
Sebastian Pokutta

H. Milton Stewart School of Industrial and Systems Engineering
Center for Machine Learning @ GT (ML@GT)
Algorithm and Randomness Center (ARC)
Georgia Institute of Technology

twitter: @spokutta

Tokyo, 03/2019

Smooth Constraint Convex Minimization
via Conditional Gradients

2

Joint Work with… (in random order)

Alexandre
D’Aspremont

Gábor
Braun

Thomas
Kerdreux

Swati
Gupta

Cyrille
Combettes

Robert
Hildebrand

Stephen
Wright

Yi
Zhou

George
Lan

Dan
Tu

Daniel
Zink

3

(Constraint) Convex Optimization

Convex Optimization:

Given a feasible region 𝑃 solve the optimization problem:

Min𝑥∈𝑃 𝑓 𝑥 ,

where 𝑓 is a convex function (+ extra properties).

Our setup.

1. Access to 𝑃. Linear Optimization (LO) oracle: Given linear objective c
𝑥 ← argmin𝑣∈𝑃𝑐

𝑇𝑣

2. Access to 𝑓. First-Order (FO) oracle: Given 𝑥 return
𝛻𝑓 𝑥 and 𝑓(𝑥)

=> Complexity of convex optimization relative to LO/FO oracle

Source: [Jaggi 2013]

4

Why would you care for constraint convex optimization?

Setup captures various problems in Machine Learning, e.g.:

1. OCR (Structured SVM Training)

1. Marginal polytope over chain graph of letters of word and quadratic loss

2. Video Co-Localization

1. Flow polytope and quadratic loss

3. Lasso

1. Scaled ℓ1-ball and quadratic loss (regression)

4. Regression over structured objects

1. Regression over convex hull of combinatorial atoms

5. Approximation of distributions

1. Bayesian inference, sequential kernel herding, …

5

Smooth Convex Optimization 101

6

Basic notions

Let 𝑓: 𝑅𝑛 → 𝑅 be a function. We will use the following basic concepts:

Smoothness. 𝑓 𝑦 ≤ 𝑓 𝑥 + ∇𝑓 𝑥 𝑇 𝑦 − 𝑥 +
𝐿

2
𝑥 − 𝑦

2

Convexity. 𝑓 𝑦 ≥ 𝑓 𝑥 + ∇𝑓 𝑥 𝑇 𝑦 − 𝑥

Strong Convexity. 𝑓 𝑦 ≥ 𝑓 𝑥 + ∇𝑓 𝑥 𝑇 𝑦 − 𝑥 +
𝜇

2
𝑥 − 𝑦

2

=> Use for optimization unclear. Next step: Operationalize notions!

7

Measures of Progress:
Smoothness and Idealized Gradient Descent

Consider an iterative algorithm of the form:
𝑥𝑡+1 ← 𝑥𝑡 − 𝜂𝑡𝑑𝑡

By definition of smoothness. 𝑓 𝑥𝑡 − 𝑓 𝑥𝑡+1 ≥ 𝜂𝑡∇𝑓 𝑥𝑡
𝑇𝑑𝑡 − 𝜂𝑡

2 𝐿

2
𝑑𝑡

2

Smoothness induces primal progress. Optimizing right-hand side:

𝑓 𝑥𝑡 − 𝑓 𝑥𝑡+1 ≥
∇𝑓 𝑥𝑡

𝑇𝑑𝑡
2

2𝐿 𝑑𝑡
2 for 𝜂𝑡

∗ =
∇𝑓 𝑥𝑡

𝑇𝑑𝑡

𝐿 𝑑𝑡
2

Idealized Gradient Descent (IGD). Choose 𝑑𝑡 ← 𝑥𝑡 − 𝑥∗ (non-deterministic!)

𝑓 𝑥𝑡 − 𝑓 𝑥𝑡+1 ≥
∇𝑓 𝑥𝑡

𝑇(𝑥𝑡 − 𝑥∗) 2

2𝐿 𝑥𝑡 − 𝑥∗
2 for 𝜂𝑡

∗ =
∇𝑓 𝑥𝑡

𝑇(𝑥𝑡 − 𝑥∗)

𝐿 𝑥𝑡 − 𝑥∗

8

Measures of Optimality:
Convexity

Recall convexity: 𝑓 𝑦 ≥ 𝑓 𝑥 + ∇𝑓 𝑥 𝑇 𝑦 − 𝑥

Primal bound from Convexity. 𝑥 ← 𝑥𝑡 and 𝑦 ← 𝑥∗ ∈ argmin𝑥∈𝑃𝑓 𝑥 :

ℎ𝑡 ≔ 𝑓 𝑥𝑡 − 𝑓 𝑥∗ ≤ ∇𝑓 𝑥𝑡
𝑇(𝑥𝑡 − 𝑥∗)

Plugging this into the progress from IGD and 𝑥𝑡 − 𝑥∗ ≤ 𝑥0 − 𝑥∗ .

𝑓 𝑥𝑡 − 𝑓 𝑥𝑡+1 ≥
∇𝑓 𝑥𝑡

𝑇 𝑥𝑡 − 𝑥∗
2

2𝐿 𝑥𝑡 − 𝑥∗
2 ≥

ℎ𝑡
2

2𝐿 𝑥0 − 𝑥∗
2

Rearranging provides contraction and convergence rate.

ℎ𝑡+1 ≤ ℎ𝑡 ⋅ 1 −
ℎ𝑡

2𝐿 𝑥0 − 𝑥∗
2 ⇒ ℎ𝑇 ≤

2𝐿 𝑥0 − 𝑥∗
2

𝑇 + 4

9

Measures of Optimality:
Strong Convexity

Recall strong convexity: 𝑓 𝑦 ≥ 𝑓 𝑥 + ∇𝑓 𝑥 𝑇 𝑦 − 𝑥 +
𝜇

2
𝑥 − 𝑦

2

Primal bound from Strong Convexity. 𝑥 ← 𝑥𝑡 and 𝑦 ← 𝑥𝑡 − 𝛾(𝑥𝑡 − 𝑥∗)

ℎ𝑡 ≔ 𝑓 𝑥𝑡 − 𝑓 𝑥∗ ≤
∇𝑓 𝑥𝑡

𝑇 𝑥𝑡 − 𝑥∗
2

2𝜇 𝑥𝑡 − 𝑥∗
2

Plugging this into the progress from IGD.

𝑓 𝑥𝑡 − 𝑓 𝑥𝑡+1 ≥
∇𝑓 𝑥𝑡

𝑇 𝑥𝑡 − 𝑥∗
2

2𝐿 𝑥𝑡 − 𝑥∗
2 ≥

𝜇

𝐿
ℎ𝑡

Rearranging provides contraction and convergence rate.

ℎ𝑡+1 ≤ ℎ𝑡 ⋅ 1 −
𝜇

𝐿
⇒ ℎ𝑇 ≤ 𝑒−

𝜇
𝐿𝑇 ⋅ ℎ0

10

From IGD to actual algorithms

Consider an algorithm of the form:
𝑥𝑡+1 ← 𝑥𝑡 − 𝜂𝑡𝑑𝑡

Scaling condition (Scaling). Show there exist 𝛼𝑡 with

∇𝑓 𝑥𝑡
𝑇𝑑𝑡

𝑑𝑡
≥ 𝛼𝑡

∇𝑓 𝑥𝑡
𝑇 𝑥𝑡 − 𝑥∗

𝑥𝑡 − 𝑥∗

=> Lose an 𝜶𝒕
𝟐 factor in iteration 𝒕. Bounds and rates follow immediately.

Example. (Vanilla) Gradient Descent with 𝑑𝑡 ← ∇𝑓(𝑥𝑡)

∇𝑓 𝑥𝑡
𝑇𝑑𝑡

𝑑𝑡
= ∇𝑓 𝑥𝑡

2
≥ 1 ⋅

∇𝑓 𝑥𝑡
𝑇 𝑥𝑡 − 𝑥∗

𝑥𝑡 − 𝑥∗

=> TODAY: No more convergences proofs. Just establishing (Scaling).

11

Conditional Gradients
(a.k.a. Frank-Wolfe Algorithm)

12

Conditional Gradients a.k.a. Frank-Wolfe Algorithm

1. Advantages

1. Extremely simple and robust: no complicated data structures to maintain

2. Easy to implement: requires only a linear optimization oracle (first order method)

3. Projection-free: feasibility via linear optimization oracle

4. Sparse distributions over vertices: optimal solution is convex comb. (enables sampling)

2. Disadvantages

1. Suboptimal convergence rate of 𝑂(
1

𝑇
) in the worst-case

=> Despite suboptimal rate often used because of simplicity

Source: [Jaggi 2013]

13

Conditional Gradients a.k.a. Frank-Wolfe Algorithm

𝑥1 = 𝑣1

)

−∇𝑓(𝑥1)

𝑣2

𝑥2

−∇𝑓(𝑥2)

𝑣3

𝑥3

Note:

A) Points are formed as convex
combinations of vertices

B) vertices used to write point
=> „Active sets“

14

Conditional Gradients a.k.a. Frank-Wolfe Algorithm

Establishing (Scaling).

FW algorithm takes direction 𝑑𝑡 = 𝑥𝑡 − 𝑣𝑡. Observe
∇𝑓 𝑥 𝑇 𝑥𝑡 − 𝑣𝑡 ≥ ∇𝑓 𝑥 𝑇 𝑥𝑡 − 𝑥∗

Hence with 𝛼𝑡 =
| 𝑥𝑡−𝑥

∗ |

𝐷
with D diameter of P:

∇𝑓 𝑥 𝑇 𝑥𝑡 − 𝑣𝑡
| 𝑥𝑡 − 𝑣𝑡 |

≥
𝑥𝑡 − 𝑥∗

𝐷
⋅
∇𝑓 𝑥 𝑇 𝑥𝑡 − 𝑥∗

𝑥𝑡 − 𝑥∗

=> This 𝜶𝒕 is sufficient for 𝑶(
𝟏

𝒕
) convergence but better??

Source: [Jaggi 2013]

15

The strongly convex case
Linear convergence in special cases

If 𝑓 is strongly convex we would expect a linear rate of convergence.

Obstacle.

∇𝑓 𝑥 𝑇 𝑥𝑡 − 𝑣𝑡
| 𝑥𝑡 − 𝑣𝑡 |

≥
𝒙𝒕 − 𝒙∗

𝐷
⋅
∇𝑓 𝑥 𝑇 𝑥𝑡 − 𝑥∗

𝑥𝑡 − 𝑥∗

Special case 𝑥∗ ∈ rel. int 𝑃 , say 𝐵 𝑥∗, 2𝑟 ⊆ 𝑃. Then:

Theorem [Marcotte, Guélat ‘86]. After a few iterations

∇𝑓 𝑥 𝑇 𝑥𝑡 − 𝑣𝑡
| 𝑥𝑡 − 𝑣𝑡 |

≥
𝑟

𝐷
⋅
∇𝑓 𝑥 𝑇 𝑥𝑡 − 𝑥∗

𝑥𝑡 − 𝑥∗

and linear convergence follows via (Scaling).

16

The strongly convex case
Is linear convergence in general possible?

(Vanilla) Frank-Wolfe cannot achieve linear convergence in general:

Theorem [Wolfe ‘70]. 𝑥∗ on boundary of P. For any 𝛿 > 0 for infinitely many t:

𝑓 𝑥𝑡 − 𝑓 𝑥∗ ≥
1

𝑡1+𝛿

Issue: zig-zagging (b/c first order opt) [Wolfe ‘70] proposed Away Steps

17

The strongly convex case
Linear convergence in general

First linear convergence result (in general) due to [Garber, Hazan ‘13]

1. Simulating (theoretically efficiently) a stronger oracle rather using Away Steps

2. Involved constants are extremely large => algorithm unimplementable

Linear convergence for implementable variants due to [Lacoste-Julien, Jaggi ‘15]

1. (Dominating) Away-steps are enough

2. Includes most known variants: Away-Step FW, Pairwise CG, Fully-Corrective FW,
Wolfe’s algorithm, …

3. Key ingredient: There exists 𝑤(𝑃) (depending on polytope 𝑃 (only!)) s.t.

∇𝑓 𝑥 𝑇 𝑎𝑡 − 𝑣𝑡 ≥ 𝑤 𝑃
∇𝑓 𝑥 𝑇 𝑥𝑡 − 𝑥∗

𝑥𝑡 − 𝑥∗

(𝑑𝑡 = 𝑎𝑡 − 𝑣𝑡 is basically the direction that either variant dominates)

=> Linear convergence via (Scaling)

18

Many more variants and results…

Recently there has been a lot of work on Conditional Gradients, e.g.,

1. Linear convergence for conditional gradient sliding [Lan, Zhou ‘14]

2. Linear convergence for (some) non-strongly convex functions [Beck, Shtern ‘17]

3. Online FW [Hazan, Kale ‘12, Chen et al ‘18]

4. Stochastic FW [Reddi et al ‘16] and Variance-Reduced Stochastic FW [Hazan,
Luo ’16, Chen et al ‘18]

5. In-face directions [Freund, Grigas ‘15]

6. Improved convergence under sharpness [Kerdreux, D’Aspremont, P. ‘18]

… and many more!!

=> Very competitive and versatile in real-world applications

19

Revisiting Conditional Gradients

20

Bottleneck 1: Cost of Linear Optimization
Drawbacks in the context of hard feasible regions

Basic assumption of conditional gradient methods:

Linear Optimization is cheap

As such accounted for as 𝑂(1). This assumption is not warranted if:

1. Linear Program of feasible region is huge

1. Large shortest path problems

2. Large scheduling problems

3. Large-scale learning problems

2. Optimization over feasible region is NP-hard

1. TSP tours

2. Packing problems

3. Virtually every real-world combinatorial optimization problem

21

Rethinking CG in the context of expensive oracle calls

Basic assumption for us:

Linear Optimization is not cheap

(Think: hard IP can easily require an hour to be solved => one call/it unrealistic)

1. Questions:

1. Is it necessary to call the oracle in each iteration?

2. Is it necessary to compute (approximately) optimal solutions?

3. Can we reuse information?

2. Theoretical requirements

1. Achieve identical convergence rates, otherwise any speedup will be washed out

3. Practical requirements

1. Make as few oracle calls as possible

22

Lazification approach of [BPZ 2017] using weaker oracle

1. Interpretation of Weak Separation Oracle: Discrete Gradient Directions

1. Either a new point 𝑦 ∈ 𝑃 that improves the current objective by at least
Φ

𝐾
(positive call)

2. Or it asserts that all other points 𝑧 ∈ 𝑃 improve no more than Φ (negative call)

2. Lazification approach of [Braun, P., Zink ‘17]

1. Use weaker oracle that allows for caching and early termination (no more expensive than LP)

2. Advantage: huge speedups in wall-clock time when LP is hard to solve

1. For hard LPs speedups can be as large as 107

3. Disadvantage: weak separation oracle produces even weaker approximations than LP oracle

1. Actual progress in iterations can be worse than with LP oracle

2. Advantage vanishes if LP is very cheap and can be actually worse than original algorithm

3. Caching is not “smart”: it simple iterates over the already seen vertices

3. Optimal complexity for Weak Separation Oracle [Braun, Lan, P., Zhou ‘17]

23

Bottleneck 2: Quality of gradient approximation
Frank-Wolfe vs. Projected Gradient Descent

𝑥𝑡

−∇𝑓(𝑥𝑡)

𝑣1

𝑣2

Gradient Descent-style progress

Problem: how far
can we go into this direction without

leaving the feasible region?

Solution: do a gradient step and project
back into feasible region. However can be

very expensive

𝑥𝑡+1

Frank-Wolfe approach

Use directions formed via vertices as
approximations of the gradient and form

convex combinations only.

Problem: Approximations can be bad, i.e.,
𝛁𝐟 𝐱𝐭 , 𝐯 − 𝐱𝐭 small

𝑣2 − 𝑥𝑡

𝑣1 − 𝑥𝑡

𝑥𝑡+1 = (1 − 𝜆)𝑥𝑡 + 𝜆𝑣1

 Tradeoff between ensured feasibility and
quality of gradient approximations!

24

Bringing Conditional Gradients
as close as possible to Gradient Descent

25

𝑥∗

𝑣4

𝑥𝑡

𝑣2

𝑣1 𝑣3

Gradient Descent Phase

As long as enough progress, perform
gradient descent over the simplex

(𝒗𝟏, 𝒗𝟐, 𝒗𝟑)

𝑥𝑡+𝑙

Frank-Wolfe Phase

Once progress over simplex too small, call
LP oracle to obtain new vertex and

simplex

−∇𝑓(𝑥𝑡+𝑙) 𝑥𝑡+𝑙+1

Blending of gradient steps and Frank-Wolfe steps

26

Staying Projection-free: The Simplex Descent Oracle (SiDO)

1. Interpretation of Simplex Descent Oracle: Single progress step on simplex

1. Either reduce size of set 𝑆 by at least 1 if function is not increasing (guaranteed progress in size)

2. Or make a descent step with a guaranteed improvement relative to best approximate direction
(guaranteed progress in function value)

2. Various implementations of SiDO

1. Most basic via projected gradient descent (PGD) however requires projections over a low-
dimensional simplices

2. Better version via new(!!) projection-free algorithm over simplex (Simplex Gradient Descent)
with cost linear in the size of the active set per iteration

27

The algorithm: Blended Conditional Gradients

Frank-Wolfe Phase

Once progress too small, call LPSep
oracle for new vertex and simplex

Gradient Descent Phase

As long as enough progress, perform
gradient descent over the simplex

Dual Gap Update Phase

If neither SiDO nor Frank-Wolfe steps
can progress enough update dual gap

28

Main Theorem

You basically get what you expect:

Theorem. [Braun, P., Tu, Wright ‘18] Assume 𝑓 is convex and smooth over the

polytope 𝑃 with curvature 𝐶 and geometric strong convexity 𝜇. Then Algorithm 1

ensures:

𝑓 𝑥𝑡 − 𝑓 𝑥∗ ≤ 𝜀 for 𝑡 ≥ Ω
𝐶

𝜇
log

Φ0

𝜀
,

where 𝑥∗ is an optimal solution to 𝑓 over 𝑃 and Φ0 ≥ 𝑓 𝑥0 − 𝑓(𝑥∗).

(For previous empirical work with similar idea see also [Rao, Shah, Wright ‘15])

29

Computational Results

La
ss

o

St
ru

ct
u

re
d

 R
e

gr
e

ss
io

n

Sp
ar

se
 S

ig
n

al
 R

e
co

ve
ry

M
at

ri
x

C
o

m
p

le
ti

o
n

30

Beyond Conditional Gradients:
Blended Matching Pursuit

31

(Generalized) Matching Pursuit

Special variant of constraint convex minimization:

Given a set of vectors 𝒜 ⊆ 𝑅𝑛 solve:

Minlin(𝒜) 𝑓 𝑥 ,

where 𝑓 is a convex function. Basic example: 𝑓𝑦 𝑥 = 𝑥 − 𝑦
2

Source: [Locatello et al ‘17]

32

Blended (Generalized) Matching Pursuit [Combettes, P. ‘19]
Faster than MP with sparsity of OMP

Inspired by [Locatello et al 2017] same blending idea can be used for MP.

33

Interestingly, (unaccelerated) BGMP even outperforms accelerated MP as using

actual gradient directions over FW approximations seem to offset acceleration.

Blended (Generalized) Matching Pursuit
Faster than MP with sparsity of OMP

34

Code is publicly available

Code available at: https://www.github.com/pokutta/bcg

1. Python package for Python 3.5+

2. Reasonably well optimized (work in progress…)

3. Automatic differentiation via autograd

4. Interfaces with gurobi
Trying to use autograd to compute gradient...

Dimension of feasible region: 10

╭──────────────┬──────────┬────────────────────────┬────────────────────────┬──────────────┬──────────────╮
│ Iteration │ Type │ Function Value │ Dual Bound │ #Atoms │ WTime │

├──────────────┼──────────┼────────────────────────┼────────────────────────┼──────────────┼──────────────┤

│ 1 │ FI │ 3255589.0000000005 │ 6629696.0 │ 1 │ 0.0018 │

│ 2 │ FI │ 2590612.0 │ 6629696.0 │ 2 │ 0.0036 │

│ 3 │ FN │ 2565368.125 │ 6629696.0 │ 2 │ 0.0053 │

│ 4 │ P │ 2560989.662200928 │ 178146.5 │ 2 │ 0.0071 │

│ 5 │ P │ 2559806.0614284277 │ 178146.5 │ 2 │ 0.0085 │

│ 6 │ P │ 2559680.2272379696 │ 178146.5 │ 2 │ 0.0103 │

│ 7 │ P │ 2559538.3483599476 │ 178146.5 │ 2 │ 0.0126 │

│ 8 │ FI │ 2538950.9169786745 │ 178146.5 │ 3 │ 0.0141 │

│ 9 │ PD │ 2499078.142760788 │ 178146.5 │ 2 │ 0.0164 │

│ 10 │ P │ 2376118.39724563 │ 178146.5 │ 2 │ 0.0175 │

│ 11 │ FN │ 2375260.49557375 │ 178146.5 │ 2 │ 0.0187 │

│ 12 │ FN │ 2375259.67380736 │ 28354.22443160368 │ 2 │ 0.0206 │

│ 13 │ FN │ 2375259.6279250253 │ 1093.4857637005916 │ 2 │ 0.0235 │

│ 14 │ FN │ 2375259.627728738 │ 201.47828699820093 │ 2 │ 0.0255 │

│ 15 │ FN │ 2375259.62771675 │ 16.927091718331212 │ 2 │ 0.0273 │

│ 16 │ FN │ 2375259.6277167373 │ 3.2504734088724945 │ 2 │ 0.0298 │

│ 17 │ FN │ 2375259.6277167364 │ 0.13467991727520712 │ 2 │ 0.0321 │

│ 18 │ FN │ 2375259.627716736 │ 0.02344177945633419 │ 2 │ 0.0343 │

│ 19 │ FN │ 2375259.627716736 │ 0.003492695832392201 │ 2 │ 0.0375 │

╰──────────────┴──────────┴────────────────────────┴────────────────────────┴──────────────┴──────────────╯

Exit Code 1: Reaching primal progress bound, save current results, and exit BCG algorithm

Recomputing final dual gap.

dual_bound 0.0009304632258135825

primal value 2375259.627716736

mean square error 5373.890560445104

https://www.github.com/pokutta/bcg

Sebastian Pokutta

H. Milton Stewart School of Industrial and Systems Engineering
Center for Machine Learning @ GT (ML@GT)
Algorithm and Randomness Center (ARC)
Georgia Institute of Technology

twitter: @spokutta

Thank you
for your attention!

