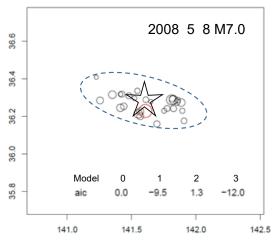
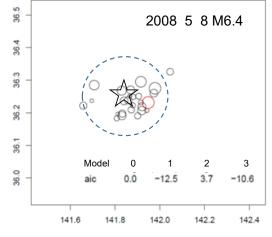
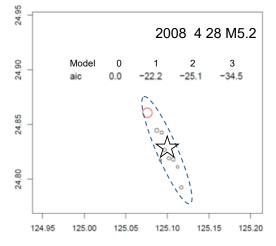
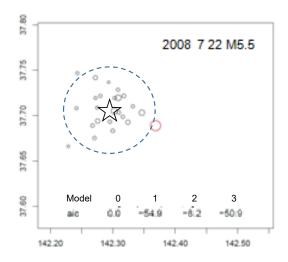

階層的時空間ETASモデルな どによる短期・中期の 地震確率予測と検証評価

Prediction and validation of short- and mediumterm earthquake probabilities using a hierarchical space-time ETAS (HIST-ETAS) models, etc

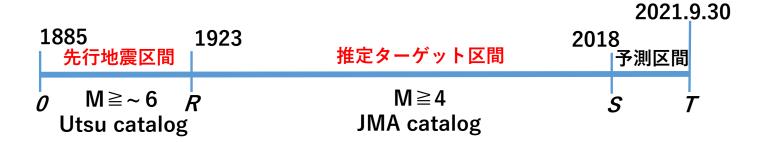

> 尾形良彦(統計数理研究所) Yosihiko Ogata,


The Institute of Statistical Mathematics

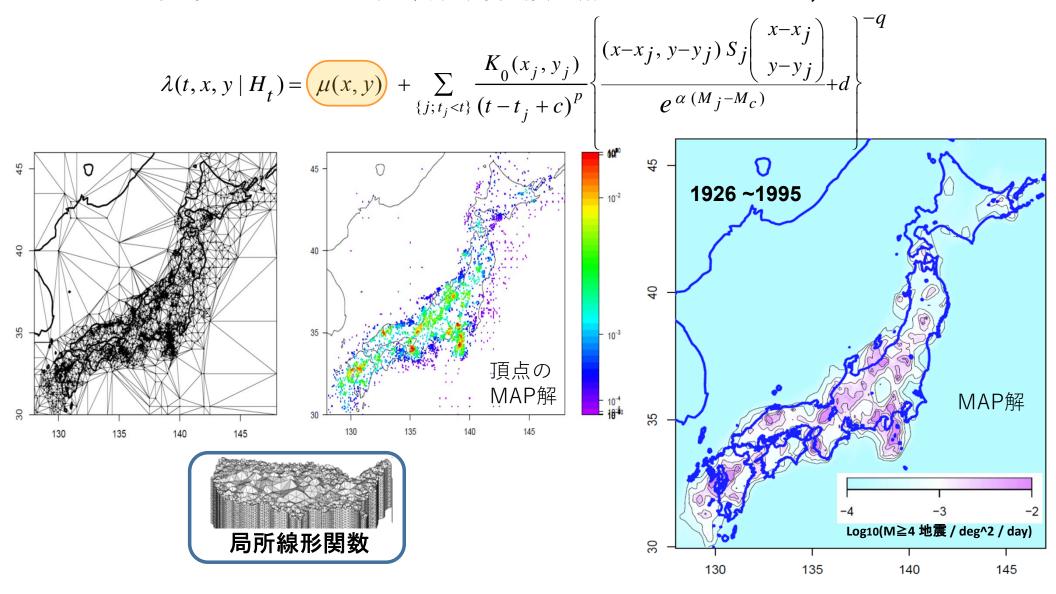


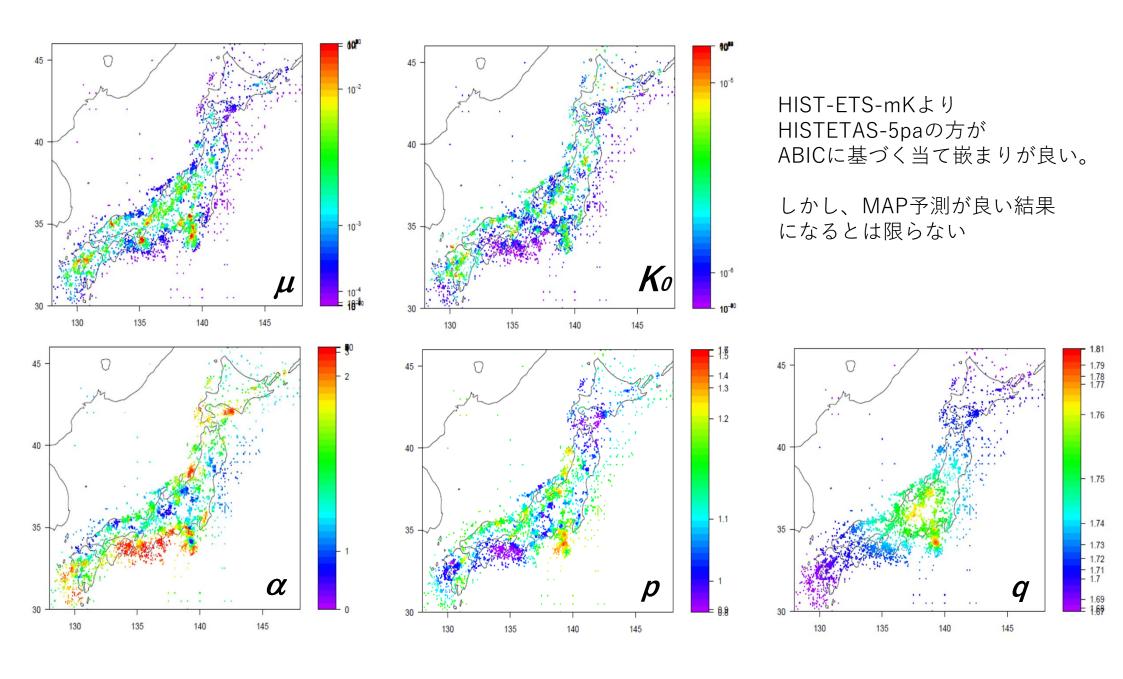

Space-time ETAS model (Ogata, 1998, *AISM*)

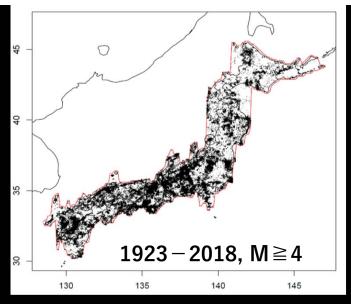
震央座標 (x_j, y_j) や分散共分散 行列 S_j は、一定の大きさ(例えば $M \ge 5$)以上の地震について、全ての検出 地震群から、準リアルタイム(例えば 1 時間以内)でセントロイド型に補正するか否かは AICで判定。

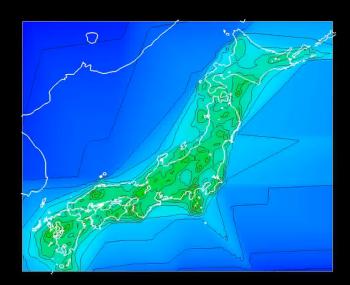

階層的時空間ETASモデル

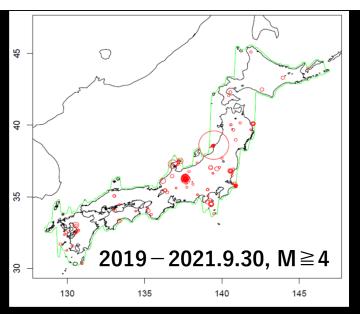
地震活動度 常時活動度 $\lambda(t,x,y|H_t) = \mu(x,y) + \sum_{\{j:t_j < t\}} \frac{K_0(x_j,y_j)}{(t-t_j+c)^{p(x_j,y_j)}} \left\{ \frac{(x-\overline{x}_j,y-\overline{y}_j)\overline{S}_j\left(\begin{array}{c} x-\overline{x}_j\\ y-\overline{y}_j \end{array}\right)}{e^{\alpha(x_j,y_j)M_j}} + d \right\}^{-q(x_j,y_j)}$ $M \ge 4$ 地震予測数/日/度^2 H_t は時刻 t 前の発生履歴情報

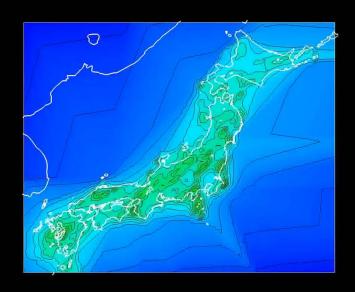

それぞれ2018年までの震源データに対して最小ABIC法で推定


$$ABIC = (-2) \max_{\mathbf{w}} \left\{ \log \operatorname{事後分布}(\mathbf{w}) \right\} + 2 \times \dim(\mathbf{w}); \quad \mathbf{w} =$$
超パラメタ(重みvector, 2 or 5)


- (1) HIST-ETAS5paモデル: 上記の式右辺で α, p, q が位置座標に依存する場合(制約の重みは5次元ベクトル)
- (2) HIST-ETAS-μk モデル: 上記の式右辺で α, ρ, q が<u>定数</u>の場合(制約の重みは 2 次元ベクトル)


内陸部 HIST-ETAS 常時地震活動度 (推定期間データ 1926 ~1995; M≥4.0)





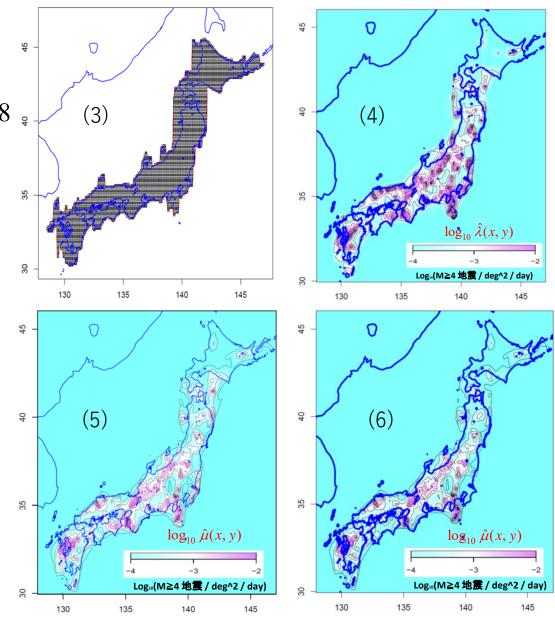
Time: 1885.03.20 13:00:00.00

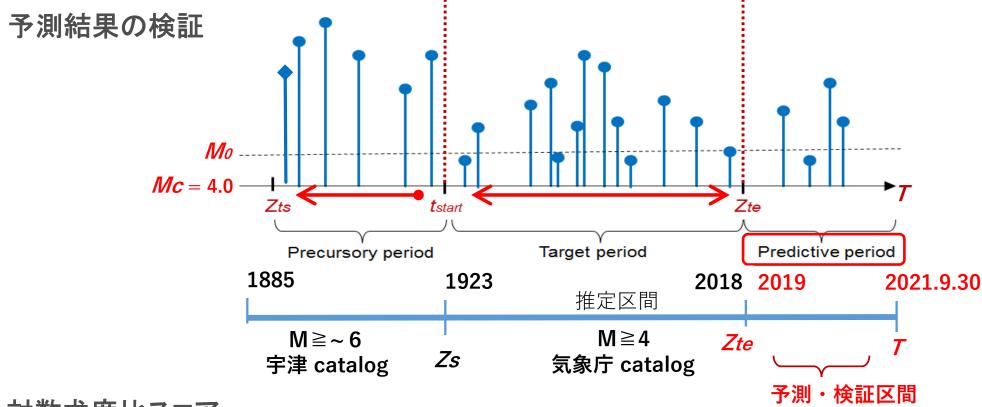
Time: 2019.01.26 14:16:33.00

定常(時間)非一様(空間)モデル

中期・長期予測にも使う。

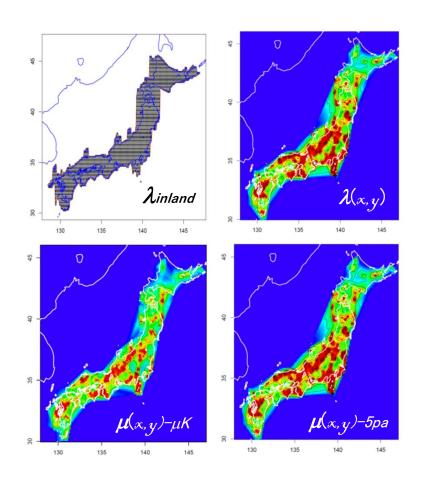
$$\lambda(t, x, y \mid H_t) = \lambda(x, y)_{perday}, 1923 \le t_{year} \le 2018$$

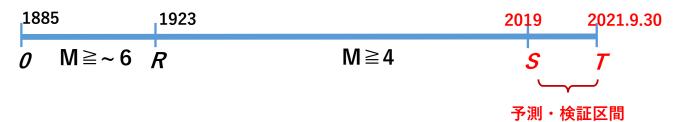

(3) 内陸部 一様 Poissonモデル


$$\lambda(x,y) = \begin{cases} \hat{\lambda}_{inland} & \text{if } (x,y) \in \text{inland} \\ 0 & \text{otherwise} \end{cases}$$

非一様 Poisson モデル

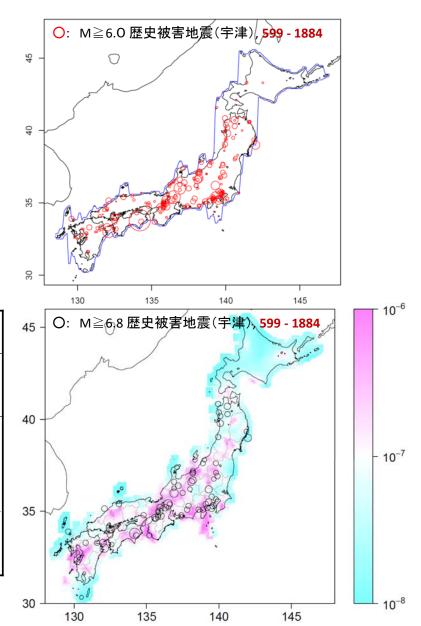
$$(4)$$
 $\lambda(x,y) = \hat{\lambda}(x,y)$,
ABIC最小で求めたMAP解


- (5) $\lambda(x,y)$ $\propto \hat{\mu}_{\mu M}(x,y)$,
 HIST-ETAS- μK モデルの常時活動度
- (6) $\lambda(x,y)$ $\propto \hat{\mu}_{5pa}(x,y)$,
 HIST-ETAS-5pa モデルの常時活動度



$$\log L(\theta; \mathbf{Z}_{te}, \mathbf{T}, \mathbf{M}_{0}) = \sum_{\mathbf{Z}_{te} < t_{i} < \mathbf{T}; \ \mathbf{M}_{i} \ge \mathbf{M}_{0}} \log \lambda_{\theta}(t_{i}, x_{i}, y_{i}, \mathbf{M}_{i} \mid H_{t_{i}}) - \int_{\mathbf{M}_{0}}^{\infty} \int_{\mathbf{Z}_{te}}^{\mathbf{T}} \iint_{Area} \lambda_{\theta}(t, x, y, \mathbf{M} \mid H_{t}) dx dy dt dM$$

短期予測の対数尤度 score: ln *L(S, T, Mc* | M≥4.0 events)


時空間点過程モデル	Mc4.0	Mc4.5	Mc5.0	Mc5.5
地震数(2019-2021.sept)	126	42	12	3
HIST-ETAS-5pa	638.7	276.6	55.8	-3.9
HIS-TETAS-μk	551.2	252.5	49.9	-3.2
λinland: 内陸部 一様 Poisson	0.0	0.0	0.0	0.0
λ(x,y): 非一様 Poisson	157.9	105.6	41.7	9.3
$\mu(x,y)$ -Poisson (HIST-ETAS- 5pa)	64.7	85.2	36.3	8.3
$\mu(x,y)$ -Poisson (HIST-ETAS- μ K)	111.5	91.5	35.3	7.9

Spatial probability density; log-likelihood score

$$\log L(\hat{\lambda}; Area, M_c) = \log \prod_{i=1}^N \frac{\hat{\lambda}(x_i, y_i, M_i)}{\int_{M_c}^{\infty} \iint_{Area} \hat{\lambda}(x, y, M) \, dx \, dy dM}$$
 ただし $\hat{\lambda}$ は下記モデル
$$\left\{ (x_j, y_j, M_j); M_j \geq M_c \right\}$$
 は被害歴史地震 (古代~1884) の配置

Utsu Historical data;								
magnitude thresholds	Mc 4.0	Mc 6.0	Mc 6.5	Mc 7.0	Mc 7.5			
number of events	206	185	101	50	8			
non-homogeneous (4)	-911.4	-828.0	-411.4	-233.3	-36.4			
HIST-ETAS-μK Background (5)	-826.4	-746.8	-412.2	-207.2	-33.7			
HIST-ETAS-5pa Background (6)	-820.4	-739.4	-408.1	-205.8	-34.8			
uniform in inland Japan(3)	-881.6	-791.7	-432.2	-214.0	-34.2			
uniform in all Japan region	-1210.8	-1087.4	-593.7	-293.9	-47.0			

まとめ

- 1. 内陸部直下型の地震予測を議論した(海域を含む全日本の予測でも可能である)。
- 2. 2019年以前の宇津カタログと気象庁震源データに基づき、その後の期間の予測との評価を「**対数尤度スコア**」で行い、短期・中期予測の結果の評価した。
- 3. 最近2年9ヶ月間の短期予測結果はHIST-ETAS-5paモデルがM4.0からM5.0までの全ての下限マグニチュードの地震に対する予測結果が一番優れておりHIST-ETAS-µKモデルがそれに次ぐ。それ以上のマグニチュードでは評価すべき予測の地震数が足りない。
- 4. 中期予測に限れば「定常非一様ポアソン」モデルが「内陸部一様」のポアソンモデルより遥かに優れている。
- 5. 過去に向かって長期予測を考えるとHIST-ETAS5paモデルの常時地震活動度(μ 値)が優れている。
- **6**. (次課題) HIST-ETASモデルによる中期予測