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I start with two examples with which I have been 
concerned. 
1) Heavy rainfall can be damaging for 

agriculture. In particular if the total rainfall in 
some area (i.e. the integral of the stochastic 
process) is extreme, there may be a problem. It 
seems that when one measures rainfall at two 
places, we have more or less independence if 
the places are at least 100 km apart.  
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At shorter range there is dependence. But the 
dependence may be different in the tail that is, 
if at least at one place there is a lot of rain. 
There may be less dependence.  
Hence one should take into account 
dependence at higher levels. I come back to 
this example later. 
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2) There is a sizeable governmental research unit 
(Deltares) in The Netherlands working on 
models that can help improve the coastal 
defences against flooding. In particular they 
study wind storms on the North Sea that can 
lead to high still water levels as well as high 
waves near the coast. Since only really severe 
storms would be a threat and since these 
storms are not available in the observed storms 
over a period of say 50 years, there is a need to 
guess how these severe wind storms would 
look like. 
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Again I shall come back to this example. 
 
 
This leads us to look for a framework that 
allows us to help solving these problems. The 
framework is the theory of max-stable 
processes that can be seen as the infinite-
dimensional version of extreme value theory. 
Let me start at the beginning, namely one-
dimensional extreme value theory.   
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Let 1 2, , ,X X X … be i.i.d. random variables and 
assume that the extreme value condition is 
fulfilled: 

( )
( )

( ){ }1/

1
lim max exp 1i

n i n

X b nP x x
a n

γγ −

→∞ ≤ ≤

⎧ ⎫−
≤ = − +⎨ ⎬

⎩ ⎭
 

for some γ ∈R  and suitable sequences ( ) 0a n >  and 
( )b n . 

The condition is equivalent to the statement  
( )

( )
( ){ }1/lim exp 1n

n

X b nP x x
a n

γγ −

→∞

⎧ ⎫−
≤ = − +⎨ ⎬

⎩ ⎭
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and (when taking logarithms) 

( )
( )

( ) 1/lim log 1 ,
n

X b nn P x x
a n

γγ −

→∞

⎧ ⎫−
− ≤ = +⎨ ⎬

⎩ ⎭
 

In short: logn P−  converges to a positive limit. This 
implies 1P →  and hence log 1P P− −∼ .  
Consequently we get the equivalent statement 

( )
( )

( ) ( ) 1/lim lim 1 1
n n

xX b nn P n P x
a n

γγ −

→∞ →∞

⎧ ⎫−
⋅ = − = +⎨ ⎬

⎩ ⎭
> . 
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More generally: 
( )

( )
( ) 1/lim 1

t

X b tt P x x
a t

γγ −

→∞

⎧ ⎫−
⋅ > = +⎨ ⎬

⎩ ⎭
 

Where t  runs through the real numbers.   
This is the well-known convergence to the 
generalized Pareto distribution from which the 
peaks-over-threshold method follows. 
Alternatively we can write: 

( )
( )

1/

1lim 1 , 1        
t

X b tt P x x
a t x

γ

γ
→∞

⎧ ⎫⎛ ⎞−⎪ ⎪+ > = >⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 
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Please keep in mind that the transformation 

( )
( )

1/

1 X b t
a t

γ

γ
⎛ ⎞−
+⎜ ⎟

⎝ ⎠
 

(approximately) turns the tail of the distribution 
into a standard Pareto distribution, similar to what 
we do when defining a copula, but now only for 
the tail. 
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Now let us take i.i.d. random vectors 
( ) ( ) ( )1 1 2 2, , , , , ,X Y X Y X Y … and suppose that the 
extreme value condition holds:  

( )
( )

( )
( )

( )1 2

1 1
1 2

lim max , max ,  i i

n i n i n

X b n Y b nP x y G x y
a n a n→∞ ≤ ≤ ≤ ≤

⎧ ⎫− −
≤ ≤ =⎨ ⎬

⎩ ⎭
 

for some distribution function G  with non-
degenerate marginals. Again we have a series of 
equivalent statements: 
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( )
( )

( )
( )

( )1 2

1 2

, , ,  n X b n Y b nP x y G x y
a n a n

⎧ ⎫− −
≤ ≤ →⎨ ⎬

⎩ ⎭
 

( )
( )

( )
( )

( )1 2

1 2

log , log ,  X b n Y b nn P x y G x y
a n a n

⎧ ⎫− −
− ≤ ≤ → −⎨ ⎬

⎩ ⎭
 

and, since again log 1P P− −∼ , this is equivalent to 

( )
( )

( )
( )

( )1 2

1 2
, log ,  

cX b n Y b nnP x y G x y
a n a n

⎧ ⎫− −
≤ ≤ → −⎨ ⎬

⎩ ⎭
 

i.e., 
( )

( )
( )

( )
( )1 2

1 2

log ,   orX b n Y b nn P x y G x y
a n a n

⎧ ⎫− −
> > → −⎨ ⎬

⎩ ⎭
 . 
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We use the one-dimensional result to standardize 
each component: 

( )
( )

( )
( )

( )

1 2

1 2

1/ 1/

1 2
1 2

1 2

0
1 2

1 1

1 1log , : log , .

   or   

 

X b n Y b nn P x y
a n a n

x xG G x y

γ γ

γ γ

γ γ

γ γ

⎧ ⎫⎛ ⎞ ⎛ ⎞− −⎪ ⎪+ > + >⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

⎛ ⎞− −→ = −⎜ ⎟
⎝ ⎠

 

Then 0G  is standard i.e., 
( ) ( )0 0log , log , 1/ .G x G x x− ∞ = − ∞ =  

The defining property of 0G  is: for all , , 0a x y >   
( ) ( )0 0

1log , log ,G ax ay G x y
a

− = −  



13 

 

Comments: 
1. Standardizing the marginal distributions leads to 

a limit that is a homogeneous function.    
2. There exists a measure, υ  say, such that 

( ) ( ){ }0log , , :   or  G x y s t s x t yν− = > >  for  , 0x y > .  
Then for 0a >   and Borel sets B 

( ) ( )1aB B
a

ν ν=  . 

3. Even non-extreme components are normalized. 
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Let us produce a random vector with distribution 
0G . 

Take a Poisson point process on ( )0,∞  with 
intensity measure 2r dr− . 

Consider a realization 1 2, ,V V … of this point process. 

Take independently i.i.d. non-negative random 
vectors ( ) ( ) ( )(1) (2) (1) (2) (1) (2)

1 1 2 2, , , , , ,W W W W W W … with  
( ) 1iEW =  for  1,2i = .  

Denote the distribution function of ( )(1) (2),W W  by H . 
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Since the ( )(1) (2),i iW W  are random vectors, we can 
alternatively consider a Poisson point process on 

2
+ ×R R  with intensity measure 

( ) ( )2, , , Q dr du dv r dr H du dv−= . 
We then get the realizations: 

( ) ( )(1) (2) (1) (2)
1 1 1 2 2 2, , , , , ,V W W V W W … 

Consider the vector  
( ) ( )( )1 2

1 1
: ,  i i i ii i

Z VW VW
∞ ∞

= =
= ∨ ∨   

Let us calculate the distribution function of Z . 
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( ) ( ) ( ){ }
( ) ( )

( ) ( )

( ){ }
( )

1 2
0 1 1

1 2

1 2

2

0

, : ,

and for 1,2,...

for 1,2,...

exp , , :

exp ,

exp

      

         

        

 

  

i i i ii i

i i
i i

i
i i

x yz
u v

G x y P V W x V W y

x yP V V i
W W

x yP V i
W W

x yQ r u v r
u v

dz dH u v
z

u v
x y

∞ ∞
∗

= =

> ∧

∞

= ∨ ≤ ∨ ≤

⎧ ⎫
= ≤ ≤ =⎨ ⎬

⎩ ⎭
⎧ ⎫

= ≤ ∧ =⎨ ⎬
⎩ ⎭
⎡ ⎤= − > ∧⎢ ⎥⎣ ⎦
⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

= − ∨

∫∫

∫ ( )
0

, . dH u v
∞⎧ ⎫

⎨ ⎬
⎩ ⎭

∫  
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Then clearly for , , 0a x y >   

( ) ( )* *
0 0

1log , log ,G ax ay G x y
a

− = − . 

Conversely we can prove: for each extreme value 
distribution 0G   there exists an H  such that 

( ) ( )0
0 0

, exp ,    u vG x y dH u v
x y

∞ ∞⎧ ⎫= − ∨⎨ ⎬
⎩ ⎭
∫ ∫  . 
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Comments:  
1. H  is called the “spectral measure” of 0G . 
2. If  ( ) ( )( ) ( ) ( )( )

1 1 2 2

1 2 1 2, , , ,Z Z Z Z … are i.i.d. copies of the 
random vector ( ) ( )( )1 2,Z Z  then for all k  

( ) ( ) ( ) ( )( )1 2 1 2

1 1

1 1, ,
k k d

i ii i
Z Z Z Z

k k= =

⎛ ⎞∨ ∨⎜ ⎟
⎝ ⎠

=  

and ( )1Z  and 
( )2Z  are standard Fréchet,  

hence the vector  Z   is “simple max-stable”. 
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Max-stable processes form the infinite-
dimensional extension of this: 
Let 1 2, , ,X X X … be i.i.d. stochastic processes in  
( )C S  with S   a compact subset of d\ . 

Assume that for suitable continuous norming 
functions ( ) 0sa n >  and ( )sb n  the sequence of 
processes 

( ) ( )
( )1

max i s

i n
s s S

X s b n
a n≤ ≤

∈

⎧ ⎫−
⎨ ⎬
⎩ ⎭
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converges in distribution, in ( )C S , to a stochastic 
process 

( ){ }s S
Y s

∈
. 

Then, obviously (using the standardizing 
transformation), 

( ) ( ) ( )
( )

( )1/

1
max 1

s

i s

i n
s s S

X s b ns
a n

γ

γ
≤ ≤

∈

⎧ ⎫⎛ ⎞−⎪ ⎪+⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

converges to 
( ){ } ( ) ( )( ) ( ){ }1/: 1 s

s S
Z s s Y s γγ

∈
= + . 

Here ( )sγ  is the extreme value index at location s.  
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Then the limit process Z  is simple max-stable i.e. 
if   1 2, ,Z Z … are i.i.d. copies of Z , 

( ){ } ( ){ }
1

1 max
d

i i s Si k
s S

Z s Z s
k ∈≤ ≤

∈

=  . 

Correspondingly if 1 2, ,Y Y … are i.i.d. copies of 1Y   
then for some continuous ( ) 0sA n >  and ( ) 0sB n >  

( ) ( )
( )

( ){ }
1

max
d

i s
i s Si n

s s S

Y s B n Y s
A n ∈≤ ≤

∈

⎧ ⎫⎛ ⎞−
=⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
 . 

i.e. the process Y  is max-stable.   
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The analysis of a simple max-stable process is 
similar to the finite-dimensional case: 

( ) ( ) ( )
( )

( )

( ){ }
1/

1
max 1

s
d

i s
s Si n

s s S

X s b ns Z s
a n

γ

γ
∈≤ ≤

∈

⎧ ⎫⎛ ⎞−⎪ ⎪+⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

→  

in space ( )C S , is equivalent to: for Borel sets 
( )B C S∈  

( ) ( ) ( )
( )

( )

( )
1/

lim 1 
t

X b tt P B B
a t

γ

γ ν
⋅

⋅

→∞
⋅

⎧ ⎫⎛ ⎞⋅ −⎪ ⎪+ ⋅ ∈ =⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

provided ( ) 0Bν ∂ = . Then for the measure ν  : 

  ( ) ( )1aB B
a

ν ν=   for 0a > , B Borel in ( )C S . 
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There is a representation as before: 
Take a Poisson process on ( )0,∞  with intensity 
measure 2r dr− . Consider a realization 1 2, ,V V … of this 
point process. 
Take independently i.i.d. continuous stochastic 
processes  1 2, , ,W W W … on S  with ( ) 0W s ≥  and 

( ) 1EW s =  for s S∈  and  ( )sup
s S

E W s
∈

< ∞.  

Consider for s S∈  

( ) ( )
1

:  i ii
Z s V W s

∞

=
= ∨  
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Simple auxiliary result: 
 
Statement  Consider a Poisson point process on 
( )0,∞  with intensity measaure 2r dr− .  

The following two operations lead to the same 
point process (in distribution): 

1) multiply all points by an integer k   

2) change the intensity measure from 2r dr−  to 2kr dr− .  
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Proof   

The distribution of any Poisson process is 
determined by probability (for any 0 a b< < < ∞) 
that the process has no points in the interval [ ],a b . 

For the original Poisson points process the 
probability is { }2exp

b

a

r dr−−∫  . 
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Now the number of points in [ ],a b  for the 
transformed process (transformed by 
multiplication) equals the number of points for the 
original process in ,a b

k k
⎡ ⎤
⎢ ⎥⎣ ⎦

 . 

Hence the probability of no point of the new 
process in [ ],a b  is  

 { }2 2exp exp
b

k

a
k

b

a

r dr kr dr− −⎧ ⎫− = −⎨ ⎬
⎩ ⎭
∫ ∫  . □ 
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Remark 
 

This holds also for our point process 
with “points”  

( ){ }i iVW s . 
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I now argue that Z  is a simple max-stable process 
i.e., that 

( ){ } ( ){ }
1

1  
k d

j s Si
s S

Z s Z s
k ∈=

∈

∨ =  

 
Check: 
On one side we have  

( ) ( )
1

    i ii
k Z s k V W s

∞

=
= ∨  

(all points multiplied by k  ).  
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On the other side we have  

( ) ( ), ,1 1 1
   

k k

i i j i ji i j
Z s V W s

∞

= = =
∨ = ∨ ∨  . 

When forming ( ), ,1
  

k

i j i jj
V W s

=
∨  we have effectively 

joined all the points of k  independent processes 
into one process. 
This is the same (in distribution) as multiplying the 
intensity measure by k .  □□ 
Conversely every simple max-stable process can 
be represented in this way. 
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Hence the probability distribution of simple 
max-stable processes is completely determined 
by the distribution of the underlying stochastic 
process W : 

( ){ } ( ){ }
1
  i i

i
Z s V W s

∞

=
= ∨  . 

 
The probability measure of the process W  is 
called the spectral measure of the process Z  .  
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Remark   

Note that the process W  may be zero 
somewhere but (Giné, Hahn, Vatan, 1991) 

( ){ }0 for 1    P Z s s S> ∈ = . 
 
It is not always easy to detect the structure that 
we found in concrete examples. 
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Examples 
1. Take 1 2, ,Z Z … i.i.d and { } ( )1 exp 1/ , 0P Z x x x≤ = − > .  

For 0 1s≤ ≤   define 
( ) ( )( )1 2: max 1Z s sZ s Z= −  

It is easy to verify directly that this process is 
simple max-stable. 
In standard form: 

( ) ( ) ( )( )
1

: . 1 1 
k

i i ii
Z s V s Q s Q

=
= ∨ − + −  

where { } { }0 1 1/ 2i iP Q P Q= = = = . 
Note that ( )0Z  and ( )1Z  are independent. 
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2. Define the class of functions tf  by 
 

 
 
 
 
 
 

for  : 1/ 2ft t= ≤  
0

4

1tf 1/4 1/4 
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and by 
 

 
 
 
 
 
 

for 1/ 2t > .  
0

4

1tf
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Introduce a probability distribution on this class of 
functions by 

{ }: ff a t b b aρ ≤ ≤ = −   for  ( ), 0,1 ,a b a b∈ <   

(uniform distribution). 
Then (side condition) 

( ) ( ) 1 4 1
4

 f s d fρ = ⋅ =∫   for  [ ]0,1s∈  . 

This is the stochastic process W .  
Note that ( )Z a  and ( )Z b  are independent for 

1/ 2b a− > . 
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Generalization of this example:  
We can take quite general probability 
density functions and move them 
horizontally over the entire real line. 
Such processes are called max-moving 
average processes. 
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3. If ( ){ }0 for some 0    P W s s= = , then ( )0Z s  and 
( )1Z s  are dependent for all 0s  and 1s . 

Example (S  is not compact here : S = \): 
Recall the representation  

( ) ( )
1

:   i ii
Z s V W s

∞

=
= ∨ . 

Take ( ) { }: exp ( ) | | / 2W s B s s= −  with B Brownian 
motion (in two directions from zero).  
In that case Z   is stationary but W  is clearly not 
(Brown and Resnick 1977)!. 
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4. If in contrast 

( ){ }0 forall 0   P W s s> =  
 
then we say that the process is “asymptotically 
independent” generalizing a concept from finite-
dimensional extremes (Ledford and Tawn 1998). 
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Applications 
We go back to our two examples/applications in 
the beginning. 
  
1. Rainfall 

Daily rainfall is monitored at about 30 stations 
throughout North Holland. The question is: 

what is the probability that the total 
rainfall in the area on one day exceeds 60 
mm in some given year?  
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The meteorologists agree that the shape 
parameter ( )sγ  is constant in the area of 
interest i.e. ( ) 0.1sγ γ≡ ≈  . 
We are interested in the total rainfall in the 
area i.e. ( )

s
X s ds∫ , Hence we need the extreme 

value condition for this random variable. We 
have the following theorem (stated by Coles 
and Tawn 1996). 
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Theorem Suppose that process X  is in the 
domain of attraction of the max-stable process Z  
i.e., 

( ) ( ) ( )
( )

( )

( ){ }
1/

1
max 1

s
d

i s
s Si n

s s S

X s b ns Z s
a n

γ

γ
∈≤ ≤

∈

⎧ ⎫⎛ ⎞−⎪ ⎪+⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

→  

with spectral measure ρ .   

 

Under certain mild conditions,  
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( ) ( )
( )

( ) 1/lim 1ss s

t
s

S

X s ds b t ds
tP x x

a t du
γ

γθ γ −

→∞

⎧ ⎫−⎪ ⎪> = +⎨ ⎬
⎪ ⎪⎩ ⎭

∫ ∫
∫

. 

where  
( ) ( )

( )

( )
1

1/

/
sC s

A s g s ds d g
γ

γ
γθ ρ

+

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ ∫  ,     ( ) ( )

( )
: s

s
S

a tA s
a t du

=
∫

  

and ρ  is the spectral measure acting on 
( ) ( ){ }1 : : 0, 1C s f C s f f+

∞
= ∈ ≥ = .   □ 

Hence ( )
s
X s ds∫   is in a one-dimensional domain of 

attraction. 
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We can estimate all elements of this 
formula. 
 
We find that the return period of the 
event is about 250 years. 
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2. Wind storms 
In the Netherlands much effort goes into the 
protection of the sea coast against flooding. 
Since only severe storms are a threat to the 
coast, extreme value theory comes in into the 
analysis. 
Models are available for how the atmospheric 
conditions influence the general water level 
near the coast as well as the wave activity. 
These in turn are crucial for decisions on how 
to build the sea defences. 
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At present the input for the atmospheric 
conditions and the water model consists of wind 
observation at Schiphol airport as well as wave 
observations at a few locations not far from the 
coast on the North Sea. 
In the future the entire wind field over a certain 
period will be available for the analysis. These 
are artificial data.  
These data will contain some rather big storms 
but not really devastating storms (since that 
would require unreasonably long data sets). 
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The question is to guess how devastating storms 
look like (i.e. the wind fields) if we only observe 
big but not really severe storms. 
This can be done by using the homogeneity 
property of the limit measure ν .    Remember  

( ) ( )1aB B
a

ν ν=   for ( )0,a B C S> ∈  . 

The measure ν  is closely related to the probability 
distribution of the peaks-over-threshold 
observations i.e. the storms for which the 
windspeed at some location exceeds a certain 
threshold. 
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Hence we can standardize the marginal 
distribution of the selected storms, then multiply 
the standardized wind speed everywhere by a 
certain factor 1a >  and then transform back. 
 
This procedure results in peak-over-threshold 
observations at a much higher threshold and it 
can be considered as a kind of extreme value 
bootstrap. 
Let us have a closer look. 
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For some time people have attempted to build a 
big scale model of what happens:  

 start from atmospheric conditions: wind fields 
in a quite big area relevant to the Dutch coast.  

 a model is available on how such wind field 
produces high still water levels and waves off 
shore 

 another model is available on how this 
translates into high still water levels and waves 
near the coast. 
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In this setup – that will be used in the future – we 
need wind fields. They will be created by a climate 
model. 
This leads to the following question. 
The climate model will produce a number of wind 
storms. Some of them may be quite severe but not 
severe enough to create a danger to the coast. Can 
we use these windstorms to produce other wind 
storms (from the same model) that are really 
severe and could create problems?  
(consultant firm Deltares – Sofia Caires) . 
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Use homogeneity property: 

 We have n observations that are spatial 
stochastic processes: ( ){ } ,i s i

X s . 

 We want to produce some extreme storms that 
is, stochastic processes from the same 
distribution and such that ( )0X s c>  at some 
main point of interest 0s  where  c  is large or 
chosen such that  ( ){ }0P X s c p> =  with p  a 
given small number. 
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For the explanation it is useful to start in 1\  , go 
then to 2\  and finally to the function space. 
In 1\  : domain of attraction condition ⇒ 

( )
( )

( ) ( ) 1/lim 1
t

X b tP x X b t x
a t

γγ −

→∞

⎧ ⎫−
> > = +⎨ ⎬

⎩ ⎭
 

 
where   ( ) ( ){ }: inf :1 1/b t s F s t= − ≥ . 

 
Out of i.i.d. observations  1 2, , nX X X…  select those 
that are bigger than ( )b t .  
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Let us denote the selected observations as 
(1) (1) (1)

1 2, ,..., kX X X  
These are again i.i.d.  and satisfy (with (1)X   one of 
the (1)

1 'X s ) 
( )

( )
( )

(1)
1

1X b tP x x
a t

γγ −⎧ ⎫−
> ≈ +⎨ ⎬

⎩ ⎭
 

This is the peaks-over-threshold method. 
 
Next we may replace the variable x  at both sides 
in this relation by ( )1 /xγ γ−    where   1x > .  



55 

This results in  

( )
( )

1/(1) 1 1 11X b t x xP
a t x

γγ γ

γ
γ γ

−⎧ ⎫− − −⎛ ⎞> ≈ + =⎨ ⎬ ⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
or equivalently  

( )
( )

1
(1) 11 X b tP x
a t x

γ

γ
⎧ ⎫⎛ ⎞−⎪ ⎪+ > ≈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

for 1x >   (standardized peak observation).  
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Now consider for  0 1t >  

( )
( )

1

(1)
(2)

0: 1 , 1,2,3 ,i
i

X b tX t i k
a t

γ

γ
⎛ ⎞−

= + =⎜ ⎟
⎝ ⎠

…  

Then  

{ }(2) 01i

tP X x
x

> ≈ ∧  

Finally write (take the standardization away) 

( ) ( ) ( )
(2)

(3)
1

: , 1,2, ,  i

i

X
X a t b t i k

γ

γ
−

= + = …  
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We are going to evaluate the probability 
distribution of  ( )3X . 
 
We need the following result:  
Lemma :  For  0c >  

( ) ( )
( )

1lim
t

b tc b t c
a t

γ

γ→∞

− −
=  

( )
( )

lim
t

a tc c
a t

γ

→∞
=  

 and find 
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( ) ( )
( )

( ) ( ) ( ){ }

( )
( )( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )
( )

30
0 0

0

0 0

1

(2) 0 0

1 1

1 0 0
0

1
1

0

3

2

1

1

1

1 1

1

 

 

 

 

b ttP x P X b tt x a tt
a tt

P a t b t b tt x a tt

x a tt b tt b tP X
a t

b t x a tt b tt b tP t
a t a t

X b tP t
a t

X

X

X

γ

γ

γ γ

γ

γ

γ

γ γ

γ

−

⎧ ⎫−
> = > +⎨ ⎬

⎩ ⎭
⎧ ⎫−⎪ ⎪= + > +⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ ⎫⎛ ⎞+ −⎪ ⎪= > +⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞− + −⎪ ⎪= + > +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

⎛ ⎞−
= + >⎜ ⎟

⎝ ⎠

( ) ( ) ( )
( )

( ) ( )
( )

( )( ) ( )( )

1

0 0

0

1

0
0 0

11 1 1 1 1

 x a tt b tt b t
t a t

X b t tP t x o t o
a t

γ
γ

γ

γ
γ γ

γ

γ γ
γ

−

− −

⎧ ⎫⎛ ⎞+ −⎪ ⎪+⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

⎧ ⎫− −⎡ ⎤= + > + + + ⋅ +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
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( ) ( )
( )

( )( ) ( )( ) ( )
1

01 1 1 1 1 1X b t tP o x o o
a t

γ

γ γ
γ

−⎧ ⎫− ⎡ ⎤= + > + + + +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
 

( ) ( )
( )

( )( ) ( ) ( )
1

1/1 1 1 1 .X b tP x o o x
a t

γγ −⎧ ⎫−
= > + + ≈ +⎨ ⎬

⎩ ⎭
 

 
Hence for all  x  

( ) ( )
( )

( ) ( )
( )

3 1
0

0

X b tt X b tP x P x
a tt a t

⎧ ⎫ ⎧ ⎫− −
> ≈ >⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
. 
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As before, in this relation we can take  
( ) ( ) ( ){ }0 0: inf :1 1/b tt s F s tt= − ≤  

i.e., the probability that X  exceeds ( )0b tt  is exactly 
( )01/ tt  .  

 
Now ( )0b tt  is also a quantile of the probability 
distribution of X , but a much higher quantile than 
( )b t  since it is connected with the exceedance  

probability ( )01/ tt  instead of 1/ t . 
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This means that we have transformed peaks-over-
threshold  observations   (1) (1)

1 ,..., kX X     with  
threshold ( )b t  to peaks-over-threshold observations 

(3) (3)
1 ,..., kX X  with threshold ( )0b tt . 

 
Hence we have taken observations that are 
somewhat exceptional but not really extreme and 
“lifted” them to observations that are really 
extreme  ( )0since 1t > . 
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In 2\  : domain of attraction condition ⇒ 
( ) ( ) ( ) ( ) ( ) ( ){ }

( )
( )

1 1 2 2 1 2or or

log ,
log 0,0

              

          

P X b t x a t Y b t y a t X b t Y b t

G x y
G

> + > + > >

−
→

−
 

for 0x >   or 0y > . 

We have a sample (i.e. i.i.d. observations) 
( ) ( ) ( )1 1 2 2, , , , , ,n nX Y X Y X Y…  from this distribution.  

Select those observations ( ),i iX Y  for which ( )1iX b t>  
or  ( )2iX b t> . 
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Let us denote those vectors as  
( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1 1 1 1 1

1 1 2 2, , , , , ,k kX Y X Y X Y…  . 

These are again i.i.d. random vectors and they 
satisfy the approximate relation  

 
( ) ( )

( )

( ) ( )
( )

( )
( )

1 1
1 2

1 2

log ,or .
log 0,0

          X b t Y b t G x yP x y
a t a t G

⎧ ⎫− − −
> > ≈⎨ ⎬ −⎩ ⎭

 

Let us remark that as before   1b  and  2b   are 
essentially quantiles:  

( ) { }{ }
( ) { }{ }

1

2

inf : 1/

inf : 1/ .

b t s P X s t

b t s P Y s t

= > ≥

= > ≥
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Next we proceed as before. Consider the random 
vectors 

( ) ( )( )
( ) ( )

( )

( ) ( )
( )

1 2
1 1

1 1
2 2 1 2

0 1 0 2
1 2

, : 1 , 1i i
i i

X b t Y b tX Y t t
a t a t

γ γ

γ γ
⎛ ⎞⎛ ⎞ ⎛ ⎞− −

= + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

and finally introduce 

( ) ( )( ) ( )
( )( ) ( ) ( )

( )( ) ( )
1 22 2

3 3
1 1 2 2

1 2

1 1
, : ,i i

i i

X X
X Y a t b t a t b t

γ γ

γ γ

⎛ ⎞− −
= + +⎜ ⎟⎜ ⎟
⎝ ⎠

 

for 1,2, ,i k= … .   
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Then  
( ) ( )

( )

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ){ }

( )
( )( )

( ) ( ) ( ) ( )
( )( )

( ) ( ) ( )

( ) ( ) ( ) ( )
( )

1 2

3
1 0 2 0

1 0 2 0

3 3
1 0 1 0 2 0 2 0

2

1 1 1 0 1 0 2 2 2 0 2 0
1 2

2 1 0 1 0 1
1

3

2

1

or

or

1 1
or

1

       

        

         

 +

b tt Y b tt
P x y

a tt a tt

P X b tt x a tt Y b tt y a tt

Y
P a t b t b tt x a tt a t b t b tt y a tt

x a tt b tt b t
P X

a

X

t

X

γ γ

γ γ

γ

⎧ ⎫− −
> >⎨ ⎬

⎩ ⎭

= > + > +

⎧ ⎫− −⎪ ⎪= − > + − > +⎨ ⎬
⎪ ⎪⎩ ⎭

⎛ ⎞−
= > +⎜

⎝
( ) ( ) ( ) ( )

( )

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( )

1 2

1 1

2 2

1 1

2 2 0 2 0 2
2

2

1 1

11 1 0 1 0 1
1 0 1

1 1

1 11
12 2 0 2 0 1

2 0 2
2

1

1

or 1

1 1 or

1 1

 +
     

 +
      

 +
  

y a tt b tt b t
Y

a t

b t x a tt b tt b t
P t

a t a t

Y b t y a tt b tt b t
t

a t a t

X

γ γ

γ γ

γ γ

γ

γ γ

γ γ

−

−

⎧ ⎫⎛ ⎞−⎪ ⎪> +⎨ ⎬⎟ ⎜ ⎟
⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

⎧⎛ ⎞ ⎛ ⎞− −⎪= + > +⎨⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎪⎩

⎫⎛ ⎞ ⎛ ⎞− − ⎪+ > + ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎪⎭
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 From the Lemma we know that  
 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

1 1

1

1

1 1

1 1 0 1 0 1 1 0 1 0 1
0 1 0 1

1 0 1

1  +  + x a tt b tt b t x a tt b tt b tt t
a t t a t

γ γ
γ

γ
γ γ−− ⎛ ⎞ ⎛ ⎞− −

+ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 
converges to ( ) 11/

11 x γγ+  at  t →∞ and that     
  

( ) ( ) ( )
( )

( ) ( ) ( )
( )

2 2

2

2

1 1

1 2 0 2 0 2 2 0 2 0 2
0 2 0 2

2 0 2

1 + + ya tt b tt b t ya tt b tt b tt t
a t t a t

γ γ
γ

γ
γ γ−− ⎛ ⎞ ⎛ ⎞− −

+ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

converges to ( ) 21/

21 y γγ+   .  
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Hence 
( ) ( )

( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

3 3
1 0 2 0

1 0 2 0

1 1
1 2

1 2

or

or .

       

         

X b tt Y b ttP x y
a tt a tt

X b t Y b tx y
a t a t

⎧ ⎫− −
> >⎨ ⎬

⎩ ⎭
⎧ ⎫− −

≈ > >⎨ ⎬
⎩ ⎭

 

Once again we have transformed peaks-over-
threshold observations ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1 1 1 1 1

1 1 2 2, , , , , ,k kX Y X Y X Y…  
with threshold ( )b t  to peaks-over-threshold 
observations ( ) ( )( ) ( ) ( )( ) ( ) ( )( )3 3 3 3 3 3

1 1 2 2, , , , , ,k kX Y X Y X Y…  with 
threshold   ( )0b tt . 
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Note: 

1. Selection criterion: at least one component is 
big. 

2. Also the non-extreme components are 
normalized. 
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Spatial observations 

I start again with a brief introduction to part of the 
theory.  

Consider n  independent stochastic processes  
( ){ } , 1,2, ,i s C

X s i n
∈

= …  

with the same probability distribution where  C   is 
a compact set (for example  C   could be the area 
around the North Sea coast that we consider  and 

( )iX s   the wind speed at location s at hour  )i .  
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We assume that  ( )iX s   is continuous in s.     

We suppose as before that the maximum of those 
processes converges in distribution that is, the 
sequence of stochastic processes 

( ) ( )
( )1

max i s

i n
s s C

X s b n
a n≤ ≤

∈

⎧ ⎫−
⎨ ⎬
⎩ ⎭

 

converges to some continuous process ( ){ }s C
Y s

∈
  in 

distribution ( in C-space). 
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If we have such convergence, the limit process  
( )Y s  is stable with respect to taking the maximum 

i.e., there are continuous functions  ( ) 0sA n >   and   
( )sB n   such that, if 1 2, , , nY Y Y…  are i.i.d.  copies of Y , 

the process  
( ) ( )

( )1
max i s

i n
s s C

Y s B n
A n≤ ≤

∈

⎧ ⎫−
⎨ ⎬
⎩ ⎭

 

has the same probability distribution as  ( ){ }s C
Y s

∈
  

itself. 
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There is also a peaks-over-threshold method in this 
context.  

 

By way of introduction I formulate the relation in 
2\  in a different way.  
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It says that the random vector 
( )

( )
( )

( )
1 2

1 2

, ,X b n Y b n
a n a n

⎛ ⎞− −
⎜ ⎟
⎝ ⎠

 

 

under the condition that   
( )

( )
( )

( )
1 2

1 2

max , 0X b n Y b n
a n a n

⎛ ⎞− −
>⎜ ⎟

⎝ ⎠
, 

has approximately a fixed probability distribution 
not depending on n  (if n is large).  
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The direct analogue of this statement holds for 
stochastic processes (but it is much more difficult 
to prove, see e.g. section 9.3 of our book). 
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The process  
( ) ( )

( )
s

s s C

X s b t
a t

∈

⎧ ⎫−
⎨ ⎬
⎩ ⎭

, 

has, under the condition that  
( ) ( )

( )
max 0s

s C
s

X s b t
a t∈

−
> , 

approximately (for large t) a fixed probability 
distribution, say the probability distribution of 
some stochastic process  { }( )

s C
V s

∈
 (the generalized 

Pareto process). 
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 Note that 
( ) ( )

( )
max 0s

s C
s

X s b t
a t∈

−
>  

is equivalent to:  
( ) ( )sX s U t>  

for at least one s . 
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As a result we get the peaks-over-threshold 
method in this context: out of the n i.i.d. stochastic  
processes ( ){ }iX s  select those for which  

( ) ( )
( )

max 0i s

s C
s

X s b t
a t∈

−
>  . 

Denote the selected processes as  
( ){ } ( ){ } ( ){ }1 1 1

1 2( ) , ( ) , , ( )ks C s C s C
X s X s X s

∈ ∈ ∈
…  . 
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These processes are i.i.d. and their probability 
distribution is approximately (for large t)  the same 
as the distribution of the process { }( )

s C
V s

∈
. 

 

The rest of the reasoning is the same as in the 
finite-dimensional cases. 
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Result:  

Out of  k   relatively extreme stochastic processes 
(wind storms) we have obtained k  really extreme 
stochastic processes with the same – up scaled –     
(Pareto) distribution. 

      



80 

  



81 

Some references   
 
B. M. Brown and S.I. Resnick (1977). J. Appl. Prob. 14, 732-739. 

L. de Haan (1984). Ann. Prob.  12, 1194-1204. 

E. Giné et al (1990). Prob. Th. Related Fields 87, 139-165. 

M. D. Penrose (1992). Ann. Prob. 20, 1450-1463. 

S.G. Coles and J.A. Tawn (1996). J. Royal Statist. Soc. B 58, 329-347. 

T. Lin et al (2001). Ann. Prob. 29, 467-482;  
(2003) Ann. Stat. 31, 1996-2012; (2006) Ann. Stat. 34, 469-492. 

M. Schlather (2002). Extremes 5, 33-44. 

L. de Haan and A. Ferreira (2006). Extreme value theory, Springer. 



82 

 

 

 

 

 

 

 

 

 

 

 



83 

 

 


