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Correspondence of limit theorem between sum scheme
and max scheme

Sum Maximum
Infinitely Divisible Max Infinitely Divisible
Sum of random variables Maximum of random variables
µ̂(z) = µ̂n(z)n F(x) = Fn(x)n

(Semi) Selfdecomposable Max (Semi) Selfdecomposble
Sum of Independent r.v. s Maximum of Independent r.v.s
µ̂(z) = µ̂(bz) ˆρ(z) F(x) = F(Tx)Fβ(x)
(Semi) Stable Max (Semi) Stable
Sum of i.i.d. r.v..s Maximum of i.i.d. r.v.s
µ̂(z)a = µ̂(bz)e i⟨c,z⟩ F t(x) = F(Tt(x))

where µ̂ is characteristic functions, F is distribution functions and Tt is an
operator: Rd → Rd
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Result: Max semi selfdecomposabiliy and its
characterization

For independent random vectors {Xi}, suppose normalized maximum
converges weakly to non-degenerate F i.e.

Fn(x) := P(L−1
n

kn∨
i=1

Xi < x)
w→ F(x), n → ∞, Ln ∈ GMA

with uniformity assumption.
Then the limit distribution F is said to be a max semiselfdecomposable
distributions. We denote by MSSD the class of that distributions.

Taking some β ∈ (0, 1], we have decomposition

F(x) = F(Tβx)Fβ(x), Fβ ∈ MID

i.e.
X

d
= T−1

β X ∨ Yβ, X y Yβ, Yβ ∈ MID
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Result: Representation of max semi selfdecomp. dist.

If F is max semiselfdecomposable

then there exists (exponential) measure µ on R
d

such that

F(x) = exp (−µ(Ac
x )) ,

where x = (x1, . . . , xd) and Ax = [−∞, x1] × . . . × [−∞, xd ].
(Balkema & Resnick 1977 J. Appl. Probal. 14 309-319)

Further there exists
finite measure µ0 on R

d

Borel measurable function gn(x), n ∈ Z: Sβ → [0,∞)
with gn(x) − gn+1(x) ≥ 0,
where Sβ = {x∗ ∈ Rd ;max x∗ = max{x∗1 , . . . , x∗d} ≤ 1, maxTβx∗ > 1}

such that

µ(Ac
x ) =

∫
Sβ
µ0(dx)

∑
n∈Z

gn(x)1Ac
x
(Tn
β x).

with some conditions. Converse is true.
(cf. Maejima, Sato, Watanabe 1999 Tokyo J. Math Vol 22 No.2)
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Central Limit Theorem (CLT)

Here we show an experimental example of CLT.

Example: sum of number of ten dice

1000 trials
(Simulation)

36 40 22 36 33 19 47 37
36 31 42 35 26 34 34 34
22 38 34 32 · · ·

the frequency at near 10 or 60 is
low and that at near 35 is high
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CLT and its extension

Suppose that i.i.d. random variables {Xi} have mean µ and variance σ2.

Setting Sn =
∑n

i=1 Xi and we have

n−1/2(Sn − nµ)
d→ Z ∼ N(0, σ2).

convergence to normal distribution with shift nµ and scale n−1/2.

Replacing shift with bn and scale with an, we consider
Sn − bn

an
.

in case without variance? in case without mean?
in case of non-identical distributions? in case of subsequent convergence?
→ Infinitely divisible distributions and its subclasses
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Infinitely divisible distributions and its subclasses

Take random sequence {Xi}. Mean and variance are unnecessary.
Set sum Sn =

∑n
i=1 Xi and scaled and shifted sum a−1

n (Sn − bn). The latter
converges to the followings:

Distributions Identicalness Convergence Independence
Infinitely divisible × Subsequent ×

Stable ⃝ Full sequent ⃝
Semi Stable ⃝ Subsequent ⃝

Selfdecomposable × Full sequent ⃝
Semi Selfdecomposable × Subsequent ⃝

⃝: usually supposed, ×: usually not supposed

Uniformity condition (few r.v.s are not unnaturally big) is necessary.

For extremes (max scheme), we consider maximum Mn = max
1≤i≤n

Xi and

scaled and shifted maximum a−1
n (Mn − bn).

In multidimensional cases, we have similar distributions.
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Characterization by ch.f. and distribution function

Characterizing:
Infinitely divisible distributions (sum scheme) by ch.f. µ̂(z),
Extreme distributions (max scheme) by distribution functionF(x).

In case of sum of random variables:
Put ch.f. (Fourier Transform) for r.v. X as µ̂X(z) = E(e izX).
For independent random variables X1,X2, we have

µ̂X1+X2(z) = E(e iz(X1+X2)) = E(e izX1)E(e izX2) = µ̂X1(z)̂µX2(z).

It is suitable for sum scheme.

In case of maximum of random variables:
Put distirbution function for r.v. X as F(x) = P(X ≤ x).
For independent random variables X1,X2, we have

FX1∨X2(x) = P(X1 ∨ X2 ≤ x) = P(X1 ≤ x)P(X2 ≤ x)

= FX1(x)FX2(x)

It is suitable for maximum scheme.
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Correspondence between sum scheme and max scheme

Sum Maximum
Infinitely Divisible Max Infinitely Divisible
Sum of random variables Maximum of random variables
µ̂(z) = µ̂n(z)n F(x) = Fn(x)n

(Semi) Selfdecomposable Max (Semi) Selfdecomposble
Sum of Independent r.v. s Maximum of Independent r.v.s
µ̂(z) = µ̂(bz) ˆρ(z) F(x) = F(Tx)Fβ(x)
(Semi) Stable Max (Semi) Stable
Sum of i.i.d. r.v..s Maximum of i.i.d. r.v.s
µ̂(z)a = µ̂(bz)e i⟨c,z⟩ F t(x) = F(Tt(x))

where µ̂ is characteristic functions, F is distribution functions and Tt is an
operator: Rd → Rd
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History of limit theorems for max scheme

Year Researcher Limit paper
1928 Fisher Stable Limiting forms of the frequency dist.

& Tippet largest or smallest member of a sample
Proc. Camb. Philos. Soc., 24. 180-190

1977 Balkema Infinitely Max-infinite divisibility.
& Resnick Divisible J. Appl. Prob. 14. 309-319

1986 Gerritse Self Supremum selfdecomp. random vectors
& (Vervaat) decomp. Prob. Theo. Relat. Fields 72 17–33.

1990 Pancheva Self Selfdecomposable Dist. for Maxima
decomp. of Independent Random Vectors

Prob. Theo. Relat. Fields 84 267–278
1993 Grinevich Semi Dom. of att. for max-semistable laws

Stable under linear and power normalizations.
Theory Probab. Appl. 38 no. 4 640–650
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Limit theorem for maximum of i.i.d. r.v.s

Let Xi be i.i.d. r.v.s with mutual distribution F and set maximum

Mn = max
1≤i≤n

Xi .

The distribution function of Mn is

P(Mn < x) = (F(x))n.

Here we take limit as n → ∞, we only have

lim
n→∞

Mn = sup{x : F(x) < 1} a.s.

which is degenerate. But for some distributions F , taking appropriate scale
and shift, we have

P((Mn − bn)/an ≤ x) = (F(anx + bn))
n w→ G(x)

which is non-degenerate distribution.
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Distribution function of max stable distributions

It is known that by taking this limit we have three limit distributions except
type equivalence:

V(x) = U(ax + b).

The class of limit distributions is coincide with the class satisfying

Gt(x) = G(α(t)x + β(t)).

These discussion is very similar to that of sum scheme: for i.i.d. r.v.s with
mutual distributions µ, taking sum Sn =

∑n
i=1 Xi and we have

E (i⟨z, (Sn − bn)/an⟩) = (̂µ(anz + bn))
n → ν̂(z)

and ν̂(z)t = ν̂(a(t)z)e i⟨b(t),z⟩. The limit distribution ν is called stable
distributions. So the former limit distribution G is called max stable.
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Notations

For R
d
(= [−∞,∞)d)−valued random vector sequence

{Xk } =
{(

X (i)
k , 1 ≤ i ≤ d

)}
, 1 ≤ k ≤ n, we set the maximum vector

Mn = X1 ∨ . . . ∨ Xn =

(
max
1≤j≤n

X (i)
j , 1 ≤ j ≤ d

)
.

Denote by GMA the set of all continuous ∨−automorphisms L of R
d
.

i.e. L(x ∨ y) = L(x) ∨ L(y) and there exists inverse mapping L−1.

Tatsuhiko SAIGO (University of Yamanashi) Max SemiSelfdecomposable 2012 July 27th 16 / 25



Max Infinitely Divisible Distributions

ResetMn = Xn1 ∨ . . . ∨ Xnk(n) and

Suppose P (Mn < x)
w→ F(x) non-degenerate.

Assume uniformity assumption

max
1≤j≤kn

P (Xnj > x)→ 0, n → ∞

at any continuity point of F .

Then we call the limit distribution F Max infinitely divisible and
denote the class by MID.

If F ∈ MID then for any integer n, there exists Fn such that

F(x) = (Fn(x))
n.

Balkema & Resnick (1977), Max-Infinite Divisibility,
Journal of Applied Probability 14, No. 2.
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Max Selfdecomposable Distributions

For independent random vectors {Xk }, suppose normalized maximum
converges weakly to non-degenerate F i.e.

Fn(x) := P(L−1
n Mn < x)

w→ F(x), n → ∞, Ln ∈ GMA

And assume uniformity assumption.
Then the limit distribution F is said to be a max selfdecomposable
distributions. We denote by MSD the class of that distributions.

Here, for any β ∈ (0, 1] there exists

Tβ(x) = lim L−1
[nβ] · Ln(x), Ln ∈ GMA

(
R

d
)

and that T =
{
Tβ : β ∈ (0, 1]

}
is 1-parameter semi-group with

Tα(Tβx) = Tα·β(x), α, β ∈ (0, 1].

Pancheva, E. I.(1990) Selfdecomposable Distributions for Maxima of
Independent Random Vectors Prob. Theo. Relat. Fields 84 267–278
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MSD & MID characterization by distribution function

Setting Xnj = L−1
n Xj , we have MSD ⊂ MID.

Suppose F ∈MSD and Fn(x) = P(L−1
n Mn < x)

w→ F(x).
For a β ∈ (0, 1], set

F(1)
n (x) = P(Mnβ < Lnx), F(2)

n (x) = P

(
max

[nβ]+1≤k≤n
Xk < Lnx

)
and we have decomposition Fn(x) = F(1)

n (x)F(2)
n (x).

Since P(M[nβ] < L[nβ]x) = F[nβ](x)
w→ F(x), we have

F(1)
n (x) = P(Mnβ < L[nβ] · (L−1

[nβ] · Lnx))

= F[nβ](L
−1
[nβ] · Lnx)

w→ F(Tβx),

where, Tβ(x) = lim L−1
[nβ]
· Ln(x).We also have F(2)

n
w→ ∃Fβ ∈ MID and limit

decomposition F(x) = F(Tβx)Fβ(x) for any β ∈ (0, 1].
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Max SemiSelfdecomposable Distributions

For independent random vectors {Xk }, suppose normalized maximum
converges weakly to non-degenerate F i.e.

Fn(x) := P(L−1
n Mkn < x)

w→ F(x), n → ∞, Ln ∈ GMA

with uniformity assumption.
Then the limit distribution F is said to be a max semiselfdecomposable
distributions. We denote by MSSD the class of that distributions.
MSD is subset of MSSD.

we have decomposition for some β ∈ (0, 1]

F(x) = F(Tβx)Fβ(x), Fβ ∈ MID

where T =
{
Tβ

}
is 1-parameter semi-group.
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Representation of max semi selfdecomp. dist.

If F is max infinitely divisible

then there exists measure µ on R
d

such that

F(x) = exp (−µ(Ac
x )) ,

where x = (x1, . . . , xd) and Ax = [−∞, x1] × . . . × [−∞, xd ].
(cf. Balkema & Resnick)

If F is max semiselfdecomposable there exists

finite measure µ0 on R
d

Borel measurable function gn(x), n ∈ Z: Sβ → [0,∞)
with gn(x) − gn+1(x) ≥ 0,
where Sβ = {x∗ ∈ Rd ;max x∗ = max{x∗1 , . . . , x∗d} ≤ 1, maxTβx∗ > 1}

such that

µ(Ac
x ) =

∫
Sβ
µ0(dx)

∑
n∈Z

gn(x)1Ac
x
(Tn
β x).

with some conditions.
Converse is true.
(cf. Maejima, Sato and Watanabe ’99)Tatsuhiko SAIGO (University of Yamanashi) Max SemiSelfdecomposable 2012 July 27th 23 / 25



Sketch of Proof 1

First, we establish representation for max infinitely divisible. Define

µ0(E) =
∑
n∈Z

2−|n|
µ(T−n

β E)

µ(T−n
β Sβ)

, E ∈ B(Sβ).

Let [µ]T−n
β Sβ be the restriction of µ to T−n

β Sβ.

Then [µ]T−n
β Sβ is absolutely continuous with respect to µ0 · Tn

β .

So there exists Randon Nikodym derivative hn(x) such that

µ(dx) = hn(x)(µ0 · Tn
β )(dx) on T−n

β Sβ.

So

µ(E) =
∑
n∈Z
µ(E ∩ T−n

β Sβ)

=
∑
n∈Z

∫
Sβ

1E(T
−n
β x)hn(T

−n
β x)µ0(dx).

Here we take g−n(x) = hn(T−n
β x).
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Sketch of Proof 2

Next from the decompostion F(x) = F(Tβx)Fβ(x), Fβ, we have that F ∈
MSSD if and only if µ(A) − µ(TβA) = νβ(A) ≥ 0 for any A ∈ B(Rd).
So

µ(A) − µ(TβA) =

∫
Sβ
µ0(dx)

∑
n∈Z

gn(x)1A (T
n
β x) −

∑
n∈Z

gn(x)1TβA (T
n
β x)


=

∫
Sβ
µ0(dx)

∑
n∈Z

(gn(x) − gn+1(x))1A (T
n
β x) ≥ 0

Thus gn(x) − gn+1(x) ≥ 0.
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