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Gas Physics and Transport a la Hoppmann

Gas transport network can be modelled as flow network

Gas is inserted at entries and withdrawn at exits

Transport and trading decoupled = Volatile supplies and demands
Supply and demand are balanced within 24h

Gas travels slow (approximately 15 - 20 km/h)

Gas can be stored in pipelines

Gas flows from high pressure to low pressure

Pressure loss while flowing through a pipe mainly due to friction
Compressors can increase pressure

Regulators can decrease pressure
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Valves can change network topology
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The NAVI - Problem Description

Project Goal

» Short-term transient gas network operation
of large-scale real-world networks

> “Navigation system” for dispatchers

B

This figure is omitted due to missing copy-
rights.

Problem
Given Goal
» Network topology » Control each element s.t. the

» [nitial network state

» Short-term supply/demand
situation, e.g. 12—24 hours

network is operated “best”
(What does best mean?)
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Sample Gas Grid
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Sample Gas Grid - Navi Stations
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Basic Algorithmic Framework
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1. Simplify navi stations
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1. Simplify navi stations
2. Optional further network simplifications:

> Merge pipes (parallel, sequential)
» Remove distribution network parts
[ I

3. Solve transient operation problem using linearized gas flow equations
(Netmodel-Algorithm)
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Basic Algorithmic Framework
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1. Simplify navi stations
2. Optional further network simplifications:
> Merge pipes (parallel, sequential)
» Remove distribution network parts
> ...
3. Solve transient operation problem using linearized gas flow equations
(Netmodel-Algorithm)
4. Result: For the boundaries of the navi stations
» Pressure values for all timesteps
» Flow values for all timesteps

5. Solve transient operation problem for original navi stations
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Pipes

7%

This figure is omitted due to missing copyrights.

Gasflow in a pipe (u, v) between timesteps t; and t; 11 can be described by

Pu,tiia T Put; Pu,t; + Puv.t; Rs T z At
= 2 = - 2 LA (qvatiﬂ - Qu,t,-ﬂ) =0
A RS TZ L (’qu,t,-’ qu,t,— + |qv,t,-‘ qv,t,->
4A2 D Pu,t,- pv,t,—
sl
. gsL
2R T z

(Pu,t,- + Pv7t,') + pvt; — Put; =0
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Pipes

This figure is omitted due to missing copyrights.

Gasflow in a pipe (u, v) between timesteps t; and t; 1 can be described by

Pu,tiyy + Pv,tia o Pu,t; + Pyt Rs T z At

(qv,tH»l - qu,t,'+1) = 0

2 2 LA
iXi . AL
Foing sbaolute veloctty: m ‘VU,O Qu,t + |Vv,0| qv,t
slL
Jr2gl‘:\)sﬁ (Puti + pvt)) + Put; — Pug; =0
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Simplifying Navi Stations

» Navi stations are bounded by fence nodes
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Simplifying Navi Stations

» Navi stations are bounded by fence nodes
» Elements between fence nodes are removed
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Simplifying Navi Stations
» Navi stations are bounded by fence nodes
» Elements between fence nodes are removed
» Fence nodes with similar “behaviour” are grouped into fence groups
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Simplifying Navi Stations
» Navi stations are bounded by fence nodes
» Elements between fence nodes are removed
» Fence nodes with similar “behaviour” are grouped into fence groups
» Nodes in a fence group are merged into a single nodes
» Auxiliary nodes (for modelling purposes) may be introduced
» Auxiliarv links represent the capabilities of a navi station
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Flow Directions and Simple States

B

For each navi station (V/, A) we are given
» Flow directions F C P(V) x P(V) with f = (f*,f~) e F
» Simple states S C P(F) x P(A) x P(A) with s = (s¢,52",s°F) € S

a
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Flow Directions and Simple States

B

For each navi station (V, A) we are given
» Flow directions F C P(V) x P(V;) (example: (fT,f7))
> Simple states S C P(F) x P(A) x P(A) (example: (sr,s2",s2))
» x¢: € {0,1} for flow direction f € F and time t € T
» x5t € {0,1} for simple state s € S and time t € T
> x,: € {0,1} for auxiliary arc a€ Aand time t € T

E =1 T

fe]—'xf’t Vt S

E Xth ZXSI' VSES, VtGT
fess

)

E X571_- =1 VYt S T
seS
Xst <Xat Vs€S, Vaes" VteT

1- Xs,t = Xat Vse S, Vae S;ff, Vte T

... flow direction constraints ...
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Shortcuts

B

For a shortcut a = (u,v) and each t € T:

Not Active (x5 = 0):
» Decoupled pressure values
» No flow allowed

Active (x5 = 1):
» Coupled pressure values

» Bidirectional flow up to an amount of g, (Big-M).

pu,t - pv,t S (1 - Xa,t)(ﬁv - Bu)
Pu,t — Pv,t > (1 - Xa,t)(Bv - ﬁu)
q; < Xa,taa

H p—
qa’t S Xa,tqa'
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Regulating Arcs

B

For a regulating arc a = (u,v) and each t € T:

Not Active (x5 = 0):
» Decoupled pressure values

» No flow allowed

Active (x5 = 1):
P> Pressure at u not smaller than pressure at v

» Unidirectional flow up to an amount of g, (Big-M).

Pu,t — Pv,t > (1 - Xa,t)(Bv - ﬁu)

s _
qa’t S Xa,tqa'
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Compressing Arcs

B

Not Active (x5 = 0):
» No machine assigned
» Decoupled pressure values
» No flow allowed

Active (x5t = 1):
P Assign machines to compressing arc
> Pressure at v not smaller than pressure at u
> Pressure at v at most r, times greater than p, o
> Flow limited by sum of max flows of assigned machines
>

Respect approximated power bound equation
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Compressing Arcs - MIP Model

B

For each machine i € M and for each timestep t € T we have

<1
ZaeA:iEMa Yar =

Y,—it < X
For each compressing arc a and for each timestep t € T we have

0e <D o FYo
_ _ pi
Fat =1+ ZieMa(l R
< [
Mat = ZieM P
pu t pv t S (1 )( )
raPu,0 — Pv,t > (1 — Xa, t)(puo pv t)
Q1pyt + a2pyr + oz3q;>t +oumar < Bxar + (1 — Xa,t)(alﬁu + 2P, + a37q,)
a1Put + Q2pye + 3G, + e > Bxae + (1 — Xae)(1p, + aop, + 04T,)
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Combined Arcs

Not Active (x5 = 0):
» No machine assigned
» Decoupled pressure values
» No flow allowed

Active (x5 = 1):
» Assign machines to compressing arc (if compressing)
» Pressure at v at most r, times greater than p, o
> Flow limited by sum of max flows of assigned machines
> Respect power bound approximation equation (if compressing)

Introduce binary variables x ;, x5, € {0,1} indicating whether the arc is
regulating or compressing.

r c _
Xat + Xa,t = Xa,t
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Connecting In- and Outside and Objective function

B

Flow conservation holds at all nodes in the network

Z ingoing flow — Z outgoing flow = b, ¢

where b, ; = 0 for inner nodes, b, ; > 0 for entries, and b, ; < 0 for exits.
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Flow conservation holds at all nodes in the network

Z ingoing flow — Z outgoing flow = b, ;

where b, ; = 0 for inner nodes, b, ; > 0 for entries, and b, ; < 0 for exits.

The (current) objective of Netmodel-MIP is to minimize the number of
1. flow direction changes,
2. simple state changes,

3. and auxiliary link switches.
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Connecting In- and Outside and Objective function

7%

Flow conservation holds at all nodes in the network
Z ingoing flow — Z outgoing flow = b, ;

where b, ; = 0 for inner nodes, b, ; > 0 for entries, and b, ; < 0 for exits.

The (current) objective of Netmodel-MIP is to minimize the number of
1. flow direction changes,
2. simple state changes,
3. and auxiliary link switches.
Currently, we discuss to additionally penalize
» compressor/combined links being active

» and the power used for compression.
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3-Stage Approach
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To avoid infeasibility, we have a 3-Stage Approach
1. Initial MIP
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3-Stage Approach

B

To avoid infeasibility, we have a 3-Stage Approach
1. Initial MIP
2. Stage 1 infeasible = add (expensive) slack on supplies/demands
3. Stage 2 infeasible = add (highly expensive) slack on pressure bounds

In theory the last MIP always admits a feasible solution.
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Netmodel-Algorithm

: Solve MIP
if MIP is infeasible then
Add slack on supply/demands and resolve
if MIP is infeasible then
Add slack on pressure bounds and resolve

B

IS L -

solg < solution of MIP
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Netmodel-Algorithm

[ S e S S = S S S T
g s e o

16

© o N gk

: Solve MIP
if MIP is infeasible then
Add slack on supply/demands and resolve
if MIP is infeasible then
Add slack on pressure bounds and resolve

solg < solution of MIP

cforiinl...kdo
Determine average velocities using last min{i, j} solutions
Update momentum equations and solve MIP
if MIP is infeasible then
Add slack on supply/demands and resolve
if MIP is infeasible then
Add slack on pressure bounds and resolve
sol; < solution of MIP

: Return pressure and flow values of fence group nodes in soly
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Subnetwork of Prototype
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The Last Slide
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D Mathematical Ophm\zoflon and Data Analysis Laboratories ZD'

Thank you for your attention!
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