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Sample extreme:

Let X ,X,,X,,...be independent random variables, all with
he same distribution function F.

Consider Y, :=max(X,,X,,..., X, )=X,, for n=12,...

n,n

Probability distribution function of Y. :

P{Y. <x} =P{X <xX,<x,..,X, <x}

indep.

Same

™ E ().

distr.
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Limit theory: what can we say about

P{Y. <x} as n—ow?

If F(x)<1 ,then P{Y, <x}=F"(x)—>0

If F(x)=1,then P{Y <x}=1-1.

Hence we get a degenerate limit (adopts only two values)
which 1s not very interesting. Hence we put Y on the

right scale and location 1.e. we consider
Yn B bn
a

n
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with b some sequence of real numbers (location
correction) and a, some positive numbers (scale
correction).

Then

P{Yn —b, < x}: P{Y. <ax+b}=F"(ax+Dh,)

a

n

We try to find sequences {b,} and {a,} such that
limF"(a x+b,) exists =: G(x) (1)

N—0o0

where G 1s a non-degenerate distribution function 1.e. G
adopts at least 3 values (extreme value condition).
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We are going to find all possibilities for G!

In fact we look at 2 questions:

1. What probability distribution functions G can
occur as a limit in (1)?

. For each of the G found in (1);: what are the
conditions on the original distribution function F
such that (1) holds with this given G? (F 1s 1n the
“domain of attraction of G”, F e D(G))




Preliminary calculations:

F'(ax+b,) > G(x) (forall x with:0<G(x)<1) (1)

I
—nlogF (a,x+b,) > —logG(x) (for x:0<—-logG(Xx) <)

This can hold only if logF (a x+b,)— 0.

Now recall the limit  [im ~log(1-s) —1

s—0 S

and apply with s:=1-F(ax+h,).
We get —logF (a,x+h,)
1-F(ax+Dh,)

> 1
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hence

I
n(1-F(a,x+b,)) > -logG(x),n — oo. (2)

With some effort it can be proved that this also holds
when we replace n by a continuous parameter t:

I
t(1-F(a(t)x+b(t))) > —-logG(x), t >, treal.  (2)

Hence (1) < (2). I want to derive a third equivalent form
for the convergence.

This goes via the Inverse function




Suppose f (x) Is non-decreasing In x for all n.
Consider f~(x), the Inverse function of

n

f (n=1,2,...).

Suppose lim f (x)=g(x) forall xe(a,b)

N—0o0

Then lim f < (x)=9g“(x) forall xe(g(a),g(b))

n—oo N

where g< Is the Inverse function of g. ]

(picture)




We apply this to

1
f(x):= n(1-F(a,x+b,))

1
9(x):= ~logG(x)

According to (2) we have f (x)— g(x) for all x.
Hence f," (x) > g“ (x) for all x.

What are f = and g 1n this case? First f (x):

n




1
== n(1-F(ax+b,))
1

= F(anx+bn):1—i

< ny =

1-F(ax+Db,) ny

1 F“(l—lj—bn
<:>anx+bn:F“(1—j<:>x: ny .

ny

Hence




Simpler notation : U (x):= F“(l—)l(j.

equivalently U (x) = (I_IFJ (%).

This was the inverse of f_ (x). Now about the inverse of g:
1
—logG(x)

1
y

y=g(x)ey= = G(x)=e

— X:G“(e_;).

Conclusion: (1)  2) <




TS (nx)—b,

n '—\)oo an

integer

U (x)-h :G“(e‘i) for x>0. (3")

lim
tv—\>oo at
continuous variable ~ {§  (subtract the same with x=0)

TS (tx)-U (1)
S a

:G“(e‘i)—G“(e‘l)for X>0. (3)




Theorem  Equivalent are:
1) limF"(ax+h,)=G(x)

N—o0

2) lim t(1-F(b(t)+xa(t)))=—logG(x)

o

3) limU (tx)-U(t) _ G*(e‘i)—G“(el)

S al

Soon we shall see the use of this theorem. We proceed
to 1dentify the limit G(x).

The complete class of possible limit distributions G 1s
given 1n the next theorem.
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Theorem (Fisher and Tippett 1928, Gnedenko 1943)

Suppose that for some distribution function F we have

F"(a,x+h,)—>G(x), non-degenerate, for all continuity
points x.

Then G(x)=G, (ax+b) for some a>0 and b where
G, (x):= exp{—(l - 7/X)_;}

for all x with 1+yx>0 and where the parameter y can
have any real value (for »=0 read the formula as

exp{—e}).
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Remark

There are 3 parameters, y, a , b but y 1s the only
Important one, the other two just represent scale and
location. They are arbitrary since by changing the
sequences {a,} and {b,} ,one cangetany a>0 andb .




Proof: We found

F(ax+b,)—>G(x) < J (txg(—t)u (t)

—>G“(ei)—G“(e‘1) :

Note : D(1)=0 . Take x,y >0 and write the identity

U (tyx)-U (t) _ U (tyx)-U (ty) | a(ty) . U (ty)-U(t)
a(t) a(ty) a(t) a(t)

l l l
D(xy) D(x) = A'(y)>0 <« D(y)
(say)
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Hence D(xy)=D(x)A(y)+D(y) forall x,y>0.

We have to solve this functional equation.
We write  D(e™)=D(e’)A’(e')+D(e') for all real s, t.
Introduce H(s)=D(e’) & A(t)=A(e'").

Then
H(t+s)=H(s)A(t)+H(t) Vt,sreal
& H(0)=D(1)=0, A(0)=1

H(t+s)-H(t)=H(s) - A(t)




Write this as
H(t+s)-H(t)

Now H i1s monotone hence 3t where H'(t) exists.

The equality above shows that H'(0) exists hence H'(t)
exists for all t.

Conclusion




Since H cannot be constant, this implies H'(0) >0 .

Write Q(t)=H(t)/H'(0) .
Note Q(0)=0 , Q'(0)=1, Q'(t)=A(t) .

We know

hence

Q(t+5)-Q(t)=Q(s)Alt)




Write again

and, equivalently,

Subtract, then




We know that Q' exists hence we differentiate the
equation and get

Q'(t) Q"(0)=Q"(t)

Q"(t)
Q'(t)

(logQ")'(t)= =Q"(0)=yeR forallt.

Now we just work backwards.




Since Q'(0)=1, by integration we get
logQ'(t)=yt i.e. Q'(t)=¢"

and (since Q(0)=0) again by integration

Q(t) = je”ds Sl

0

(butif y =0 we get Q(t)=t ) .




We go through the transformations
QoH->D->G" -G

In order to 1dentify the function G .

Q—>H: Notethat H(0)=0.Write a:=H"(0).

e’ —1
a.

and (H — D)
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D — G“: going further back recall that

1

D(t) = G“(et)—G“(el)

hence (write b:=G“(e™))

G“(etj:b+a.t _1.
4
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G~ — G: apply G to both sides:

exp{—i} = G(b +a

t7—1j
14

Replace t by (1+ya‘1(x—b))% . We get

d

Quod erat demonstrandum.

( x-b)y
exps—| 1+y——

1\

/

>:G(X),

Laurens de Haan, ISM Japan, 2012
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Consider the graphs of G, .
Note thatif <0

Gy(x):l for xZ—l.
4

That means that no value beyond —%/ 1s possible.

Define in general for a prob. dist. function F

X" =X"(F):=max{x:F(x)<1} <o0.
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Note that for G :

If F'(a,x+b,)—>G (x),for F we have similar behaviour

y>0=x (F)=o
y<0=X(F)<ow
7 =0:can be both

Hence: y<0=Xx"(F) <.
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We consider the cases, y >0, y =0, y <0 separately.




Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, 2012

1) y=0: G,(x)=exp(-€e").
Note that 0<G,(x)<1for all x hence the distribution

has no lower or upper bound (all real values are
possible).  Also, since

Ay
lim1 c =1, we have with y=¢™

y—0 y

im! =G () .

X—>00 e

Hence the tall of the distribution (=1-G,(x)) goes

down to zero very quickly. This means for example
that all moments exists (are finite). We say that the
listribution 1s light tailed.
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2) y>0: Note that G (x) <1 for all x hence there 1s no

upper bound. Also, we see

1—
im Gyl(x) _

hence the tail 1s approximately a power function

x_% .

This means that 1-G (x) goes to zero much more
slowly than 1n the case y =0.

In particular some moments are not finite. We say
that in this case the distribution is heavy tailed.

Note: often 1n finance we have this case y > 0.
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3) y<0:Note that G (x)=1forall x>-1/y.

Hence no values larger than —1/y are possible.

We say that the distribution is short tailed.

Note: In environmental data we often find » close
to zero. In financial data we often find y positive.
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In some cases we can simplity the formula for G :

1) > 0: In the formula
G, (x) =exp|—(1+y(ax+b)) |
we can choose a=1/y and b=1/y. Then

1

G, (X)=exp—X ’
In this case one simplifies by writing « for 1/ and

we get (traditionally)
@, (x)=exp—(x) for x>0 (and =0 for x<0).

In this form it is referred to as the Fréchet class of
extreme value distributions (« >0).
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2) y<0: Take a=—'and b=-—
4

in the formula
G, (x) =exp|—(1+y(ax+b)) |

and write « (again!) for s

Then we get
¥, (x)=exp| —(-x)]| for x<0 (and =1 for x>1).

In this form it is referred to as the reverse-Weibull class
of distributions (« > 0).




Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, 2012

3) y=0:

G (x)= exp{—( ‘X)}.

This one 1s sometimes called the
distribution.

We are now able to reformulate the Theorem:

Gumbel
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Theorem
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For y <R the following statements are equivalent:

1) There exist real constants a_>0 and b_ real, such that

limF"(a x+b,) > G (x)=exp

N—0o0

for all x with 1+yx>0 .

(~(1+ %)

1

) @
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2) There exists a positive function a such that for x>0
U (tx)-U(t) _x —1’ 5)
t—o0 a(t) 7/
where for y =0 the right-hand side Is Interpreted as
log X .

3) There exists a positive function a such that
limt(1-F (a(t)x+U (t)))=(1+x)",

o

for all x with 1+yx>0 .




4) There exist a positive function f such that

. 1-F(t+xf (1))
MI-F ()

for all x which 1+yx>0,where x" =sup{x:F(x)<1} .

=(1+yx)7, (7)

Moreover (4) holds with b, :=U(n) and a,:=a(n). Also (7)
holds with f (t)=a(1/(1-F(t))) .
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Remark:
We say that FeD(G,) if the conditions of the Theorem

hold for F. The parameter y is called the extreme value
index.

The class of distributions satisfying the condition is very
wide.

The condition reflects a property of the far tail of F.

Let us look at three cases: y >0, y=0and y <0 .
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y >0

It can be proved that in that case one can take f(t)=t
1n (7).

Hence F € D(G, ) with y >0 if and only if

liml_F(tX) X 7 for x>0
e 1-F(t)

(““F has regularly varying tail”).
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Such distribution function 1s called “heavy tailed” since

E(maX(X,O))a = <

Hence not all moments exist.
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Sufficient condition:

Examples: Cauchy’s distribution
Any Student distribution

Pareto distribution F (x) —1—x"




Sufficient condition:

where X" := sup{X‘F(X)<1

“Light tailed” since ~ E(max(X,0)) <o Va>0

Examples: Normal distribution
Exponential distribution
Any Gamma distribution
Lognormal distribution
F(x)=1+¢” for x<0
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y <0

Then the probability distribution has an upper bound:

=1 for X> some X
F(X):<

<] for x<Xx .

.

It can be proved that one can take f (t)=—y(x —t).
Leads to a simple criterion:

1_F(X*_tx):x% for x>0

iy I-F(x" —t)

(1s again a kind of regular variation condition)
“Short tailed”
Examples: uniform distribution

any Beta distribution




A sufficient condition valid for all domain of attraction:

If lim F"(X)(I_I;(X)) =—y-1, then FeD(G,).
thx F(t)

A necessary and sufficient condition (provided that
X >0)18:

1+y if >0

= < 1_}/
=2y

if <0,

then F e D(G,).
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There are probability distributions that are not in any
domain of attraction.

Examples:

geometric distribution F(x)=1-¢™" for x>0

Poisson distribution

von Mises' example
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Remark

Let X be ar.v. with distribution function F.

Relation (7) can be reformulated as follows:

P{X ! > X| X >t}—>(1+7xx); (t > ) for x>0.

f(t)

(Generalized Pareto distribution)

(model for residual life time)
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View towards applications

n observations, t large

Laurens de Haan, ISM Japan, 2012




Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, 2012

The overshoots of t are 1.1.d. observations and they
follow approximately a generalized Pareto distribution

I-(1+yx) " , yeR.

They can be used to estimate the parameter of the Pareto
distribution.

Then we can use the fitted Pareto distribution to
estimate the distribution function beyond the
observations.

In fact we take t to be one of the observations say, the
k —th highest observation X, , .
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We should choose k 1n such way, that k depends on n,

k=k(n) > (allowing the use of CLT)

k(n) 0

(implies staying in the tail) .

Then we use only

X X X

n—k,n? n—k+l,n2°°°*? n,n

for estimating the parameter of the Pareto distribution
and also for estimating the probability of extreme events
beyond the range of the sample.
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The 8th Conference on Extreme Value Analysis
July 8-12, 2013
Fudan University, Shanghai, China
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We are pleased to announce that the 8th | Topics:

Conference on Extreme Value Analysis | - Univariate, multivariate, infinite

will take place from July 8 to 12, 2013 at dimensional extreme value theory

Fudan University, Shanghai, China. - Order statistics and records

- Rare events and risk analysis

Organizers: Deyuan Li, Liang Peng, - Spatial/spatio-temporal extremes
Zhengjun Zhang, Ming Zheng | - Heavy tails in actuarial sciences

- Other related applications

Email: eva2013sh@yahoo.com
Website: http://eva.fudan.edu.cn
History: Previous EVA conferences have been held in Leuven, Belgium (2001), Lyon, France
(2011), Vimeiro, Portugal (1983), Aveiro, Portugal (2004}, twice in Gothenburg, Sweden (1998
and 2005), Bern, Switzerland (2007}, Fort Collins, USA {2009).




