# 双対性のための数学の準備

京都大学大学院情報学研究科山下信雄

# 参考文献

R.T. Rockerfeller, Convex Analysis, Princeton University Press, 1997. (初版は1970年)

福島雅夫,非線形最適化の基礎,朝倉書店,2001. (初版は1980年の「非線形最適化の理論(産業図書)」)

# 記号と定義

V を**ベクトル空間**,  $f:V \to R \cup \{+\infty\}$  とする. ベクトル空間V に**内積**が定義されているとする.  $\langle x,y \rangle$   $(x,y \in V)$ 

#### 実行可能定義域(effective domain)

$$dom f = \{x \in V \mid f(x) < +\infty\}$$

#### 真凸関数(proper convex function):

実行可能定義域が空でない凸関数

## 記号と定義

#### 閉包(closure):

集合Sを含む閉集合の中で,他の閉集合を真に含まない集合を集合Sの閉包といい,  $\operatorname{cl} S$  と表す.

S が閉集合のときは  $S = \operatorname{cl} S$ 

ノルム(norm):特に断らない限り  $||x|| = \sqrt{\langle x, x \rangle}$ 

#### 射影(projection):

集合  $S \ge x$  に対して、 $\|y-x\|$  を最小とする  $y \in S$  を x の集合 S の射影といい、 $P_S(x)$  で表す.

# 凸集合と凸関数

任意の  $x, y \in S$  と  $\alpha \in [0,1]$  に対して  $\alpha x + (1-\alpha)y \in S$  が成り立つとき、集合 S を**凸集合**(convex set)という.

任意の  $x, y \in S$  と  $\alpha \in [0,1]$  に対して  $f(\alpha x + (1-\alpha)y) \le \alpha f(x) + (1-\alpha)f(y)$ 

が成り立つとき, f を S 上で**凸関数**(convex function)という.

## 凸関数の性質

• 1回微分可能なとき f が凸関数  $\Leftrightarrow f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle$ 

• 2回微分可能なとき

f が凸関数  $\Leftrightarrow \nabla^2 f(x)$  が半正定値

# 凸関数の劣勾配

凸関数 f が微分可能なとき、すべての  $y \in V$  に対して  $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$ 

fが微分不可能なとき、すべての  $y \in V$  に対して  $f(y) \ge f(x) + \langle \eta, y - x \rangle$ 

$$\partial f(y) = \left\{ \eta \in V \mid f(x) \ge f(y) + \left\langle \eta, x - y \right\rangle \ \forall x \in V \right\}$$

### 凸錐

 $\mathfrak{M}(\mathbf{cone}): \ \alpha x \in C \ \text{ for all } \ x \in C, \alpha \in [0, \infty)$ 

注意:必ず原点を含む.

凸錐(convex cone): 凸集合である錐

#### 錐 Cの極錐(polar cone), 双対錐(dual cone):

極錐:  $C^* = \{ y \in V \mid \langle y, x \rangle \le 0 \ \forall x \in C \}$ 

双対錐:  $C^d = \{ y \in V \mid \langle y, x \rangle \ge 0 \ \forall x \in C \} = -C^*$ 

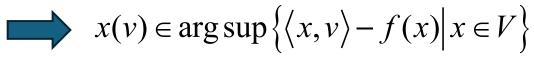
錐の例:2次錐,半正定値錐,

# 共役関数(Legendre変換)

fを凸関数とする.

以下の関数  $f^*$  を f の共役関数(conjugate function)という.

$$f^*(v) = \sup\{\langle x, v \rangle - f(x) | x \in V\}$$



$$v \in \partial f(x(v)), \ f^*(v) = \langle v, x(v) \rangle - f(x(v)) = -(f(x(v)) + \langle v, 0 - x(v) \rangle)$$

 $f \circ x(v)$ における接線の x = 0の値

凸関数の表現① グラフ  $\{(x,y)|y=f(x)\}$ 

凸関数の表現② 傾きと切片  $\{(v,\alpha) | \alpha = -f^*(v)\}$ 

## 共役関数の性質

- (fが凸関数でなくても)共役関数は凸関数
- fが閉凸関数であるとき (f\*)\*=f
- (fが凸関数でなくても $) f(x) + f^*(v) \ge \langle x, v \rangle$
- $v \in \partial f(x) \iff x \in \partial f^*(v)$
- f が強凸関数  $\Leftrightarrow f^*$  が微分可能で、 $\nabla f^*$ がリプシッツ連続

#### 共役関数の例

線形関数 
$$f(x) = c^{\top}x \implies f^{*}(y) = \begin{cases} 0 & \text{if } y = c \\ +\infty & \text{otherwise} \end{cases}$$

凸2次関数 
$$f(x) = \frac{1}{2}x^{\top}Ax \Rightarrow f^{*}(y) = \frac{1}{2}y^{\top}A^{-1}y$$

平行移動 
$$f(x) = g(x-b) \Rightarrow f^*(y) = g^*(y) + b^{\mathsf{T}} y$$

分離可能な和 
$$f(x^1, x^2) = g_1(x^1) + g_2(x^2) \Rightarrow f^*(y^1, y^2) = g_1^*(y^1) + g_2^*(y^2)$$

## 標示関数と支持関数

 $S \subseteq V$  を凸集合とする.

$$\delta_{S}(x) = \begin{cases} 0 & \text{if } x \in S \\ +\infty & \text{if } x \notin S \end{cases}$$

を Sの**標示関数(indicator function)**という.  $\delta_S$  は凸関数である.

 $\delta_S$  の共役関数  $\delta_S^*$  をS の**支持関数(support function)**という.

$$\delta_{S}^{*}(u) = \sup_{x \in V} \left\{ \langle x, u \rangle - \delta_{S}(x) \right\} = \sup_{x \in S} \left\{ \langle x, u \rangle \right\}$$

**凸2次関数**:  $f(x) = \frac{1}{2}x^{T}Qx$  (*Q*は正定値対称行列)

$$f^{*}(v) = \sup_{x \in \mathbb{R}^{n}} \left\{ \langle x, v \rangle - \frac{1}{2} x^{\top} Q x \right\}$$

$$= \langle v, Q^{-1} v \rangle - \frac{1}{2} (Q^{-1} v)^{\top} Q Q^{-1} v$$

$$= \frac{1}{2} v^{\top} Q^{-1} v$$

$$= \frac{1}{2} v^{\top} Q^{-1} v$$

$$\lim_{x \in \mathbb{R}^{n}} -\langle x, v \rangle + \frac{1}{2} x^{\top} Q x$$

$$\lim_{x \in \mathbb{R}^{n}} -\langle x, v \rangle + \frac{1}{2} x^{\top} Q x$$

$$\lim_{x \in \mathbb{R}^{n}} -\langle x, v \rangle + \frac{1}{2} x^{\top} Q x$$

$$\lim_{x \in \mathbb{R}^{n}} -\langle x, v \rangle + \frac{1}{2} x^{\top} Q x$$

$$\lim_{x \in \mathbb{R}^{n}} -\langle x, v \rangle + \frac{1}{2} x^{\top} Q x$$

$$\lim_{x \in \mathbb{R}^{n}} -\langle x, v \rangle + \frac{1}{2} x^{\top} Q x$$

$$\lim_{x \in \mathbb{R}^{n}} -\langle x, v \rangle + \frac{1}{2} x^{\top} Q x$$

$$\lim_{x \in \mathbb{R}^{n}} -\langle x, v \rangle + \frac{1}{2} x^{\top} Q x$$

$$\lim_{x \in \mathbb{R}^{n}} -\langle x, v \rangle + \frac{1}{2} x^{\top} Q x$$

$$\lim_{x \in \mathbb{R}^{n}} -\langle x, v \rangle + \frac{1}{2} x^{\top} Q x$$

$$\lim_{x \in \mathbb{R}^{n}} -\langle x, v \rangle + \frac{1}{2} x^{\top} Q x$$

線形関数: 
$$f(x) = \langle a, x \rangle + b$$

$$f^{*}(v) = \sup_{x \in V} \{\langle x, v \rangle - \langle a, x \rangle - b\}$$

$$= -b + \sup_{x \in V} \{\langle v - a, x \rangle\}$$

$$= \begin{cases} -b & \text{if } v = a \\ +\infty & \text{if } v \neq a \end{cases}$$

#### 線形関数の共役関数の共役関数:

$$g(x) = \begin{cases} -b & \text{if } x = a \\ +\infty & \text{if } x \neq a \end{cases}$$
$$g^*(v) = \sup_{x \in V} \{ \langle x, v \rangle - g(x) \}$$
$$= \sup_{x = a} \{ \langle x, v \rangle - g(x) \}$$
$$= \langle a, v \rangle + b$$

適当な仮定のもとで、共役関数の共役関数は元の関数になる

錐Cの支持関数:錐Cの標示関数 $\delta_C$ 

$$\delta_C^*(v) = \sup_{x \in C} \langle v, x \rangle = \begin{cases} 0 & \text{if } v \in C^* \\ +\infty & \text{if } v \notin C^* \end{cases} \longrightarrow \delta_C^*(v) = \delta_{C^*}(v)$$

平行移動: p(x) = f(x-a)

$$p^{*}(v) = \sup_{x \in V} \{\langle v, x \rangle - f(x - a)\} = \sup_{y + a \in V} \{\langle v, y + a \rangle - f(y)\}$$
$$= \langle v, a \rangle + \sup_{y \in V} \{\langle v, y \rangle - f(y)\}$$
$$= \langle v, a \rangle + f^{*}(v)$$

#### ゲージ関数

#### 定義

以下の性質を満たす関数  $\rho:V \to R \cup \{\infty\}$ 

を**ゲージ関数(gauge function**)という

- (i) 非負の関数
- (ii) 凸関数
- (iii) 正斉次(Positively homogeneous)

$$\rho(tx) = t\rho(x) \ \forall t \ge 0$$

#### ノルムとゲージ関数

norm: 標準, 基準…..

gauge: 基準,規格,標準寸法….

ノルムはゲージ関数

非負性:  $||x|| \ge 0$ 

正斉次性:  $||tx|| = t ||x|| (t \ge 0)$ 

凸性:  $\alpha \in [0,1]$  に対して

$$\|\alpha x + (1 - \alpha)y\| \le \|\alpha x\| + \|(1 - \alpha)y\| = \alpha \|x\| + (1 - \alpha)\|y\|$$

三角不等式

#### ノルムの例(有名なもの)

#### ベクトルのノルム

- $p / l \downarrow$   $||x||_p = \sqrt[p]{\sum |x_i|^p}$
- 無限大ノルム ||x||<sub>∞</sub> = max | x<sub>i</sub> |
- 1 /  $||x||_1 = \sum |x_i|$ 
  - ⇒ 正則化やスパース化によく使われる

#### 行列のノルム $\sigma(A)$ を行列Aの特異値を並べたベクトルとする

- Frobenius  $/ ||A||_F = ||\sigma(A)||_2$
- Nuclear  $/ \ \mathcal{V} \ ||A||_* = ||\sigma(A)||_1$ 
  - ⇒ Nuclearノルムは rank(A) の 凸緩和として使われる

#### ノルムの例(有名でないもの?)

 $x_{(i)}$  :  $x \in \mathbb{R}^n$  の成分を、絶対値の大きい順に並べたときの i 番目  $|x_{(1)}| \ge |x_{(2)}| \ge \cdots \ge |x_{(n)}|$ 

利用例 
$$\|x\|_{\infty} = |x_{(1)}| = \sum_{i=1}^{1} |x_{(i)}|, \|x\|_{1} = \sum_{i=1}^{n} |x_{(i)}|$$

CVaRノルム (largest-
$$k$$
ノルム) 
$$x_{\alpha} = \sum_{i=1}^{n-n\alpha} |x_{(i)}|$$

ある線形計画問題の最適値として表せるため、最適化モデルで使いやすい 応用: 金融のCVaR, v-SVM

#### ノルムでないゲージ関数

• 0とのMax関数

$$\sigma(x) = \sum_{i=1}^{n} \max\{0, x_i\}$$

\*損失関数やペナルティ関数に使われる

• 凸錐 C の標示関数  $\delta_{C}(x)$ 

凸関数の標示関数 ⇒ 非負の凸関数

錐の標示関数 ⇒ 正斉次関数

#### ゲージ関数の極関数

ゲージ関数 f の極関数(polar function)

$$f^{\circ}(y) = \sup \{ \langle x, y \rangle | f(x) \le 1 \}$$

f がノルムのとき、f° は双対ノルム

参考:共役関数

$$f^*(y) = \sup_{x} \{ \langle y, x \rangle - f(x) \}$$

## 双対ノルムの例

• L1ノルム



 $\|x\|$  無限大ノルム  $\|x\|$ 

• p/ルム

$$\left\|x\right\|_{p} = \sqrt[p]{\sum \left|x_{i}\right|^{p}}$$



$$\|x\|_q$$
  $t \in \mathbb{R}^n$ 

$$||x||_p = \sqrt[p]{\sum |x_i|^p}$$
  $||x||_q$   $t \in \mathbb{Z} \cup \frac{1}{p} + \frac{1}{q} = 1$ 

$$\mathcal{X}_{\alpha}$$

• CVaR 
$$/ l L L$$
  $x_{\alpha} = \max \left\{ \frac{\|x\|_{1}}{n - n\alpha}, \|x\|_{\infty} \right\}$ 

## 極関数の例

• 0とのMax関数

$$g(x) = \sum_{i=1}^{m} \max\{0, x_i\} \qquad g^{\circ}(y) = \begin{cases} \max_{i} y_i & \text{if } y \ge 0 \\ +\infty & \text{otherwise} \end{cases}$$

・錐 
$$C$$
 の標示関数 極錐  $C$  の標示関数  $\delta_{C}(x)$  を  $\delta_{C}(x)$  を  $\delta_{C}(x)$  にだし  $C = \{y \mid \langle x,y \rangle \leq 0 \ \forall x \in C\}$ 

## 極関数の諸性質

#### 共役関数の諸性質(再掲)

- $f^{**} = (f^*)^* = f$
- $f(x) + f^*(y) \ge \langle x, y \rangle$
- f\* は凸関数

ゲージ関数の極関数の諸性質

- $f^{\circ \circ} = (f^{\circ})^{\circ} = f$
- $f(x) \times f^{\circ}(y) \ge \langle x, y \rangle \ \forall x \in \text{dom } f, \forall y \in \text{dom } f^{\circ}(y) \ge \langle x, y \rangle$
- f°はゲージ関数

Gauge双対の 凸性で重要 Gauge双対のGauge双対 を 考える上で重要

> Gauge双対の 双対性で重要