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Expected shortfall of an asset X at
probability level p is

F- the inverse function of F, .




v~ A bank holds a portfolio R=3 yR

v Expected shortfall at probability level p
~E(RR<-VaR,)

v Can be decomposed as
-> VE(R R<-VaR,)

v The sensitivity to the i-th asset Is
-E(R/R<-VaR,)

(1Is marginal expected shortfall in this case)




Estimation of the marginal expected shortfall

More generally:

Consider a random vector (X,Y)

Marginal expected shortfall (MES) of X at level p
IS

E(X)Y>F (1-p))

(these are losses hence “y big” is bad).

All these are risk measures 1.e. characteristics that
are indicative of the risk a bank occurs under stress
conditions.




We are interested in MES under exceptional stress
conditions of the kind that have occurred very
rarely or even not at all.

This Is the kind of situation where extreme value
can help.

We want to estimate  E(X|Y >F(1- p))

for small p on the basis of 1.1.d. observations
(Xl’Yl)’(XZ’YZ)

and we want to prove that the estimator has good
properties.




When we say that we want to study a situation that
has hardly ever occurred, this means

that we need to consider the case p si .e.,

when a non-parametric estimator Is impossible,
since we need to extrapolate.

On the other hand we want to obtain a limit result,

as n (the number of observations) goes to Infinity.

Since the inequality p <1is essential, we then have

N

to assume p=p, and np, =0(1) aS n — oo.




Note that a parametric model in this situation Is
also not realistic:

The model 1s generally chosen to fit well In the
central part of the distribution but we are interested

In the (far) tail where the model may not be valid.

Hence it Is better to “let the tail speak for itself”.

This 1s the semi-parametric approach of extreme-
value theory.
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Notation: (t bigand p small, t:%)

U (0=F; (1]
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We consider the limit of thisas pl 0.

Conditions (1): First note (take x =1 upstairs)

P X >U1(1j, Y >U2(1j>
! p P/

=P{1-F(X)<p, 1-F,(Y)< p}

where F. and F, are the distribution functions of X
and Y.

This Is a copula.




We impose conditions on the copulaas p{ 0 :

Suppose there exists a positive function R(x,y) (the
dependence function In the tail) such that for all

0<X,y<o, Xvy>0, XAYy<w®

X >Ul()|;j’ Y >U2(:;j =R(x,y) I.e,

(

\

(X)<)F(’, 1-F,(Y)< P
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"This condition indicates and specifies dependence
specifically in the tail.

(usual condition in extreme value theory)

(2): Compare: In the definition of ¢ we have

P{X >X U{lj, Y >U2(1j>
\ P PJ.

and In the condition we have (for y =1)

P X>ul(xj,v>u2(1j .
! P P/
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In order to connect the two we Impose a second
condition, on the tail of X : for x>0

P{X >tx}
lim

e PEX >t
Where », IS a positive parameter.

This second condition implies a similar condition

1) namely

for the quantile function U, (t)= F“(l—t
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We say that P{X >t} Is “regularly varying at
infinity” with index -1/, (eRV, ) and U, Is also
regularly varying, with index y, .

(usual condition is extreme value theory)

These two conditions are the basic conditions of
one-dimensional extreme value theory.




Examples:
Student distribution, Cauchy distribution.

It Is quite generally accepted that most financial
data satisfy this condition.

Sufficient condition: 1-F(t)=ct*+ lower order
powers.

Under these conditions we get the first result:




Hence ¢, goes to infinity as p{ 0 at the same rate
1

as Ul(pj’ the value-at-risk for X.

Now we go to statistics and look at how to
estimate 6. .




We do that In stages:

First we estimate 6, where k=k(n)— o, k(n)/n—0
dS N — oo,

Clearly we can estimate ¢, non-parametrically (it is
just inside the sample).

The second stage will be the extrapolation from ¢,
to ¢ with p<in.

For the time being we suppose that X Is a positive
random variable.
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Recall Hﬁ:E(XY>U2(ED

First  step: replace quantile  U,(nk) by
corresponding sample quantile v_, (k-th order
statistic from above).

The obvious estimator of 4. Is then

1 n
A inl{vpyn_k'n} 1o

O« = N iz = — E X1 :
: i—1 | {Yi>Yn—k,n}
P{Y >U2(E)} K+
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First result:

Under some strengthening of our conditions
(relating to R and to the sequence k(n))

&[‘9*'—1} N-Y

k
n

a normal random variable that we describe
NOW.




Estimation of the marginal expected shortfall

Background of limit result I1s our assumption

IimlP{l— F(X)<Pi1-F (Y)<p}: R(X,Y).

0P X y
Now define  V:=1-F(X)
W :=1-F,(Y).
v and w have a uniform distribution, their joint
distribution iIs a copula.




Now consider the 1.1.d. r.v.’s
(V. W)=1-F(X,)1-F,(Y) (i<n).
Empirical distribution function: Zl{mww
n =1

We consider the lower tail of (v.,w) I.e., the higher
tail for (X,,Y,) .

That Is why we replace (x,y) by ( j and for

x,y >0 define the talil version

1
R




Now T (X,Y) Is close to its mean which Is

n Kk K
CPY-F (X)) 1-F(Y)<s

and this is close to R(x,y).

uHence” Tn (X, y)_P) R(X, y) and — even better —

V(T (x,y)=R(x.Y))

converges In distribution to a mean zero Gaussian
process W, (x,y) (in D- space).




This stochastic process W, (x,y) has independent
Increments that Is,

E W, (X, Y)W, (X,,Y,) =R(X AX,,Y,AY,)

and In particular
Var W, (x,y)=R(X,Y).




Formulated In a different way:

» Index the process by intervals:

I~

W ((0,%)x(0,y)) =W, (x,y)

Then for two intervals I, and I,
EW<(1L)We(1,)=R(I,n1,).
(abuse of notation)
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Hence w, Is the direct analogue of
Brownian motion In 2-dimensional

space.
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How do we use this convergence for 6.?




k/n

Uy (nk)

since: U eR.V.=>




\/ET(T (x,1)—R(x,1))dx™"

0

and we get

&{@'—1)—‘3

k
n

(7, —1)W, (0,1)+ @ R(s,1)ds™ )1 IWR (s,1) ds™

a mean zero normally distributed random variable.
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Last step: extrapolation from

0. (Inside the sample)

to
¢ (outside the sample).

Again we use the reasoning typical for extreme
value theory.
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Consider our first (non-statistical) result again:

Y>U2(1

E(X
lIm

pl0

pDIR(x%,l)dx

In particular this holds for p =% l.e.

E(X
lIm

Nn—oo

' >U2(ED :IR(xﬁ,l)dx.
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Combine the two:

Hp:E(X
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This leads to an estimate for ¢
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It remains to define and to study Ul(;j with

Now Ul(lj IS a one-dimensional object (only

p
connected with X, not Y). Such quantile is beyond

the scope of the sample.

Recall our condition:  P{X >t}eR.V.

which implies




Hence for large t and (say) x>1
U, (tx)=U,(t)-x"

We use this relation with
N

t replaced by .

tx replaced by 1

p




Then x=k/(np) . We get

()0

L ———

This suggests the estimator for Ul(tj:

o) =%l
k )\ np “Lnp

where », is an estimator for y, .
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Since y, >0 we use the well-known Hill estimator:

A k-1
y, = EZO: logX, ;. —log Xn_kl,n .

1

Property of Hill’s estimator:

Jk (7.~ 7/1)i>7/1N1 (N, standard normal)

(k, may differ from k but satisfies similar
conditions)
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Property of X

Jk, X (standard normal)

(N, and N, are independent).

Combine the two relations:
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Now assume that

nIs means that p can not be too small).
nen (expansion of function “exp’)

(1 ( K
= |Ogl

(O .

K

\ P \ J

and hence
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K

kl
log *

np

(1.e. asymptotically normal).

Final result:
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SCOndItIOI’]S

» Suppose y,e(0,1/2) and X >0.

> Assume d=<>1 and lim°9%

n p N—o0 \/E
JEMQi]

=0 .

Denote r:=lim e[0,0]. Thenasn-— oo,

(O+ryN,, if r<i;

}®+yN if r>1.

ql

Cornercasesare r=0 and r = +oo.
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So far we assumed X >0 .

For general X e R we need some extra conditions:

1. Thinner left tail: E[min(X,0)} <.

2. A further bound on p=p_.

Then the left tail can be ignored.
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Estimator In case X eR:

. " ?11 i
Hp a (npj E; Xil{Xi>0,Yi>Yn_k'n}'

Has same behaviour as 1n case X >0 .




Simulation setup:
@ Transformed Cauchy distribution on (0,x)’:

Take (z,,z,) standard Cauchy on R? and define
(X.Y)=(2.Z,)
@ Student-t, distribution on (0,)" .
@ With (z,z,) as before

(X.Y)= ((max(o,zl))é +min(0,Z,)",max(0,Z,)+min(0,Z,)’
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N\

Table 1: standardized mean and standard deviation of Ioggp

p

- n=2,000 n=5,000
 p=1/2,000 p=1/5000

Transformed Cauchy distribution (1)~ 0.152 (1.027)  0.107 (1.054)
Student-t; distribution - 0.232 (0.929)  0.148 (0.964)
Transformed Cauchy distribution (2) -0.147 (1.002) -0.070 (1.002)

The numbers are the standardized mean of l0og &, / Hp and between

brackets, the ratio of the sample standard deviation and the real
standard deviation based on 500 estimates with n=2,000 or 5,000

and p=1/n.
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Three Investments banks:

Goldman Sachs (GS), Morgan Stanley (MS), and
T. Rowe Price (TROW).

Data (X): minus log returns between 2000 and
2010.

Data (Y): same for market index NYSE + AMES
+ Nasdag.
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Hill Estimator of 7,
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Table 2 : MES of the three investment banks

Bank

Morgan Stanley (MS)
T. Rowe Price (TROW)

Here 7A/1 IS computed by taking the average of the Hill estimates
for k, €[70,90] . &, is given as before, with n=2513 , k =50
and p=1/n=1/2513 .
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Interpretation table 2:
6, =0.301 (Goldman Sachs)

Hence In a once-per-decade markes crisis t
expected loss In log return terms 1s 30% (perha
about 26% In equity prices)
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We are pleased to announce that the 8th | Topics:

Conference on Extreme Value Analysis | - Univariate, multivariate, infinite

will take place from July 8 to 12, 2013 at dimensional extreme value theory

Fudan University, Shanghai, China. - Order statistics and records

- Rare events and risk analysis

Organizers: Deyuan Li, Liang Peng, - Spatial/spatio-temporal extremes
Zhengjun Zhang, Ming Zheng | - Heavy tails in actuarial sciences

- Other related applications
Email: eva2013sh@yahoo.com

Webhsite: http://eva.fudan.edu.cn
History: Previous EVA conferences have been held in Leuven, Belgium (2001), Lyon, France
(2011), Vimeiro, Portugal (1983), Aveiro, Portugal (2004), twice in Gothenburg, Sweden (1998
and 2005), Bern, Switzerland (2007}, Fort Collins, USA {2009).




