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Abstract

The mystery of belief propagation (BP) decoder, especially of the turbo
decoding, is studied from information geometrical viewpoint. The loopy
belief network (BN) of turbo codes makes it difficult to obtain the true
“belief” by BP, and the characteristics of the algorithm and its equilib-
rium are not clearly understood. Our study gives an intuitive understand-
ing of the mechanism, and a new framework for the analysis. Based on
the framework, we reveal basic properties of the turbo decoding.

1 Introduction

Since the proposal of turbo codes[2], they have been attracting a lot of interests because
of their high performance of error correction. Although the thorough experimental results
strongly support the potential of this iterative decoding method, the mathematical back-
ground is not sufficiently understood. McEliece et al.[5] have shown its relation to the
Pearl’s BP, but the BN for the turbo decoding is loopy, and the BP solution gives only an
approximation.

The problem of the turbo decoding is a specific example of a general problem of marginaliz-
ing an exponential family distribution. The distribution includes higher order correlations,
and its direct marginalization is intractable. But the partial model with a part of the corre-
lations, can be marginalized with BP algorithm exactly, since it does not have any loop. By
collecting and exchanging the BP results of the partial models, the true “belief” is approxi-
mated. This structure is common among various iterative methods, such as Gallager codes,
Bethé approximation in statistical physics[4], and BP for loopy BN.

We investigate the problem from information geometrical viewpoint[1]. It gives a new
framework for analyzing these iterative methods, and shows an intuitive understanding of
them. Also it reveals a lot of basic properties, such as characteristics of the equilibrium, the
condition of stability, the cost function related to the decoder, and the decoding error. In this



paper, we focus on the turbo decoding, because its structure is simple, but the framework
is general, and the main results can be generalized.

2 Information Geometrical Framework

2.1 Marginalization, MPM Decoding, and Belief

Let us consider a distribution of x = (x1, · · · , xN )T which is defined as follows

p(x) = C exp(c0(x) + c1(x) + · · · + cK(x)), (1)

where, c0(x) is the linear function of {xi}, and each ck(x) is the higher order correlations
of {xi}. The problem of turbo codes and similar iterative methods are to marginalize this

distribution. LetΠ denote the operator of marginalization as, Π◦p(x) def=
∏N

i=1 p(xi). The
marginalization is equivalent to take the expectation of x as

η
def=

∑
x

xp(x), η = (η1, · · · , ηN )T .

In the case of MPM (maximization of the posterior marginals) decoding, x i ∈ {−1,+1}
and the sign of each ηi is the decoding result. In the belief network, x i ∈ {0, 1} and ηi is
the belief. In these iterative methods, the marginalization of eq.(1) is not tractable, but the
marginalization of the following distribution is tractable.

pr(x; ξ) = exp (c0(x) + cr(x) + ξ · x − ϕr(ξ)) , r = 1, · · · ,K, ξ ∈ RN . (2)

Each pr(x; ξ) includes only one of the {ck(x)} in eq.(1), and additional parameter ξ is
used to adjust linear part of x. The iterative methods are exchanging information through
ξ for each pr, and finally approximateΠ◦p(x).

2.2 The Case of Turbo Decoding
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Figure 1: Turbo codes

In the case of turbo codes, x is the information bits, from which the turbo encoder generates
two sets of parity bits, y1 = (y11, · · · , y1L)T , and y2 = (y21, · · · , y2L)T , y1j , y2j ∈
{−1,+1} (Fig.1). Each parity bit is expressed as the form

∏
i xi, where the product is

taken over a subset of {1, · · · , N}. The codeword (x,y1,y2) is then transmitted over a
noisy channel, which we assume BSC (binary symmetric channel) with flipping probability
σ < 1/2. The receiver observes (x̃, ỹ1, ỹ2), x̃i, ỹ1j , ỹ2j ∈ {−1,+1}.

The ultimate goal of the turbo decoding is the MPM decoding of x based on p(x| x̃, ỹ1, ỹ2).
Since the channel is memoryless, the following relation holds

p(x̃, ỹ1, ỹ2|x) = exp (βx̃ · x + βỹ1 · y1 + βỹ2 · y2 − (N + 2L)ψ(β))

β > 0, σ =
1
2
(1 − tanhβ), ψ(β) def= ln(eβ + e−β).



By assuming the uniform prior on x, the posterior distribution is given as follows

p(x|x̃, ỹ1, ỹ2) =
p(x̃, ỹ1, ỹ2|x)∑
x p(x̃, ỹ1, ỹ2|x)

= C exp (βx̃ · x + βỹ1 · y1 + βỹ2 · y2)

= C exp (c0(x) + c1(x) + c2(x)) .
(3)

Here C is the normalizing factor, and c0(x) = βx̃·x, cr(x) = βỹr·yr (r = 1, 2).
Equation(3) is equivalent to eq.(1), where K = 2. When N is large, marginalization of
p(x|x̃, ỹ1, ỹ2) is intractable since it needs summation over 2N terms. Turbo codes uti-
lize two decoders which solve the MPM decoding of pr(x; ξ) (r = 1, 2) in eq.(2). The
distribution is derived from p(x̃, ỹr|x) and the prior of x which has the form of

ω(x; ξ) = exp(ξ · x − ψ(ξ)).

ω(x; ξ) is a factorizable distribution. The marginalization of p( x̃, ỹr|x) is feasible since
its BN is loop free. The parameter ξ serves as the window of exchanging the information
between the two decoders. The MPM decoding is approximated by updating ξ iteratively
in “turbo” like way.

2.3 Information Geometrical View of MPM Decoding

Let us consider the family of all the probability distributions over x. We denote it by S,
which is defined as

S =

{
p(x)

∣∣∣p(x) > 0,x ∈ {−1,+1}N ,
∑
x

p(x) = 1

}
.

We consider an e–flat submanifold M0 in S. This is the submanifold of p0(x; θ) defined
as

M0 =
{
p0(x; θ) = exp (c0(x) + θ · x − ϕ0(θ)) |θ = (θ1, · · · , θN )T ∈ RN

}
. (4)

Since c0(x) = βx̃ · x, every distribution ofM0 can be rewritten as follows

p0(x; θ) = exp (c0(x) + θ · x − ϕ0(θ)) = exp ((βx̃ + θ) · x − ϕ0(θ)) .

It shows that every distribution ofM0 is decomposable, or factorizable. From the informa-
tion geometry[1], we have the following theorem ofm–projection.

Theorem 1. LetM be ane–flat submanifold inS, and letq(x)∈S. The point inM that
minimizes the KL-divergence fromq(x) toM , is denoted by,

ΠM◦q(x) = argmin
p(x)∈M

D[q(x); p(x)],

and is called them–projection ofq(x) toM . Them–projection is unique.

It is easy to show that the marginalization corresponds to them–projection toM 0[7]. Since
MPM decoding and marginalization is equivalent, MPM decoding is also equivalent to the
m–projection toM0.

2.4 Information Geometry of Turbo Decoding

Let πM◦q(x) denote the parameters in M of them–projected distribution,

πM◦q(x) = argmin
θ∈RN

D[q(x); p(x; θ)].

The turbo decoding process is written as follows,



1. Let ξt
1 = 0 for t = 0, and t = 1.

2. Project p2(x; ξt
1) ontoM0 as θ = πM0◦p2(x; ξt

1), and calculate ξt+1
2 by

ξt+1
2 = πM0◦p2(x; ξt

1) − ξt
1.

3. Project p1(x; ξt+1
2 ) ontoM0 as θ = πM0◦p1(x; ξt+1

2 ), and calculate ξt+1
1 by

ξt+1
1 = πM0◦p1(x; ξt+1

2 ) − ξt+1
2 .

4. If πM0◦p1(x; ξt+1
2 ) 	= πM0◦p2(x; ξt+1

1 ), go to step 2.

The turbo decoding approximates the estimated parameter θ ∗, the projection of
p(x|x̃, ỹ1, ỹ2) ontoM0, as θ∗ = ξ∗

1 + ξ∗
2 , where the estimated distribution is

p0(x; θ∗) = exp (c0(x) + ξ∗
1 · x + ξ∗

2 · x − ϕ0(ξ∗
1 + ξ∗

2)) . (5)

An intuitive understanding of the turbo decoding is as follows. In step 2, (ξ ∗
2 ·x) in eq.(5) is

replaced with c2(x). The distribution becomes p2(x; ξ∗
1), and ξ∗

2 is estimated by projecting
it onto M0. In step 3, (ξ∗

1 · x) in eq.(5) is replaced with c1(x), and ξ∗
1 is estimated by m–

projection of p1(x; ξ∗
2).

We now define the submanifold corresponding to each decoder,

Mr =
{
pr(x; ξ) = exp (c0(x) + cr(x) + ξ · x − ϕr(ξ))|ξ = (ξ1, · · · , ξN )T ∈ RN

}
r = 1, 2.

ξ is the coordinate system of Mr. Mr is also an e–flat submanifold. M1 	=M2 and
Mr 	= M0 hold because cr(x) includes cross terms of x and c1(x)	=c2(x) in general.
The information geometrical view of the turbo decoding is schematically shown in Fig.2.

3 The Properties of Belief Propagation Decoder

3.1 Equilibrium

When the the turbo decoding converges, equilibrium solution defines three important dis-
tributions, p1(x; ξ∗

1), p2(x; ξ∗
2), and p0(x; θ∗). They satisfy the following two conditions:

1. Π◦p1(x; ξ∗
2) = Π◦p2(x; ξ∗

1) = p0(x; θ∗). (6)

2. θ∗ = ξ∗
1 + ξ∗

2 . (7)

Let us define a manifold M(θ) as

M(θ) =

{
p(x)

∣∣∣p(x) ∈ S,
∑

x

p(x)x =
∑
x

p0(x; θ)x

}
.

From its definition, for any p(x)∈M(θ), the expectation of x is the same, and its m–
projection to M0 coincides with p0(x; θ). This is an m–flat submanifold[1], and we call
M(θ) an equimarginal submanifold. Since eq.(6) holds, p 0(x; θ∗), p1(x; ξ∗

2), p2(x; ξ∗
1) ∈

M(θ∗) is satisfied.

Let us define an e–flat version of the submanifold as E(θ ∗), which connects p0(x; θ∗),
p1(x; ξ∗

2), and p2(x; ξ∗
1) in log-linear manner

E(θ∗) =

{
p(x) = Cp0(x;θ∗)t0p1(x;ξ∗

2)t1p2(x;ξ∗
1)t2

∣∣∣ 2∑
r=0

tr = 1

}
.

Since eq.(7) holds, p(x|x̃, ỹ1, ỹ2) is included in the E(θ). It can be proved by taking
t0 = −1, t1 = t2 = 1.
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Figure 2: Turbo decoding
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Figure 3: M(θ∗) and E(θ∗)

Theorem 2. When the turbo decoding procedure converges, the convergent probability dis-
tributionsp0(x; θ∗), p1(x; ξ∗

2), andp2(x; ξ∗
1) belong to equimarginal submanifoldM(θ ∗),

while itse–flat versionE(θ∗) includes these three distributions and also the posterior dis-
tribution p(x|x̃, ỹ1, ỹ2) (Fig.3).

If M(θ∗) includes p(x|x̃, ỹ1, ỹ2), p(x; θ∗) is the true marginalization of p(x|x̃, ỹ1, ỹ2).
However, M(θ∗) does not necessarily include p(x|x̃, ỹ1, ỹ2). This fact means that
p(x|x̃, ỹ1, ỹ2) and p0(x; θ∗) are not necessarily equimarginal, which is the origin of the
decoding error.

3.2 Condition of Stability

The expectation parameters are defined as follows with ϕ0 in eq.(4) and ϕr in eq.(2)

η0(θ) def=
∑

x

xp0(x; θ) = ∂θϕ0(θ), ηr(ξ) def=
∑

x

xpr(x; ξ) = ∂ξϕr(ξ) r = 1, 2.

Equation (6) is rewritten as follows with these parameters,

η0(θ∗) = η1(ξ∗
2) = η2(ξ∗

1).

We give a sufficiently small perturbation δ to ξ∗
1 and apply one turbo decoding step. The

m–projection from p2(x; ξ∗ + δ) toM0 gives,

η0(θ∗ +∆θ) = η2(ξ∗
1 + δ)

∆θ = G0(θ∗)−1G2(ξ∗
1)δ.

Here, G0(θ) is the Fisher information matrix of p0(x; θ), and Gr(ξ) is that of pr(x; ξ),
(r = 1, 2). Note that G0(θ) is a diagonal matrix. The Fisher information matrix is defined
as follows

G0(θ) = ∂θθ′ϕ0(θ) = ∂θη0(θ), Gr(ξ) = ∂ξξ′ϕr(ξ) = ∂ξηr(ξ), r = 1, 2.

ξ2 in step 2 will be,

ξ2 = ξ∗
2 +

(
G0(θ∗)−1G2(ξ∗

1) − IN
)
δ.

Here, IN is an identity matrix of size N . Following the same line for step 3, we derive the
theorem which coincides with the result of Richardson[6].



Theorem 3. Letλi be the eigenvalues of the matrixT defined as

T =
(
G0(θ∗)−1G1(ξ∗

2) − IN
) (
G0(θ∗)−1G2(ξ∗

1) − IN
)
.

When|λi| < 1 holds for alli, the equilibrium point is stable.

3.3 Cost Function and Characteristics of Equilibrium

We give the cost function which plays an important role in turbo decoding.

F(ξ1, ξ2) = ϕ0(θ) − (ϕ1(ξ2) + ϕ2(ξ1)).
Here, θ = ξ1 + ξ2. This function is identical to the “free energy” defined in [4].
Theorem 4. The equilibrium stateξ∗

1 , . . . , ξ
∗
K is the critical point ofF .

Proof. Direct calculation gives ∂ξ1F = η0(θ)−η2(ξ1), ∂ξ2F = η0(θ)−η1(ξ2). For the
equilibrium, η0(θ∗) = η1(ξ∗

2) = η2(ξ∗
1) holds, and the proof is completed.

When (ξt+1
r − ξt

r) is small,(
ξt+1
1

ξt+1
2

)
−

(
ξt
1

ξt
2

)
� −

(
O G0(θ)−1

G0(θ)−1 O

)(
∂ξ1F
∂ξ2F

)
.

This shows how the algorithm works, but it does not give the characteristics of the equilib-
rium point. The Hessian of F is

H =
(
∂ξ1ξ1F ∂ξ1ξ2F
∂ξ2ξ1F ∂ξ2ξ2F

)
=

(
G0 −G1 G0

G0 G0 −G2

)
.

And by transforming the variables as, θ = ξ1 + ξ2 and ν = ξ1 − ξ2, we have(
∂θθF ∂θνF
∂νθF ∂ννF

)
=

1
4

(
4G0(θ) − (G1 +G2) (G1 −G2)

(G1 −G2) −(G1 +G2)

)
.

Most probably, ∂θθF is positive definite but ∂ννF is always negative, and F is generally
saddle at equilibrium.

3.4 Perturbation Analysis

For the following discussion, we define a distribution p(x; θ,v) as

p(x; θ,v) = exp (c0(x) + θ · x + v · c(x) − ϕ(θ,v)) , v = (v1, v2)T ,

ϕ(θ,v) = ln
∑

x

exp (c0(x) + θ · x + v · c(x)) , c(x) def=(c1(x), c2(x))T .

This distribution includes p0(x; θ) (v = ), p(x|x̃, ỹ1, ỹ2) (θ = , v = ), and pr(x; ξ)
(θ = ξ, v = er), where  = (1, 1)T , e1 = (1, 0)T , and e2 = (0, 1)T . The expectation
parameter η(θ,v) is defined as,

η(θ,v) = ∂θϕ(θ,v) =
∑
x

xp(x; θ,v).

Let us considerM(θ∗), where every distribution p(x; θ,v)∈M(θ∗) has the same expecta-
tion parameter, that is, η(θ,v) = η(θ∗) holds. Here, we define, η(θ∗) = η(θ∗,). From
the Taylor expansion, we have,

ηi(θ,v) = ηi(θ∗) +
∑

j

∂jηi(θ∗)∆θj +
∑

r

∂rηi(θ∗)vr +
1
2

∑
r,s

∂r∂sηi(θ∗)vrvs

+
∑
j,r

∂r∂jηi(θ∗)vr∆θj +
1
2

∑
k,l

∂k∂lηi(θ∗)∆θk∆θl +O(‖v‖3) +O(‖∆θ‖3).
(8)



The indexes {i, j, k, l} are for θ, {r, s} are for v, and ∆θ
def=θ − θ∗. After adding some

definitions, that is, ηi(θ,v) = ηi(θ∗), and ∂jηi(θ∗) = gij(θ∗), where {gij} is the Fisher
information matrix of p(x; θ∗,) which is a diagonal matrix, we substitute∆θ i with func-
tion of vr up to its 2nd order, and neglect the higher orders of v r. And we have,

∆θi�−gii
∑

r

Airv
r−g

ii

2

∑
r,s

(
∂r−

∑
k

gkkAkr∂k

)(
∂s−

∑
j

gjjAjs∂j

)
ηi(θ∗)vrvs,

(9)

where, gii = 1/gii, and Air = ∂vrηi(θ∗).

Let v = e1, and since p(x; θ, e1) = p1(x; θ) ∈ M(θ∗) holds, θ = ξ∗
2 and ∆θ =

ξ∗
2 − θ∗ = −ξ∗

1 . Also when we put v = e2, ∆θ = −ξ∗
2 holds. From eq.(9), we have the

following result,

−ξi,∗
r �− giiAir −

gii

2

(
∂r −

∑
k

gkkAkr∂k

)(
∂r −

∑
j

gjjAjr∂j

)
ηi(θ∗). (10)

Next, let v = , and we consider p(x; θ̄,) ∈ M(θ∗), where θ̄ is the parameter which
satisfies this equation. Since p(x; ,) = p(x|x̃, ỹ1, ỹ2) is not necessarily included in
M(θ∗), θ̄ is generally not equal to . From eq.(9),

θ̄i − θi,∗ � −gii
∑

r

Air −
gii

2

∑
r

(
∂r −

∑
k

gkkAkr∂k

)(
∂r −

∑
j

gjjAjr∂j

)
ηi(θ∗).

From the condition θ∗ = ξi
1 + ξi

2 and eq.(10), we have the following approximation,

θ̄i � −g
ii

2

∑
r �=s

(
∂r −

∑
k

gkkAkr∂k

)(
∂s −

∑
j

gjjAjs∂j

)
ηi(θ∗).

This result gives the approximation accuracy of the BP decoding. Let the true belief be
ηMPM , and we evaluate the difference between ηMPM and η(θ∗) on M0. The result is
summarized in the following theorem.

Theorem 5. The true expectation ofx, which isηMPM = η(,), is approximated as,

ηMPM � η(θ∗) +
1
2

∑
r �=s

(
∂r−

∑
k

gkkAkr∂k

)(
∂s−

∑
j

gjjAjs∂j

)
η(θ∗). (11)

Whereη(θ∗) is the solution of the turbo decoding.

Equation (11) is related to them–embedded–curvature of E(θ ∗) (Fig.3). The result can be
extended to general case whereK≥3 [3, 8].

4 Discussion

We have shown a new framework for understanding and analyzing the belief propagation
decoder.

Since the BN of turbo codes is loopy, we don’t have enough theoretical results for BP
algorithm, while a lot of experiments show that it works surprisingly well in such cases.
The mystery of the BP decoders is summarized in 2 points, the approximation accuracy
and the convergence property.

Our results elucidate the mathematical background of the BP decoding algorithm. The
information geometrical structure of the equilibrium is summarized in Theorem 2. It shows



the e–flat submanifold E(θ∗) plays an important role. Furthermore, Theorem 5 shows that
the relation between E(θ∗) and them–flat submanifoldM(θ∗) causes the decoding error,
and the principal component of the error is the curvature of E(θ ∗). Since the curvature
strongly depends on the codeword, we can control it by the encoder design. This shows a
room for improvement of the “near optimum error correcting code”[2].

For the convergent property, we have shown the energy function, which is known as Bethé
free energy[4, 9]. Unfortunately, the fixed point of the turbo decoding algorithm is gener-
ally a saddle of the function, which makes further analysis difficult. We have only shown a
local stability condition, and the global property is one of our future works.

This paper gives a first step to the information geometrical understanding of the belief
propagation decoder. The main results are for the turbo decoding, but the mechanism is
common with wider class, and the framework is valid for them. We believe further study
in this direction will lead us to better understanding and improvements of these methods.
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