0 < a0 < b0 < ∞.

Thus,θ is bounded inΘ(κ) = {θ | a(κ) ≤ θ ≤ b(κ)}, where
a(κ) = a0/κ and b(κ) = b0/κ. In the following,a(κ), b(κ)
andΘ(κ) are denoted asa, b andΘ respectively. Let us define
F (θ) as the cumulative distribution function ofθ andF as

F = {F : R → [0, 1]|F (θ) = 0, (θ < a), F (θ) = 1, (θ ≥ b)}.

F is right-continuous and non-decreasing onΘ andF includes
continuous and discrete distributions.

Now, what is “the output of the channel,”Y , of a neuron
communication channel. There are mainly two different ideas
in neuroscience. One idea is thatY is the ISI,T , itself. This
is called “temporal coding” (Fig.2). The other is thatY is the
rate, which is the number of spikes in a fixed time interval.
This is called “rate coding” (Fig.2). The mutual information
and the capacity depend on coding. The capacity of each
coding is formally defined in the following.
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Fig. 2. Two types of coding: “temporal coding” and “rate coding.”

Temporal coding
Received information isT for temporal coding. The mutual

information ofT andθ is

IT (F ) =

∫ b

a

iT (θ; F )dF (θ), (1)

where iT (θ; F ) =

∫ ∞

0

p(τ |θ; κ) ln
p(τ |θ; κ)

p(τ ; F, κ)
dτ,

p(τ ; F, κ) =

∫ b

a

p(τ |θ; κ)dF (θ).

The capacity per channel use or equivalently per spike is

CT = sup
F∈F

IT (F ).

Rate coding
In rate coding, a time window is set and spikes in an interval

∆ is counted. Let us denote the rate asR and the distribution
of R asp(r|θ; κ, ∆), which is defined as follows.

Lemma 1. The distributionp(r|θ; κ, ∆) has the following
form

p(r|θ; κ, ∆) = P
(
rκ, ∆/θ

)
− P

(
(r + 1)κ, ∆/θ

)
, r ∈ Z

∗,

here Z
∗ denotes non-negative integers andP (α, x) is the

regularized incomplete gamma function

P (0, x) = 1, P (α, x) =
1

Γ(α)

∫ x

0

tα−1e−tdt, for α, x > 0.

When κ = 1, a gamma distribution is an exponential
distribution andR follows a Poisson distribution. The mutual
information ofR andθ is defined as

IR(F ) =

∫ b

a

iR(θ, F )dF (θ), (2)

where iR(θ, F ) =

∞∑

r=0

p(r|θ; κ, ∆) ln
p(r|θ; κ, ∆)

p(r; F, κ, ∆)
,

p(r; F, κ, ∆) =

∫ b

a

p(r|θ; κ, ∆)dF (θ).

Hence, the capacity per channel use or equivalently per∆ is
defined as follows

CR = sup
F∈F

IR(F ).

III. T HEORETICAL STUDIES

A. Steps to Prove the Discreteness of the Capacity Achieving
Distribution

In this section, we prove the capacity achieving distribution
of a single neuron channel is a discrete distribution with
finite mass points for temporal and rate coding. The capacity
achieving distributions have been proved to be discrete for
some channels [8], [9], [10], [11] and we follow the same steps
of them. First, the common steps of the proofs are shown.

SupposeX is a normed linear space. In optimization theory,
the space of all bounded linear functionals ofX is called the
normed dual ofX and is denotedX∗. The weak∗ convergence
is defined as follows.

Definition 1. A sequence{x∗
n} in X∗ is said to converge

weak∗ to the elementx∗ if for everyx ∈ X , x∗
n(x) → x∗(x).

In this case we writex∗
n(x)

w∗

→ x∗(x). (See [13], 5.10).

If X is a real normed linear space of all bounded contin-
uous functions onR, X∗ includes the set of all probability



measures, and “weak convergence” of probability measures
is “weak∗ convergence” onX∗. The following theorem is
used to prove the existence and the uniqueness of the capacity
achieving distribution.

Theorem 1. Let J be a weak∗ continuous real-valued func-
tional on a weak∗ compact subsetS of X∗. ThenJ is bounded
on S and achieves its maximum onS. If S is convex andJ is
strictly concave, then the following maximum is achieved by
a uniquex∗ in S. (See [8], [9], and [13], 5.10).

C = max
x∗∈S

J(x∗).

From the above discussion,F is a subset ofX∗. It is
clear thatF is convex. The following proposition statesF
is compact.

Proposition 1. F is compact in the Ĺevy metric topology. (See
[11], proposition 1).

Thus, from theorem 1, ifIT (F ) (or IR(F )) is a weak∗

continuous function onF ∈ F and strictly concave inF , the
capacity is achieved by a unique distributionF0 in F . This is
the first step of the proof. The Kuhn-Tucker (K-T) condition
on the mutual information is used for the next step of the
proof. Before showing the K-T condition, let us define the
weak differentiability.

Definition 2. Let J be a function on a convex setF . Let F0

be a fixed element ofF , and η ∈ [0, 1]. Suppose there exists
a mapJ ′

F0
: F → R such that

J ′
F0

(F ) = lim
η↓0

J((1 − η)F0 + ηF ) − J(F0)

η
, F ∈ F .

Then J is said to be weakly differentiable inF at F0 and
J ′

F0
(F ) is the weak derivative inF at F0. If J is weakly

differentiable inF at F0 for all F ∈ F , J is said to be
weakly differentiable inF .

And the K-T condition is described as follows,

Proposition 2. AssumeJ is a weakly differentiable, concave
functional on a convex setF . If J achieves its maximum on
F at F0, then a necessary and sufficient condition forF0 to
attain the maximum is to satisfy the following inequality for
all F ∈ F (See [11], proposition 1)

J ′
F0

(F ) ≤ 0.

If IT (F ) (or IR(F )) is weakly differentiable, the K-T
condition is derived with the theorem. Finally, the discrete-
ness is proved by deriving a contradiction based on the K-
T condition and the assumption thatF0 has infinite points
of increase. Thus, in order to show the discreteness of the
capacity achieving distribution for temporal and rate codings,
the following properties must be shown.

1) IT (F ) and IR(F ) are weak∗ continuous onF and
strictly concave.

2) IT (F ) andIR(F ) are weakly differentiable.
If they are true, the K-T condition is derived and the discrete-
ness and the finiteness will be checked.

B. Discreteness of the Capacity Achieving Distribution for
Temporal Coding

In this subsection, the capacity achieving distribution for
temporal coding is shown to be a discrete distribution with a
finite number of points. The following lemma 2 and theorem
1 imply the capacity for temporal coding is achieved by a
unique distribution inF . The details of proofs will be found
in [12].

Lemma 2. IT (F ) in eq.(1) is a weak∗ continuous function on
F ∈ F and strictly concave inF .

In order to show it is a discrete distribution, the following
lemma and corollary are used.

Lemma 3. IT (F ) in eq.(1) is weakly differentiable inF . The
weak derivative atF0 ∈ F is

I ′T,F0
(F ) =

∫ b

a

iT (θ; F0)dF − IT (F0).

Corollary 1. Let E0 denote the points of increase ofF0(θ)
on θ ∈ [a, b]. F0 is optimal if and only if

iT (θ; F0) ≤ IT (F0), ∀θ ∈ Θ,

iT (θ; F0) = IT (F0), ∀θ ∈ E0.

(This is proved following the same steps in [11], corollary 1.)

The main result of this subsection is summarized in the
following theorem.

Theorem 2. Under the constraintθ ∈ Θ, the channel capacity
of a single neuron channel with temporal coding is achieved
by a discrete distribution with a finite number of mass points.

Proof: The extension ofiT (θ; F0) to the complex plain
z is analytic for Re z > 0. Let us denote the function as
iT (z; F0).

iT (z; F0) = −κ ln z −

∫ ∞

0

p(τ |z; κ) ln g(τ ; F0, κ)dτ,

where g(τ ; F0, κ) =

∫ b

a

exp[−τ/θ]

θκ
dF0(θ).

If E0 in corollary 1 has infinite points,E0 has a limit point.
Hence, the identity theorem impliesiT (z; F0) = IT (F0) for
the regionRe z > 0. This region includes the positive real line
and

−

∫ ∞

0

p(τ |θ; κ) ln g(τ ; F0, κ)dτ = κ ln θ + IT (F0), (3)

is implied for θ > 0. However, it is not difficult to show the
LHS of eq.(3) is bounded as follows.

−

∫ ∞

0

p(τ |θ; κ) ln g(τ ; F0, κ)dτ ≥
κθ

b
+ κ ln a.

The LHS of eq.(3) grows at least withκθ/b+const while the
RHS isκ ln θ+const′. This cannot hold forθ ∈ R

+. This is a
contradiction and the optimal distribution has a finite number
of mass points.



C. Discreteness of the Capacity Achieving Distribution for
Rate Coding

The capacity achieving distribution of a Poisson channel
under peak and average power constraints has been proved to
be discrete with a finite point of supports [10]. This directly
proves the caseκ = 1 of rate coding. Forκ 6= 1 further study
is needed. The following lemma 4 and theorem 1 imply the
capacity for rate coding is achieved by a unique distribution
in F . The details of proofs will be found in [12].

Lemma 4. IR(F ) in eq.(2) is a weak∗ continuous function
on F ∈ F and strictly concave inF . (The strict concavity
follows the proof in§7.2 of [10].)

Lemma 5. IR(F ) in eq.(2) is weakly differentiable inF . The
weak derivative atF0 ∈ F is

I ′R,F0
(F ) =

∫ b

a

iR(θ; F0)dF − IR(F0). (4)

(The proof is identical to the proof of lemma 3.)

Corollary 2. Let E0 denote the points of increase ofF0(θ)
on θ ∈ [a, b]. F0 is optimal if and only if

iR(θ; F0) ≤ IR(F0), ∀θ ∈ Θ,

iR(θ; F0) = IR(F0), ∀θ ∈ E0.

(This is proved following the same steps in [11], corollary 1.)

The following theorem proves that the capacity achieving
distribution is a discrete distribution with a finite numberof
mass points.

Theorem 3. Under the constraintθ ∈ Θ, the channel capacity
of a single neuron channel with rate coding is achieved by a
discrete distribution with a finite number of mass points.

Outline of proof: The extension ofiR(θ; F ) to the
complex plainz is defined as

iR(z; F ) =
∞∑

r=0

p(r|z; κ, ∆) ln
p(r|z; κ, ∆)

p(r; F, κ, ∆)
,

p(r|z; κ, ∆) = P (rκ, ∆/z) − P ((r + 1)κ, ∆/z).

SinceP (α, z) and ln z is analytic forRe z > 0, iR(z; F0) is
analytic forRe z > 0. If E0 in corollary 2 has infinite points,
E0 has a limit point. Hence the identity theorem implies
iR(z; F0) = IR(F0) for the regionRe z > 0. This region
includes positive real line and the following is implied

∞∑

r=0

p(r|θ; κ, ∆) ln
p(r|θ; κ, ∆)

p(r; F0, κ, ∆)
= IR(F0), θ ∈ R

+.

The proof is completed by deriving a contradiction.

IV. N UMERICAL STUDIES

A. Common Steps

Although the capacity achieving distribution of each coding
is proved to be discrete with a finite number of mass points,
position and probability of each point are not provided. In this

section, the capacity and the capacity achieving distribution is
computed numerically for each coding.

The strategy to compute the capacity and the capacity
achieving distributions for temporal and rate coding is as
follows. Other related works use similar methods [8], [9], [11].

1) Initialize the number of the pointsN as 2.
2) Set the position and probability of each point asθj and

πj , ( j = {1, · · · , N}), respectively.
a ≤ θ1 < · · · , < θN ≤ b,

∑N

j=1
πj = 1, πj > 0, j ∈

{1, · · · , N}.
3) Starting from some initial values, maximize the corre-

sponding mutual information (IT (F ) or IR(F )) with
respect to{θi} and {πi} until convergence with a
gradient method.

4) Check the corresponding K-T condition to see if it is
the capacity achieving distribution.

5) If K-T condition is satisfied, exit, otherwise increaseN
by 1 and go to step 2.

The computation of each step is difficult sinceiT (θ; F ) in
eq.(1) oriR(θ; F ) in eq.(2) are not provided in closed forms.
We evaluatediT (θ; F ) with the Gauss-Laguerre quadrature
and iR(θ; F ) with truncated series. The range ofθ is set to
5/κ ≤ θ ≤ 50/κ which makes the expected firing rate from
5 msec to 50 msec. The capacity and the capacity achieving
distribution for each coding are computed for every 0.05 of
κ ∈ [0.75, 4.5].

B. Numerical Results

Figure 3 (left) shows the computed capacity for eachκ. The
informationCT increases monotonically asκ increases. This
is natural since ISIs become more regular asκ increases and
more information can be sent. The capacity becomes larger
than 1 bit whenκ becomes3.85. The capacity achieving
distributions are shown in Fig. 3 (right). For eachκ, the
distribution has only 2 or 3 points. Moreover, two of them
are both ends of the rangeΘ(κ) (a0/κ and b0/κ). If κ is
smaller than 2.10, there are only 2 points. When it is equal
to 2.10, the number of points becomes 3. The position of the
third point is very stable. The probabilities of both ends tend
to be similar, while the probability of the third point increases
gradually asκ increases.
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Fig. 3. CapacityCT (bit per channel use) as a function ofκ (left). The
capacity achieving distribution of eachκ (right): since the range ofθ scales
with κ, κθ is taken as an axis. Probability of each point is shown as the
height. The axis forκθ is log-scaled for visual clarity.

In rate coding, the time window∆ must be defined. Since
the average time for sending a symbol with temporal coding
is around 25 msec,∆ is set to 25 msec in the numerical
experiment. Fig. 4 (left) shows the computed channel capacity



for eachκ. CR increases monotonically asκ increases. The
value is larger thanCT for the sameκ. It becomes larger than
1 bit whenκ becomes 2.15.

The capacity achieving distributions are shown in Fig. 4
(right). For eachκ, the distribution has 2 to 4 discrete points
and two of them are both ends of the rangeΘ(κ) (a0/κ and
b0/κ). If κ is smaller than 1.25, there are only 2 points. Above
1.25, there are 3 points and it becomes 4 whenκ becomes
4.0. The probabilities of both ends tend to be similar, while
the probability of the third point increases gradually asκ
increases. When the number of mass points is 4, two middle
points have similar probability.
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Fig. 4. CapacityCR (bit per channel use) as a function ofκ (left). The
capacity achieving distribution of eachκ (right): Probability of each point is
shown as the height. The axis forκθ is log-scaled for visual clarity.

CT andCR are the maximum information transferred per a
channel use. It is also important to show the information rate.
In the case of temporal coding, we define the rateC′

T bps as
C′

T = CT /τ , whereτ = κ
∑N

j=1
πjθj and show it in Fig.5

(left). In the case of rate coding, the maximum information
transferred per time is easily computed since∆ is fixed, let
us defineC′

R = CR/∆ bps, which is shown in Fig.5 (right).
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Fig. 5. Information rate of temporal coding (left) and rate coding (right).

V. D ISCUSSION

The transmission of information through a single neuron is
perhaps the most basic processing of information carried out
by the brain. This paper assumed the output of a neuron is
a gamma-distributed spike train. Furthermore, the information
transmission was modeled by a communication channel whose
output is either the time between successive spikes (ISI) or
the number of spikes in a unit of time (rate), corresponding to
temporal coding and rate coding respectively. The numerical
studies show that the channel capacity of a “typical” neuron
is less than 100 bps, which is consistent with the biological
measurements reported in [4] and is lower than what was
reported in [3] where temporal coding is considered. For the
rate coding, Stein numerically computed the capacity [6]. His
result is almost identical to our numerical results. However,
Stein assumed that the channel capacity achieving distribution
is a discrete distribution. We believe this paper gives the

the first proof for the discreteness of the channel capacity
distribution for everyκ > 0.

Interestingly, this paper proved that the capacity achieving
distributions are discrete and have only a finite number of
probability mass points. This has several implications. It
allows for the capacity to be computed numerically. Further-
more, it may prove to be helpful for measuring the capacity of
a neuron [4], since it implies that only a few modes of inputs
are necessary in order to measure the capacity accurately.

Even if our models of the neuron are accurate, the resulting
capacity calculations would not be biologically attainable;
there is no biological evidence to suggest the input to a neuron
follows a discrete distribution, nor is it likely the outputcan
be measured exactly. Nevertheless, we hope our results serve
as a general guide for how much information can be obtained
from a single recording. This may help neurophysiological
experiments where the results of many trials are accumulated.

In terms of further work, we remark that there are many
tunable parameters, such asκ, ∆, a0, andb0. Their admissible
values are likely to depend on the type of neuron under
consideration. For example, we chose to setκ to between
0.75 to 4.5, but [5] suggested that it may be as high as 15
for some cells. Another issue is that we have only considered
independent sources. This should be extended to correlated
sources.
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