連続最適化および関連分野に関する夏季学校 連続最適化への応用に向けた常微分方程式の数値解析入門 演習問題

佐藤 峻

2023年8月9日

問題 1. Runge-Kutta 法の安定性関数が、

$$R(z) = \frac{\det(I - zA + z\mathbf{1}b^{\mathsf{T}})}{\det(I - zA)}$$

を満たすことを示せ.

問題 2. 任意の 1 次以上の精度をもつ陽的 Runge-Kutta 法について、その安定領域は有界であることを示せ.

問題 3. μ -強凸 L-平滑関数に対する Nesterov の加速勾配法に相当する線形 2 段階法

$$x^{(k+2)} - (1+\gamma)x^{(k+1)} + \gamma x^{(k)} = h\left((1-\gamma^2)g(x^{(k+1)}) - \gamma(1-\gamma)g(x^{(k)})\right)$$

の絶対安定領域 $S \subseteq \mathbb{C}$ について, $S \cap \mathbb{R}$ を L, μ を用いて表せ ($L \ge \mu > 0$ とする). ここで,

$$\gamma \coloneqq \frac{1 - \sqrt{\frac{\mu}{L}}}{1 + \sqrt{\frac{\mu}{L}}} \in [0, 1)$$

である.

問題 4. 写像 $q: \mathbb{R}^d \to \mathbb{R}^d$ は L-Lipschitz 連続とする. 任意の $x_0, y_0 \in \mathbb{R}^d$ に対して, $x, y: [0, T) \to \mathbb{R}^d$ が,

$$\dot{x}(t) = g(x(t)) \quad (t \in (0,T)),$$
 $x(0) = x_0,$
 $\dot{y}(t) = g(y(t)) \quad (t \in (0,T)),$ $y(0) = y_0$

を満たすとき,

$$||x(t) - y(t)|| \le \exp(Lt)||x_0 - y_0|| \qquad (t \in (0, T))$$

が成立することを示せ.

問題 5. 2 段 2 次の陽的 Runge-Kutta 法を全て求めよ. また,具体的な計算により,どの手法についても,安定性関数は $R(z)=1+z+\frac{z^2}{2}$ であることを確認せよ.

問題 6. 陽的な線形 3 段階法で、5 次精度を達成するものを求めよ. また、求めた線形 3 段階法が零安定でないことを示せ. (この問題については、次数条件を満たすパラメータを求める際に数値実験を用いてよい.)

問題 7. 凸関数に対する加速勾配法に対応する ODE

$$\ddot{x} + \frac{3}{t}\dot{x} + \nabla f(x) = 0, \quad x(0) = x_0, \ \dot{x}(0) = 0$$

を数値的に解いて挙動を観察せよ. ただし、目的関数 f や、数値解法は自由に定めてよい. (汎用の ODE ソルバーを用いても構わない. ただし、その場合は、実装に用いられている手法を確認すること).