A Conic Smörgåsbord

Bruno F. Lourenço
ISM

August 10th, 2023

Today's contents

(1) Cones, convexity and optimization
(2) Duality and facial reduction
(3) Bonus content

Software: CVXPY (there are also versions for Julia, R and others):
https://www.cvxpy.org/

Part 1 - Cones, convexity and optimization

Convex sets

Definition (Convex set)

Let $C \subseteq \mathbb{R}^{n} . C$ is convex iff

$$
x, y \in C \Rightarrow \alpha x+(1-\alpha) y \in C, \forall \alpha \in[0,1]
$$

Basic types of convex sets - affine sets

Affine set $\stackrel{\text { def }}{\Longleftrightarrow}$ the solution set of finitely many equations

- $\mathcal{C} \subseteq \mathbb{R}^{n}$ is affine \Leftrightarrow exists $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ such that

$$
\mathcal{C}=\left\{x \in \mathbb{R}^{n} \mid A x=b\right\}
$$

Examples

- A hyperplane $\left\{x \in \mathbb{R}^{n} \mid\langle x, v\rangle=\alpha\right\}$
- A vector subspace in \mathbb{R}^{n}
- Affine space $=$ "translated subspace".

Basic types of convex sets - polyhedral sets

Polyhedral sets $\stackrel{\text { def }}{\Longleftrightarrow}$ the solution set of finitely many equalities and inequalities

- $\mathcal{C} \subseteq \mathbb{R}^{n}$ is polyhedral \Leftrightarrow exists $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ such that $\mathcal{C}=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$

Basic types of convex sets - convex cones

\mathcal{K} is a convex cone $\stackrel{\text { def }}{\Longleftrightarrow} \alpha x+\beta y \in \mathcal{K}$, whenever $x, y \in \mathcal{K}$ and $\alpha, \beta \geq 0$.

- $\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n} \mid x_{i} \geq 0, \forall i\right\}$
- $n \times n$ symmetric positive semidefinite matrices \mathcal{S}_{+}^{n}.

Convex functions

$f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$

- f is convex $\stackrel{\text { def }}{\Longrightarrow} f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)$, $\forall x, y \in \mathbb{R}^{n}, \forall \alpha \in[0,1]$.
- f is convex \Leftrightarrow the epigraph of f given by epi $f:=\{(x, \mu) \mid f(x) \leq \mu\}$ is a convex set.
Examples:
- $f(x)=x^{2}$
- $f(x)=a x$
- $f(x)=-\ln (x)$.

Non-examples:

- $f(x)=\ln (x)$
- $f(x)=x^{3}$

Conic linear programming

$$
\begin{aligned}
\min _{x} & \langle c, x\rangle \\
\text { subject to } & \mathcal{A} x=b \\
& x \in \mathcal{K}
\end{aligned}
$$

- $\mathcal{K} \subseteq \mathcal{E}:$ closed convex cone,
- $\mathcal{A}: \mathcal{E} \rightarrow \mathbb{R}^{m}$: linear map, $b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$,
- \mathcal{E} is an Euclidean space equipped with an inner product $\langle\cdot, \cdot\rangle$ and a norm $\|\cdot\|$ induced by $\langle\cdot, \cdot\rangle$.
Feasible region $\{x \in \mathcal{K} \mid A x=b\}=$ "a cone intersected by an affine set".

Conic Linear Programming - Alternative forms

- "Minimize/Maximize a linear function, subject to equalities, inequalities and cone constraints"
- These are all CLPs:

$$
\begin{aligned}
\max _{x \in \mathbb{R}^{n}} & c^{T} x \\
\text { subject to } & A x \leq b, \\
& E x-d \in \mathcal{K}
\end{aligned}
$$

$$
\begin{aligned}
\min _{x, y} & c_{1}^{\top} x+c_{2}^{\top} y \\
\text { subject to } & A_{1} y \leq b_{1} \\
& A_{2} x=b_{2} \\
& \left(x_{1}, x_{2}\right) \in \mathcal{K}_{1} \times \mathcal{K}_{2}
\end{aligned}
$$

Linear Programming (LP)

$$
\begin{aligned}
\min _{x} & c^{\top} x \\
\text { subject to } & \mathcal{A} x=b \\
& x \in \mathbb{R}_{+}^{n}
\end{aligned}
$$

- \mathcal{A} is a $m \times n$ matrix, $b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$.

The second-order cone (a.k.a ice-cream cone)

$$
\mathcal{Q}^{n+1}:=\left\{\left(x_{0}, \bar{x}\right) \in \mathbb{R} \times \mathbb{R}^{n} \mid x_{0} \geq\|\bar{x}\|_{2}\right\},
$$

where $\|\bar{x}\|_{2}=\sqrt{\bar{x}_{1}^{2}+\cdots+\bar{x}_{n}^{2}}$

Second-order cone programming (SOCP)

$$
\begin{aligned}
\min _{x} & c^{\top} x \\
\text { subject to } & \mathcal{A} x=b \\
& x \in \mathcal{Q}^{n_{1}} \times \cdots \times \mathcal{Q}^{n_{r}}
\end{aligned}
$$

- \mathcal{A} is a $m \times n$ matrix, $b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$.

Antenna placing problem

We want place an antenna that sends a signal that covers the whole region below.

Where should the antenna be placed and what is the minimum radius of the signal capable of covering all the points?

Antenna placing problem- Formulation

$$
\begin{align*}
\min _{x \in \mathbb{R}^{3}} & x_{0} \tag{P}\\
\text { subject to } & \left\|\bar{x}-p_{i}\right\|_{2} \leq x_{0}, \forall i=1, \ldots, m
\end{align*}
$$

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{3}} x_{0} \tag{P}
\end{equation*}
$$

subject to $\quad\left(x_{0}, \bar{x}-p_{i}\right) \in \mathcal{Q}^{3}, \quad \forall i=1, \ldots, m$

Antenna placing problem - solution

Semidefinite Programming (SDP)

$$
\begin{align*}
\min _{X \in \mathcal{S}^{n}} & \langle C, X\rangle \tag{P}\\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i}, \quad i=1, \ldots, m \\
& X \succeq 0
\end{align*}
$$

- $\mathcal{S}^{n}: n \times n$ symmetric matrices.
- $X \succeq 0 \Longleftrightarrow X \in \mathcal{S}_{+}^{n} \stackrel{\text { def }}{\Longleftrightarrow} v^{T} X v \geq 0, \forall v \in \mathbb{R}^{n}$.
- $\langle X, Y\rangle:=\operatorname{trace}\left(X^{\top} Y\right)=\sum_{i, j} X_{i j} Y_{i j}$
- $\|X\|_{F}:=\sqrt{\operatorname{trace}\left(X^{\top} X\right)}=\sqrt{\sum_{i, j} X_{i j}^{2}}$
"Linear programming for the 21st century"

Linear Algebra Review

Let $X \in \mathcal{S}^{n}$ and $v \in \mathbb{R}^{n}$.

- $X \succeq 0 \Longleftrightarrow$ all the eigenvalues of X are nonnegative
- $X \succeq 0 \Longleftrightarrow$ there exists a $n \times n$ symmetric matrix V such that $X=V^{2}$.
- $\left\langle X, v v^{\top}\right\rangle=v^{\top} X v$
- If $X \succeq 0$, then $\left\langle X, v v^{\top}\right\rangle=0 \Longleftrightarrow X v=0$.

SDP Example: Nearest correlation matrix problem

- Suppose we are given a $H \in \mathcal{S}^{n}$ with diagonal entries equal to 1 .
- Problem: We want to find the correlation matrix that is the nearest possible to H.

$$
\begin{align*}
\min _{X \in \mathcal{S}^{n}} & \|X-H\|_{F} \tag{Cor}\\
\text { subject to } & X_{i i}=1, \quad i=1, \ldots, n \\
& X \succeq 0
\end{align*}
$$

$\|\cdot\|_{F}$ is the Frobenius norm: $\|A\|_{F}=\sqrt{\operatorname{trace}\left(A A^{\top}\right)}$.

SDP Example: Nearest correlation matrix problem (continued)

$$
\begin{array}{rl}
\min _{X \in \mathcal{S}^{n}, t \in \mathbb{R}} & t \tag{Cor}\\
\text { subject to } & \|X-H\|_{F} \leq t \\
& X_{i i}=1, \quad i=1, \ldots, n \\
& X \succeq 0
\end{array}
$$

The constraint " $\|X-H\| \leq t$ " can be written as a second order cone.

MAX-CUT

Goal: Separate the vertices in two sets S, S^{\prime}, such that the weight of the crossing edges is maximized. (NP-Hard)

- $a_{i j}$: weight of the edge between the i-th and j-th vertices.
- x_{i} : 1 if the i-th vertex is in $S,-1$ if in S^{\prime}.

$$
\begin{aligned}
\max _{x \in \mathbb{R}^{n}} & \sum_{i, j=1}^{n} \frac{a_{i j}}{4}\left(1-x_{i} x_{j}\right) \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{aligned}
$$

The SDP relaxation - GW'95

- $X \in \mathcal{S}_{+}^{n}$ and $\operatorname{rank}(X)=1 \Leftrightarrow X=x x^{T}$, for some $x \in \mathbb{R}^{n}$.
- $X_{i j}=x_{i} x_{j}$ holds.

$$
\begin{aligned}
\max _{x \in \mathcal{S}^{n}} & \sum_{i, j=1}^{n} \frac{a_{i j}}{4}\left(1-X_{i j}\right) \\
\text { subject to } & X_{i i}=1, \quad i=1, \ldots, n \\
& X \in \mathcal{S}_{+}^{n}, \quad \operatorname{rank}(X)=1
\end{aligned}
$$

SDP relaxation:

$\max _{x \in \mathcal{S}^{n}}$	$\sum_{i, j=1}^{n} \frac{a_{i j}}{4}\left(1-X_{i j}\right)$
subject to	$X_{i i}=1, \quad i=1, \ldots, n$
	$X \in \mathcal{S}_{+}^{n}, \quad \operatorname{rank}(X)=1$

- Approximation ratio: $\frac{\text { MCUT }}{\text { SDP }}>87 \%$.
- Similar idea applies to many combinational optimization problems.

Interlude - Some history

- Symmetric Cone Programming: LP + SOCP + SDP $+\alpha$.
- SOCP and SDPs : researched intensively from the 90s on, partly because of the advent of interior point methods.
- Non-symmetric cone optimization: exponential cones, power cones, p-cones and many others.
- More recent topic, with several new solvers developed in the past few years.

The exponential cone

$$
K_{\text {exp }}:=\left\{(x, y, z) \mid y>0, z \geq y e^{x / y}\right\} \cup\{(x, y, z) \mid x \leq 0, z \geq 0, y=0\} .
$$

(1) Applications to entropy optimization, logistic regression, geometric programming and etc..
R
V. Chandrasekaran, P. Shah

Relative entropy optimization and its applications.
Math. Program. 161, 1-32 (2017)

A geometric programming example

(1) B-san wants to give a box-like present to a friend.
(2) However, B-san wants to wrap it using a special wrapping paper and B-san only has $1 m^{2}$ of it.
(0) Because B -san is pretentious, B -san wants the ratio between height of the box and its width to be in $[1.5, \phi]$, where ϕ is the golden ratio $\phi=\frac{1+\sqrt{5}}{2}$
(1) Problem: What is the biggest box (in volume) that can be wrapped with the special paper?

A geometric programming example

$$
\begin{array}{cl}
\max _{w, h, d} & \text { whd } \\
\text { subject to } & 2(w h+w d+h d) \leq 1 \\
& 1.5 \leq \frac{h}{w} \leq \phi \\
& w>0, h>0, d>0
\end{array}
$$

Not a convex problem but if we make the substitutions $w=e^{\hat{n}}$, $d=e^{\hat{d}}$ and $h=e^{\hat{h}}$ we get

$$
\max _{\hat{w}, \hat{h}, \hat{d}} e^{\hat{w}+\hat{h}+\hat{d}}
$$

subject to

$$
\begin{aligned}
& \left(e^{\hat{w}+\hat{h}}+e^{\hat{w}+\hat{d}}+e^{\hat{h}+\hat{d}}\right) \leq 0.5 \\
& 1.5 \leq e^{\hat{h}-\hat{w}} \leq \phi
\end{aligned}
$$

A geometric programming example

Taking logs linearizes the objective function and some of the constraints.

$$
\begin{array}{cl}
\max _{\hat{w}, \hat{h}, \hat{d}} & \hat{w}+\hat{h}+\hat{d} \\
\text { subject to } & e^{\hat{w}+\hat{h}}+e^{\hat{w}+\hat{d}}+e^{\hat{h}+\hat{d}} \leq 0.5 \\
& \log (1.5) \leq \hat{h}-\hat{w} \leq \log (\phi)
\end{array}
$$

Noting that $e^{x} \leq t$ holds if and only if $(x, 1, t) \in K_{\text {exp }}$, we have

$$
\max _{\hat{w}, \hat{h}, \hat{d}, t} \hat{w}+\hat{h}+\hat{d}
$$

subject to

$$
\begin{aligned}
& t_{1}+t_{2}+t_{3} \leq 0.5 \\
& \left(\hat{w}+\hat{h}, 1, t_{1}\right) \in K_{\exp },\left(\hat{w}+\hat{d}, 1, t_{2}\right) \in K_{\exp },\left(\hat{h}+\hat{d}, 1, t_{3}\right) \in K_{\exp } \\
& \log (1.5) \leq \hat{h}-\hat{w} \leq \log (\phi)
\end{aligned}
$$

Reminder:
$K_{\text {exp }}:=\left\{(x, y, z) \mid y>0, z \geq y e^{x / y}\right\} \cup\{(x, y, z) \mid x \leq 0, z \geq 0, y=0\}$.

Solution

Discrete distribution estimation

- We want to estimate a discrete distribution p based on some prior information.
- We might know some bounds on the moments
- We might have some information on the p_{i} 's themselves.
- Maximum entropy principle: we try to find the "most random" p that is consistent with the prior information \mathcal{P}.

$$
\begin{aligned}
\max _{p \in \mathbb{R}^{n}} & \sum_{i=1}^{n}-p_{i} \ln p_{i} \\
\text { subject to } & p \in \mathcal{P} \\
& \sum_{i=1}^{n} p_{i}=1 \\
& p \in \mathbb{R}_{+}^{n}
\end{aligned}
$$

Exponential cone formulation

$$
\begin{aligned}
& \text { Reminder: } \\
& K_{\exp }:=\left\{(x, y, z) \mid y>0, z \geq y e^{x / y}\right\} \cup\{(x, y, z) \mid x \leq 0, z \geq 0, y=0\} \\
& \qquad \begin{aligned}
\max _{p, t \in \mathbb{R}^{n}} & \sum_{i=1}^{n} t_{i} \\
\text { subject to } & t_{i} \leq-p_{i} \ln p_{i}, \quad i=1, \ldots, n \\
& p \in \mathcal{P}, p \in \mathbb{R}_{+}^{n} \\
& \sum_{i=1}^{n} p_{i}=1 \\
\max _{p, t \in \mathbb{R}^{n}} & \sum_{i=1}^{n} t_{i} \\
\text { subject to } & \left(t_{i}, p_{i}, 1\right) \in K_{\exp }, \\
& p \in \mathcal{P}, p \in \mathbb{R}_{+}^{n} \\
& \sum_{i=1}^{n} p_{i}=1
\end{aligned}
\end{aligned}
$$

Expressive power

Convex optimization

Convex optimization:

$$
\begin{array}{rl}
\min _{x} & f(x) \\
\text { subject to } & x \in C,
\end{array}
$$

C is a convex set and f is a convex function.
Conic linear programming (CLP)

$$
\begin{aligned}
\min _{x} & \langle c, x\rangle \\
\text { subject to } & \mathcal{A} x=b \\
& x \in \mathcal{K}
\end{aligned}
$$

If we let $C:=\{x \in \mathcal{K} \mid \mathcal{A} x=b\}$, then C is convex.

- CLP is a particular case of convex optimization. However

CLP \cong Convex Optimization

$\min _{x}$	$f(x)$	$\min _{x, t}$
subject to	$t \in C$	subject to
	$x \in C$	
		$f(x) \leq t$

Let $C_{2}:=\{(x, t) \mid x \in C, f(x) \leq t\}$ and let \mathcal{K} be the convex cone in $\mathcal{E} \times \mathbb{R}^{2}$ generated by $C_{2} \times\{1\}$. That is

$$
\mathcal{K}:=\left\{\alpha(x, t, 1) \mid \alpha \geq 0,(x, t) \in C_{2}\right\} .
$$

$$
\begin{aligned}
\min _{x, t, \alpha} & t \\
\text { subject to } & \alpha=1 \\
& (x, t, \alpha) \in \mathcal{K}
\end{aligned}
$$

- Every convex optimization problem has an equivalent CLP formulation!
- CLP philosophy: concentrate the hard part of the problem inside the cone.
- CVXPY works by converting a convex problem into an equivalent CLP and calling a CLP solver.

More on expressive power

- Some researchers believe a few cones are enough to model the vast majority of convex applications.

The following chapters present modeling with four types of convex cones: quadratic cones, power cones, exponential cone, semidefinite cone. It is "well-known" in the convex optimization community that this family of cones is sufficient to express almost all convex optimization problems appearing in practice. [MOSEK Modelling cookbook, 2023]

- That said, a cone may be "too general" for a certain application \Rightarrow a more specific cone may be better.
- Some new solvers (alfonso, DDS, Hypatia, etc) support multiple cones
- User can select the cone that best fit the application.

More specific vs more general cones

$$
\mathcal{Q}^{n+1}:=\left\{\left(x_{0}, \bar{x}\right) \in \mathbb{R}^{n} \times \mid x_{0} \geq\|\bar{x}\|_{2}\right\}
$$

where $\|\bar{x}\|_{2}=\sqrt{\bar{x}_{1}^{2}+\cdots+\bar{x}_{n}^{2}}$

$$
\begin{gathered}
\mathcal{S}_{+}^{n}:=\left\{X \in \mathcal{S}^{n} \mid v^{\top} X v \geq 0, \forall v \in \mathbb{R}^{n}\right\} \\
\left(\bar{x}, x_{0}\right) \in \mathcal{Q}^{n+1} \Leftrightarrow\left(\begin{array}{cccc}
x_{0} & \bar{x}_{1} & \cdots & \bar{x}_{n} \\
\bar{x}_{1} & x_{0} & 0 & \cdots \\
\vdots & & \ddots & \cdots \\
\bar{x}_{n} & 0 & \cdots & x_{0}
\end{array}\right) \in \mathcal{S}_{+}^{n+1}
\end{gathered}
$$

- Everything that can be expressed using \mathcal{Q}^{n+1} can also be expressed using \mathcal{S}_{+}^{n+1}
- However, \mathcal{S}_{+}^{n+1} requires $(n+1) \times(n+1)$ matrices, while \mathcal{Q}^{n+1} is a cone in \mathbb{R}^{n+1}.

https://docs.mosek.com/cheatsheets/conic.pdf

тоsек

Cones

Quadratic cone Q^{n}

$$
x_{1} \geq \sqrt{x_{2}^{2}+\cdots+x_{n}^{2}}
$$

Rotated quadratic cone \mathcal{Q}_{r}^{n}

$$
2 x_{1} x_{2} \geq x_{3}^{2}+\cdots+x_{n}^{2}, x_{1}, x_{2} \geq 0
$$

Power cone $\mathcal{P}_{3}^{\alpha, 1-\alpha}, \alpha \in(0,1)$

$$
x_{1}^{\alpha} x_{2}^{1-\alpha} \geq\left|x_{3}\right|, x_{1}, x_{2} \geq 0
$$

Exponential cone $K_{\text {exp }}$

$$
x_{1} \geq x_{2} e^{x_{3} / x_{2}}, x_{2} \geq 0
$$

Simple bounds	
$t \geq x^{2}$	$(0.5, t, x) \in \mathcal{Q}_{r}^{3}$
$\|t\| \leq \sqrt{x}$	$(0.5, x, t) \in Q_{r}^{3}$
$t \geq\|x\|$	$(t, x) \in \mathcal{Q}^{2}$
$t \geq 1 / x, x>0$	$(x, t, \sqrt{2}) \in \mathcal{Q}_{r}^{3}$
$t \geq\|x\|^{p}, p>1$	$(t, 1, x) \in \mathcal{P}_{3}^{1 / p, 1-1 / p}$
$t \geq 1 / x^{p}, x>0, p>0$	$(t, x, 1) \in \mathcal{P}_{3}^{1 /(1+p), p /(1+p)}$
$\|t\| \leq x^{p}, x>0, p \in(0,1)$	$(x, 1, t) \in \mathcal{P}_{3}^{p, 1-p}$
$t \geq\|x\|^{p} / y^{p-1}, y \geq 0$	$(t, y, x) \in \mathcal{P}_{3}^{1 / p, 1-1 / p}$
$p>1$	$(0.5 t, y, x) \in Q_{r}^{n+2}$
$t \geq x^{T} x / y, y \geq 0$	$(t, 1, x) \in K_{\exp }$
$t \geq e^{x}$	$(x, 1, t) \in K_{\exp }$
$t \leq \log x$	$(u, t, \sqrt{2}) \in Q_{r}^{3}$
$t \geq 1 / \log x, x>1$	$(x, 1, u) \in K_{\exp }$
$t \geq a_{1}^{x 1} \cdots a_{n}^{x_{n}}, a_{i}>0$	$\left(t, 1, \sum x_{i} \log a_{i}\right) \in K_{\exp }$
$t \geq x e^{x}, x \geq 0$	$(t, x, u) \in K_{\exp }$
$t \geq \log \left(1+e^{x}\right)$	$(0.5, u, x) \in Q_{r}^{3}$
	$(x+v \leq 1$
	$(u, 1, x-t) \in K_{\exp }$
$t \geq\|x\|^{3 / 2}$	$(v, 1,-t) \in K_{\exp }$
$t \geq x^{3 / 2}, x \geq 0$	$(t, 1, x) \in \mathcal{P}_{3}^{2 / 3,1 / 3}$
$t \geq 1 / x^{3}, x>0$	$(s, t, x),(x, 1 / 8, s) \in Q_{r}^{3}$
$0 \leq t \leq x^{2 / 5}, x \geq 0$	$(t, x, 1) \in \mathcal{P}_{3}^{3 / 4,1 / 4}$
	$(x, 1, t) \in \mathcal{P}_{3}^{2 / 5,3 / 5}, t \geq 0$

Conic Modeling Cheatsheet

Part 2 - Duality and facial reduction

More convex analysis

Topological Interior

- \mathcal{E} : Euclidean space (i.e., \mathbb{R}^{n}) with inner product $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$
- $B(x, r)$ is the open ball centered in x with radius r, i.e., $B(x, r)=\{y \mid\|y-x\|<r\}$.
Let $C \subseteq \mathcal{E}$

Interior

$\operatorname{int} C:=\{x \in C \mid \exists r>0$, s.t., $B(x, r) \subseteq C\}$.

Relative interior

Definition (Relative interior)

x is a relative interior point of C (i.e., $x \in$ ri C) if for every $y \in C$, the line segment connecting x and y can be extended past x while staying inside C.

$$
x \in \operatorname{ri} C \stackrel{\text { def }}{\Longleftrightarrow} \forall y \in C, \exists \mu>1 \text {, s.t. } \mu x+(1-\mu) y \in C
$$

- ri $C=C \stackrel{\text { def }}{\Longleftrightarrow} C$ is relatively open.

Closure

\mathcal{E} : finite dimensional Euclidean space
$\mathcal{C} \subseteq \mathcal{E}$: convex set

Definition (Closure)

The closure $\mathrm{cl} C$ of C is the set of limit points of $C \Leftrightarrow$ smallest closed set containing C.

- $\mathrm{cl} C=C \stackrel{\text { def }}{\Longleftrightarrow} C$ is closed

Properties of closures and relative interiors

\mathcal{E} : finite dimensional Euclidean space
$\mathcal{C} \subseteq \mathcal{E}$: convex set

- ri C and $\mathrm{cl} C$ are convex.
- ri $C \neq \emptyset$ if $C \neq \emptyset$.
- $\operatorname{ri}(\mathrm{cl} C)=\operatorname{ri} C$
- $\operatorname{riri}(C)=\operatorname{ri} C$ "relative interiors are relatively open"
- $\operatorname{cl}(\mathrm{cl} C)=\operatorname{cl} C$ "closures are closed"

Examples

- ri $\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n} \mid x_{i}>0, \forall i\right\}$
- ri $\mathcal{S}_{+}^{n}=$ symmetric positive definite matrices.

Polars and duals of cones

$\mathcal{K} \subseteq \mathcal{E}:$ convex cone.

$$
\mathcal{K}^{\circ}=\{y \in \mathcal{E} \mid\langle x, y\rangle \leq 0, \forall x \in \mathcal{K}\} .
$$

Polars of cones - Examples and Properties

$\mathcal{K} \subseteq \mathcal{E}$: convex cone.

- Bipolar Theorem: $\mathcal{K}^{\circ \circ}=\operatorname{cl}(\mathcal{K})$.
- $\left(\mathbb{R}_{+}^{n}\right)^{\circ}=-\mathbb{R}_{+}^{n}$
- $\left(\mathcal{S}_{+}^{n}\right)^{\circ}=-\mathcal{S}_{+}^{n}$.
- $\left(\mathcal{Q}_{p}^{n}\right)^{\circ}=-\mathcal{Q}_{q}^{n}$, where $1 / p+1 / q=1, p \in(1, \infty)$,

$$
\mathcal{Q}_{p}^{n}:=\left\{\left(x_{0}, \bar{x}\right) \mid\|\bar{x}\|_{p} \leq x_{0}\right\} .
$$

Dual cone

$$
\mathcal{K}^{*}:=-\mathcal{K}^{\circ}=\{y \in \mathcal{E} \mid\langle x, y\rangle \geq 0, \forall x \in \mathcal{K}\}
$$

- Bipolar Theorem: $\mathcal{K}^{* *}=\operatorname{cl}(\mathcal{K})$.
- $\left(\mathbb{R}_{+}^{n}\right)^{*}=\mathbb{R}_{+}^{n}$.
- $\left(\mathcal{S}_{+}^{n}\right)^{*}=\mathcal{S}_{+}^{n}$.
- $\left(\mathcal{Q}_{p}^{n}\right)^{*}=\mathcal{Q}_{q}^{n}$, where $1 / p+1 / q=1, p \in(1, \infty)$,

$$
\mathcal{Q}_{p}^{n}:=\left\{\left(x_{0}, \bar{x}\right) \mid\|\bar{x}\|_{p} \leq x_{0}\right\} .
$$

Recall our basic conic linear program

$$
\begin{array}{ll}
\min _{x} & \langle c, x\rangle \tag{P}\\
\text { subject to } & \mathcal{A} x=b \\
& x \in \mathcal{K}
\end{array}
$$

Suppose we wish to relax the linear constraints:

$$
\begin{aligned}
\mathcal{L}(y) & \left.:=\inf _{x \in \mathcal{K}}[\langle c, x\rangle+\langle y, b-\mathcal{A} x\rangle)\right] \\
& =\inf _{x \in \mathcal{K}}\left[\left\langle c-\mathcal{A}^{*} y, x\right\rangle+\langle b, y\rangle\right] \\
& =\langle b, y\rangle+\inf _{x \in \mathcal{K}}\left\langle c-\mathcal{A}^{*} y, x\right\rangle \\
& = \begin{cases}\langle b, y\rangle & \text { if } c-\mathcal{A}^{*} y \in \mathcal{K}^{*} \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

Denote the optimal value of (P) by θ_{P}. Then:

$$
\theta_{P} \geq \mathcal{L}(y), \quad \forall y
$$

Relaxing the CLP

$$
\begin{align*}
\inf _{x} & \langle c, x\rangle \tag{P}\\
\text { subject to } & \mathcal{A} x=b \\
& x \in \mathcal{K}
\end{align*}
$$

We have

$$
\mathcal{L}(y)= \begin{cases}\langle b, y\rangle & \text { if } c-\mathcal{A}^{*} y \in \mathcal{K}^{*} \\ -\infty & \text { otherwise }\end{cases}
$$

and

$$
\theta_{P} \geq \mathcal{L}(y), \quad \forall y
$$

Which leads to

$$
\theta_{P} \geq \sup _{y} \mathcal{L}(y)
$$

- The dual problem is the task of finding the y that provides the tightest (Lagrangian) relaxation to (P)

Primal dual conic linear program (CLP)

$$
\begin{equation*}
\inf _{x}\langle c, x\rangle \quad(\mathrm{P}) \quad \sup _{y}\langle b, y\rangle \tag{P}
\end{equation*}
$$

- $\mathcal{K}^{*}:=\{s \in \mathcal{E} \mid\langle s, x\rangle \geq 0, \forall x \in \mathcal{K}\}$. (dual cone)
- We denote the primal and dual optimal values by θ_{P} and θ_{D}.

Proposition (Weak duality)

$$
\theta_{P} \geq \theta_{D}
$$

Example - Eigenvalues via SDP duality

Suppose that $C \in \mathcal{S}^{n}$ is a fixed matrix and consider the SDP:

$$
\begin{array}{ll}
\sup _{y \in \mathbb{R}} & y \tag{D}\\
\text { s.t. } & C-y I_{n} \succeq 0,
\end{array}
$$

where I_{n} is the $n \times n$ identity matrix. Then $\theta_{D}=\lambda_{\text {min }}(C)$, where $\lambda_{\text {min }}(C)$ is the minimum eigenvalue of C. The primal is:

$$
\begin{align*}
\inf _{X \in \mathcal{S}^{n}} & \langle C, X\rangle \tag{P}\\
\text { s.t. } & \left\langle I_{n}, X\right\rangle=\operatorname{trace}(X)=1 \\
& X \succeq 0
\end{align*}
$$

If $v \in \mathbb{R}^{n}$ is an eigenvector of C associated to $\lambda_{\min }(C)$ with $\|v\|=1$, then $X^{*}:=v v^{\top}$ is optimal to (P).

$$
\theta_{P}=\theta_{D}=\lambda_{\min }(C) .
$$

Strong duality in CLP

Theorem (Strong duality Theorem - Primal version)

Suppose that

- (P) has a relative interior feasible solution, i.e., there exists x such that $\mathcal{A} x=b$ and $x \in \operatorname{ri} \mathcal{K}$ (Primal Slater Condition)
Then:
- $\theta_{P}=\theta_{D}$.
- (D) has optimal solutions if θ_{P} is finite.

Theorem (Strong duality Theorem - Dual version)

Suppose that

- (D) has a relative interior feasible solution, i.e., there exists y such that $c-\mathcal{A}^{*} y \in$ ri \mathcal{K}^{*}. (Dual Slater Condition)
Then:
- $\theta_{P}=\theta_{D}$.
- (P) has optimal solutions if θ_{D} is finite.

Optimality conditions

$$
\begin{align*}
\inf _{x} & \langle c, x\rangle \tag{P}\\
\text { subject to } & \mathcal{A} x=b \tag{D}\\
& x \in \mathcal{K}
\end{align*}
$$

$$
\begin{aligned}
\sup _{y} & \langle b, y\rangle \\
\text { subject to } & c-\mathcal{A}^{*} y \in \mathcal{K}^{*} .
\end{aligned}
$$

A sufficient condition for $\left(x^{*}, y^{*}\right)$ to be optimal is that the following are satisfied:

- Primal feasibility: $\mathcal{A} x^{*}=b, x^{*} \in \mathcal{K}$
- Dual feasibility: $s^{*} \in \mathcal{K}^{*}$, where $s^{*}:=c-\mathcal{A}^{*} y^{*}$
- Complementary slackness (i.e., zero duality gap ${ }^{1}$): $\left\langle s^{*}, x^{*}\right\rangle=0$.

If the primal and dual Slater conditions hold, the conditions above are necessary too.

[^0]
Ex1-MAXCUT-SDP

$$
\begin{array}{rlrl}
\inf _{x \in \mathcal{S}^{n}} & \langle A, X\rangle & \quad(\mathrm{P}) & \sup _{y \in \mathbb{R}^{n}} y_{1}+\cdots+y_{n} \tag{D}\\
\text { s.t. } & X_{i i}=1, \quad i=1, \ldots, n & \text { s.t. } \quad A-\sum_{i=1}^{n} E_{i} y_{i} \in \mathcal{S}_{+}^{n},
\end{array}
$$

where E_{i} is the matrix that has 1 in the (i, i)-entry and zero elsewhere.

- Both primal and dual Slater conditions are satisfied $\Rightarrow \quad \theta_{P}=\theta_{D}$ and both problems are attained.

Ex2 - Dual Slater Condition holds, but no dual optimal

solution

$$
\begin{array}{lllll}
\sup _{t, s} & -s & \text { (D) } & \begin{array}{rl}
\inf _{X \in \mathcal{S}^{2}} & 2 X_{12} \\
\text { s.t. } & -X_{11}=0 \\
\text { s.t. } & \left(\begin{array}{ll}
t & 1 \\
1 & s
\end{array}\right) \succeq 0 \\
& \\
& \\
& \\
& \\
& X \succeq 0 .
\end{array}
\end{array}
$$

- The dual satisfies Slater condition, θ_{D} is finite but no dual optimal solutions exists. θ_{D} is unattained.
- The primal does not satisfy Slater conditions, but has an optimal solution.
- $\theta_{P}=\theta_{D}$ holds.

Some clarification

Keep in mind the following:
$\inf (0,1)=0$, but $0 \notin(0,1)$. "The infimum is finite but an optimal solution does not exist".

Primal side

- θ_{P} is finite $\Leftrightarrow \theta_{P}$ is a real number.
- θ_{P} is attained \Leftrightarrow there is a feasible x^{*} such that $\theta_{P}=\left\langle c, x^{*}\right\rangle$.
- $\theta_{P}=-\infty((P)$ is unbounded $) \Leftrightarrow$ there is a sequence $\left\{x^{k}\right\}$ of feasible solutions such that $\lim _{k \rightarrow \infty}\left\langle c, x^{k}\right\rangle \rightarrow-\infty$
- By convention $\theta_{P}=+\infty$ iff (P) is infeasible

Dual side

- θ_{D} is finite $\Leftrightarrow \theta_{D}$ is a real number.
- θ_{D} is attained \Leftrightarrow there is a feasible y^{*} such that $\theta_{D}=\left\langle b, y^{*}\right\rangle$.
- $\theta_{D}=-\infty((\mathrm{D})$ is unbounded $) \Leftrightarrow$ there is a sequence $\left\{y^{k}\right\}$ of feasible solutions such that $\lim _{k \rightarrow \infty}\left\langle b, y^{k}\right\rangle \rightarrow-\infty$
- By convention $\theta_{D}=+\infty$ iff (D) is infeasible

Ex3 - Positive gap SDP

$$
\begin{array}{ll}
\sup _{t, s}-s \tag{P}\\
\text { s.t. } & \left(\begin{array}{ccc}
t & 1 & s-1 \\
1 & s & 0 \\
s-1 & 0 & 0
\end{array}\right) \succeq 0 \\
& \begin{array}{cl}
\inf _{X \in \mathcal{S}^{3}} & 2 X_{12}-2 X_{13} \\
\text { s.t. } & X_{11}=0 \\
& \\
& \\
& \\
& X \succeq 0 .
\end{array}
\end{array}
$$

Positive gap SDP

$$
\begin{array}{llll}
\sup _{t, s} フ^{-1} & \text { (D) } & \inf _{x \in \mathcal{S}^{3}} & 2 X_{12}-2 X_{13} \tag{P}\\
& \text { s.t. } & X_{11}=0 \\
\text { s.t. } & \left(\begin{array}{ccc}
t & 1 & s-1 \\
1 & s & 0 \\
s-1 & 0 & 0
\end{array}\right) \succeq 0 & & -X_{22}-2 X_{13}=-1 \\
& & X \succeq 0 .
\end{array}
$$

$\theta_{D}=-1$ and $\theta_{P}=0$. Neither the primal nor the dual satisfy Slater

- Ok, so what? How bad can this be?

To correct this we substitute \mathcal{S}_{+}^{3} for

$$
\mathcal{S}_{+}^{2} \oplus 0=\left\{\left.\left(\begin{array}{lll}
a & b & 0 \\
b & c & 0 \\
0 & 0 & 0
\end{array}\right) \right\rvert\,\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) \in \mathcal{S}_{+}^{2}\right\} .
$$

Example

$$
\begin{array}{ll}
\sup _{t, s} & s^{-1} \tag{D'}\\
\text { s.t. } & \left(\begin{array}{ccc}
t & 1 & s-1 \\
1 & s & 0 \\
s-1 & 0 & 0
\end{array}\right) \in \mathcal{S}_{+}^{2} \oplus 0
\end{array}
$$

Still, $\theta_{D^{\prime}}=-1$. Let's take a look at the primal problem...

$$
\begin{gather*}
\left(\mathcal{S}_{+}^{2} \oplus 0\right)^{*}= \\
\left\{\left.\left(\begin{array}{lll}
a & b & * \\
b & c & * \\
* & * & *
\end{array}\right) \right\rvert\,\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) \in \mathcal{S}_{+}^{2}\right\} \\
\begin{array}{rl}
\inf _{x} & 2 x_{12}=-2 x_{13}
\end{array} \\
\text { s.t. } \quad x_{11}=0 \\
\\
\\
-x_{22}-2 x_{13}=-1 \\
\\
\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right) \in \mathcal{S}_{+}^{2}
\end{gather*}
$$

What happened?

- $\mathcal{S}_{+}^{3} \Rightarrow \mathcal{S}_{+}^{2} \oplus 0$: The feasible region of (D) stays the same \Rightarrow $\theta_{D}=\theta_{D^{\prime}}=-1$.
- $\mathcal{S}_{+}^{3} \Rightarrow\left(\mathcal{S}_{+}^{2} \oplus 0\right)^{*}$: The feasible region of (P) expands \Rightarrow $-1=\theta_{P^{\prime}} \leq \theta_{P}=0$.
$\mathcal{S}_{+}^{2} \oplus 0$ a face of \mathcal{S}_{+}^{3} with two key properties:
- it contains the feasible region of (D)
- Slater's condition is satisfied at (D').

This is an example of Facial Reduction

Even more convex analysis

Separating hyperplanes

$H=\{x \in \mathcal{E} \mid\langle x, y\rangle=\theta\}:$ hyperplane $(x \neq 0)$
C_{1}, C_{2} : convex sets
Define the closed half-spaces

$$
H^{+}:=\{x \in \mathcal{E} \mid\langle x, y\rangle \geq \theta\}, \quad H^{-}:=\{x \in \mathcal{E} \mid\langle x, y\rangle \leq \theta\}
$$

B_{ϵ} : unit ball of radius ϵ

- C_{1} and C_{2} are separated by $H \stackrel{\text { def }}{\Longleftrightarrow} C_{1}$ and C_{2} belong to different closed half-spaces defined by H.
- C_{1} and C_{2} are properly separated by $H \stackrel{\text { def }}{\Longleftrightarrow} C_{1}$ and C_{2} belong to different closed half-spaces and at least one of them is not contained in H.
- C_{1} and C_{2} are strongly separated by $H \stackrel{\text { def }}{\Longleftrightarrow} \exists \epsilon>0$ such that $C_{1}+B_{\epsilon}$ and $C_{2}+B_{\epsilon}$ belong to different open half-spaces defined by H.

Separating hyperplanes - Examples

Some results

$C_{1}, C_{2} \subseteq \mathcal{E}$: nonempty closed convex sets.
(1) C_{1} and C_{2} can be strongly separated \Leftrightarrow $\operatorname{dist}\left(C_{1}, C_{2}\right)=\inf _{x, y}\|x-y\|>0 \Leftrightarrow 0 \notin \operatorname{cl}\left(C_{1}-C_{2}\right)$
(2) C_{1} and C_{2} can be properly separated $\Leftrightarrow\left(\right.$ ri $\left.C_{1}\right) \cap\left(\right.$ ri $\left.C_{2}\right)=\emptyset$.

Faces of convex sets

Definition (Face)

Let C, \mathcal{F} be convex sets such that $\mathcal{F} \subseteq C . \mathcal{F}$ is a face of $C \stackrel{\text { def }}{\Longleftrightarrow}$ for every $\alpha \in(0,1)$ and every $x, y \in C$

$$
\alpha x+(1-\alpha) y \in \mathcal{F} \Rightarrow x, y \in \mathcal{F}
$$

We write $\mathcal{F} \unlhd C$.

- A face that is a singleton $\{x\}$ is called an extreme point
- A face \mathcal{F} of dimension 1 of a cone \mathcal{K} is called an extreme ray.

Supporting hyperplanes

$H=\{x \in \mathcal{E} \mid\langle c, x\rangle=\theta\}$: hyperplane
$\mathcal{C} \subseteq \mathcal{E}$: convex set $H^{+}:=\{x \in \mathcal{E} \mid\langle c, x\rangle \geq \theta\}, \quad H^{-}:=\{x \in \mathcal{E} \mid\langle c, x\rangle \leq \theta\}$
H is a supporting hyperplane of $C \stackrel{\text { def }}{\Longleftrightarrow} H \cap C \neq \emptyset$ and C is contained in one of the closed half-spaces defined by H.

Examples of supporting hyperplanes

Exposed faces

$\mathcal{F} \unlhd C$ is exposed $\stackrel{\text { def }}{\Longleftrightarrow} \mathcal{F}=C \cap H$ holds for some supporting hyperplane H of C

If all nonempty faces of C are exposed we say that C is facially exposed.
(1) If \mathcal{K} is a cone, $\mathcal{F} \unlhd \mathcal{K}$ is exposed iff $\mathcal{F}=\mathcal{K} \cap\{s\}^{\perp}$ for some some $s \in \mathcal{K}^{*}$.

Faces of \mathcal{S}_{+}^{n}

Theorem

Let $\emptyset \neq \mathcal{F} \unlhd \mathcal{S}_{+}^{n}$. Then, there exists a $n \times n$ orthogonal matrix Q such that

$$
Q^{\top} \mathcal{F} Q=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right) \right\rvert\, A \in \mathcal{S}_{+}^{r}\right\}
$$

Every nonempty face of \mathcal{S}_{+}^{n} is exposed and is linearly isomorphic to a \mathcal{S}_{+}^{s} for $s \leq n$.

Minimal Face

$C, K \subseteq \mathcal{E}$: convex sets

Definition (Minimal Face)

Suppose $C \subseteq K$. The minimal face of C with respect to K, is the smallest face of K containing C. We write $\mathcal{F}_{\text {min }}(C, K)$.

$$
\mathcal{F}_{\min }(C, K)=\bigcap_{\substack{\mathcal{F} \unlhd K \\ C \subseteq \mathcal{F}}} \mathcal{F}
$$

Key property

Let $\emptyset \neq C \subseteq K$.

$$
\mathcal{F}_{\min }(C, K)=\mathcal{F} \Longleftrightarrow C \subseteq \mathcal{F} \text { and } C \cap \operatorname{ri} \mathcal{F} \neq \emptyset
$$

Facial Reduction - The basic idea

$$
\begin{align*}
\sup _{y \in \mathbb{R}^{m}} & \langle b, y\rangle \tag{D}\\
\text { s.t. } & c-\mathcal{A}^{*} y \in \mathcal{K} .
\end{align*}
$$

- Let $\mathcal{F}_{\mathrm{D}}=\left\{c-\mathcal{A}^{*} y \mid c-\mathcal{A}^{*} y \in \mathcal{K}\right\}=\left(c+\right.$ range $\left.\mathcal{A}^{*}\right) \cap \mathcal{K}$, this are the feasible slacks of (D).
- We define the minimal face of (D) as $\mathcal{F}_{\text {min }}^{D}=\mathcal{F}_{\text {min }}\left(\mathcal{F}_{\mathrm{D}}, \mathcal{K}\right)$.
- Note: $\mathcal{F}_{\text {min }}^{D}=\mathcal{K} \Longleftrightarrow(\mathrm{D})$ satisfies Slater's condition.

$$
\begin{array}{rlr}
\inf _{x} & \langle c, x\rangle & (\hat{\mathrm{P}}) \\
\text { subject to } & \mathcal{A} x=b & \sup _{y}\langle b, y\rangle \\
& x \in\left(\mathcal{F}_{\min }^{D}\right)^{*} & \text { subject to } \quad c-\mathcal{A}^{*} y \in \mathcal{F}_{\min }^{D} .
\end{array}
$$

- Now, ($\hat{\mathrm{D}}$) satisfies Slater's condition.

Facial Reduction - Example

$$
\begin{gather*}
\sup _{t, s}-s \tag{D}\\
\text { s.t. }\left(\begin{array}{ccc}
t & 1 & s-1 \\
1 & s & 0 \\
s-1 & 0 & 0
\end{array}\right) \succeq 0 \\
\mathcal{F}_{\mathrm{D}}=\left\{\left.\left(\begin{array}{lll}
t & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \right\rvert\,\left(\begin{array}{ll}
t & 1 \\
1 & 1
\end{array}\right) \succeq 0\right\} \\
\mathcal{F}_{\text {min }}^{D}=\left\{\left.\left(\begin{array}{lll}
a & b & 0 \\
b & c & 0 \\
0 & 0 & 0
\end{array}\right) \right\rvert\,\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) \succeq 0\right\}=\mathcal{S}_{+}^{2} \oplus 0
\end{gather*}
$$

Facial Reduction - Continued

$$
\begin{gathered}
\sup _{t, s}-s \\
\text { s.t. }\left(\begin{array}{ccc}
t & 1 & s-1 \\
1 & s & 0 \\
s-1 & 0 & 0
\end{array}\right) \succeq 0 \\
\mathcal{F}_{\min }^{D}=\left\{\left.\left(\begin{array}{lll}
a & b & 0 \\
b & c & 0 \\
0 & 0 & 0
\end{array}\right) \right\rvert\,\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) \succeq 0\right\}=\mathcal{S}_{+}^{2} \oplus 0 . \\
\left(\mathcal{F}_{\min }^{D}\right)^{*}=\left\{\left.\left(\begin{array}{lll}
a & b & * \\
b & c & * \\
* & * & *
\end{array}\right) \right\rvert\,\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) \succeq 0\right\}=\left(\mathcal{S}_{+}^{2} \oplus 0\right)^{*} .
\end{gathered}
$$

The Facial Reduction Algorithm

- So... How do we compute $\mathcal{F}_{\text {min }}^{D}$ in practice?

Answer: separating hyperplane theorem.
\mathcal{V} : Polyhedral set and K a convex set

- $\mathcal{V} \cap($ ri $K)=\emptyset \Leftrightarrow \mathcal{V}$ and K can be properly separated by H in such a way that H does not contain K.

The Facial Reduction Algorithm

$$
\begin{align*}
\sup _{y \in \mathbb{R}^{m}} & \sum_{i=1}^{m} b_{i} y_{i} \tag{D}\\
\text { s.t. } & C-\sum_{i=1}^{m} y_{i} A_{i} \succeq 0
\end{align*}
$$

- Let $\mathcal{V}=\left\{C-\sum_{i=1}^{m} y_{i} A_{i} \mid y \in \mathbb{R}^{m}\right\}$ and $\mathcal{K}=\mathcal{S}_{+}^{n}$.
- Slater's condition is not satisfied $\Longleftrightarrow \mathcal{V} \cap($ ri $\mathcal{K})=\emptyset$.

There exists $0 \neq X \in \mathcal{S}^{n}$ and $\alpha \in \mathbb{R}$ such that

$$
\left\langle X, C-\sum_{i=1}^{m} y_{i} A_{i}\right\rangle \leq \alpha \leq\langle X, Z\rangle, \quad \forall y \in \mathbb{R}^{m}, \forall Z \in \mathcal{S}_{+}^{n} .
$$

Therefore

- $\alpha \leq 0, X \in \mathcal{S}_{+}^{n}$
- $\langle X, C\rangle \leq 0$ and $\left\langle X, A_{i}\right\rangle=0$, for every i.

The Facial Reduction Algorithm

$$
\begin{array}{ll}
\sup _{y \in \mathbb{R}^{m}} & \sum_{i=1}^{m} b_{i} y_{i} \tag{D}\\
\text { s.t. } & C-\sum_{i=1}^{m} y_{i} A_{i} \in \mathcal{S}_{+}^{n}
\end{array}
$$

Suppose Slater's condition is not satisfied, then there exists $0 \neq X_{1} \in \mathcal{S}^{n}$ such that

- $X_{1} \in \mathcal{F}_{1}:=\mathcal{S}_{+}^{n}$
- $\left\langle X_{1}, C\right\rangle \leq 0$ and $\left\langle X_{1}, A_{i}\right\rangle=0$, for every i.

Two cases:
(1) $\left\langle X_{1}, C\right\rangle<0 \Rightarrow(D)$ is infeasible.
(2) $\left\langle X_{1}, C\right\rangle=0 \Rightarrow X_{1} \notin\left(\mathcal{S}_{+}^{n}\right)^{\perp}$, so $\mathcal{F}_{\mathrm{D}} \subseteq \mathcal{S}_{+}^{n} \cap\left\{X_{1}\right\}^{\perp} \subsetneq \mathcal{S}_{+}^{n}$. $\mathcal{F}_{2}:=\mathcal{S}_{+}^{n} \cap\left\{X_{1}\right\}^{\perp}$ is a face of \mathcal{S}_{+}^{n} that is smaller than \mathcal{S}_{+}^{n}.

The Facial Reduction Algorithm

$$
\begin{align*}
\sup _{y \in \mathbb{R}^{m}} & \sum_{i=1}^{m} b_{i} y_{i} \tag{2}\\
\text { s.t. } & C-\sum_{i=1}^{m} y_{i} A_{i} \in \mathcal{F}_{2}
\end{align*}
$$

If Slater's condition is not satisfied for $\left(D_{2}\right)$, then there exists $0 \neq X_{2} \in \mathcal{S}^{n}$ such that

- $X_{2} \in\left(\mathcal{F}_{2}\right)^{*}$.
- $\left\langle X_{2}, C\right\rangle \leq 0$ and $\left\langle X_{2}, A_{i}\right\rangle=0$, for every i.

Two cases:
(1) $\left\langle X_{2}, C\right\rangle<0 \Rightarrow(\mathrm{D})$ is infeasible.
(2) $\left\langle X_{2}, C\right\rangle=0 \Rightarrow X_{2} \notin\left(\mathcal{F}_{2}\right)^{\perp}$, so $\mathcal{F}_{\mathrm{D}} \subseteq \mathcal{F}_{2} \cap\left\{X_{2}\right\}^{\perp} \subsetneq \mathcal{F}_{2}$. $\mathcal{F}_{3}=\mathcal{F}_{2} \cap\left\{X_{2}\right\}^{\perp}$ is a face of \mathcal{S}_{+}^{n} that is smaller than \mathcal{F}_{2}.

The Facial Reduction Algorithm

$$
\begin{align*}
\sup _{y \in \mathbb{R}^{m}} & \sum_{i=1}^{m} b_{i} y_{i} \tag{3}\\
\text { s.t. } & C-\sum_{i=1}^{m} y_{i} A_{i} \in \mathcal{F}_{3}
\end{align*}
$$

If Slater's condition is not satisfied for $\left(D_{3}\right)$, then there exists $0 \neq X_{3} \in \mathcal{S}^{n}$ such that

- $X_{3} \in\left(F_{3}\right)^{*}$.
- $\left\langle X_{3}, C\right\rangle \leq 0$ and $\left\langle X_{3}, A_{i}\right\rangle=0$, for every i.

Two cases:
(1) $\left\langle X_{3}, C\right\rangle<0 \Rightarrow(\mathrm{D})$ is infeasible.
(2) $\left\langle X_{3}, C\right\rangle=0 \Rightarrow X_{3} \notin\left(\mathcal{F}_{3}\right)^{\perp}$, so $\mathcal{F}_{\mathrm{D}} \subseteq \mathcal{F}_{3} \cap\left\{X_{3}\right\}^{\perp} \subsetneq \mathcal{F}_{3}$. $\mathcal{F}_{4}:=\mathcal{F}_{3} \cap\left\{X_{3}\right\}^{\perp}$ is a face of \mathcal{S}_{+}^{n} that is smaller than \mathcal{F}_{3}.

The Facial Reduction Algorithm - General form

Assumptions:

$$
\left(c+\operatorname{range} \mathcal{A}^{*}\right) \cap \mathcal{K} \neq \emptyset .
$$

(1) Let $\mathcal{F}_{1}=\mathcal{K}$ and $i \leftarrow 1$.
(2) If $\left(c+\operatorname{range} \mathcal{A}^{*}\right) \cap \operatorname{ri} \mathcal{F}_{i} \neq \emptyset$, we are done.
(3) If $\left(c+\operatorname{range} \mathcal{A}^{*}\right) \cap \operatorname{ri} \mathcal{F}_{i}=\emptyset$, then we invoke a separation theorem.

- There exists $x_{i} \in \mathcal{F}_{i}^{*} \backslash \mathcal{F}_{i}^{\perp}$ and $x_{i} \in \operatorname{ker} \mathcal{A} \cap\{c\}^{\perp}$.
- Let $\mathcal{F}_{i+1} \leftarrow \mathcal{F}_{i} \cap\left\{x_{i}\right\}^{\perp}$ and $i \leftarrow i+1$. Go to Step 2.

Facial Reduction - Continued

$$
\begin{array}{ll}
\underset{t, s}{\sup } & -s \tag{D}\\
\text { s.t. } & \left(\begin{array}{ccc}
t & 1 & s-1 \\
1 & s & 0 \\
s-1 & 0 & 0
\end{array}\right) \succeq 0
\end{array}
$$

- We can take $X_{1}:=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$

The Facial Reduction Algorithm

- If (D) is feasible, the algorithm construct a chain of faces:

$$
\mathcal{F}_{\text {min }}^{D}=\mathcal{F}_{\ell} \subsetneq \cdots \subseteq \mathcal{F}_{1}=\mathcal{K} .
$$

Therefore, the Facial Reduction Algorithm always finds the minimal face $\mathcal{F}_{\text {min }}^{D}$.

Part 3 - Bonus contents

Farkas Lemma' in LP

$$
\nexists y \text { s.t., } c-\mathcal{A}^{*} y \geq 0 \Longleftrightarrow \exists x \geq 0 \text {, s.t. } \quad\langle c, x\rangle=-1, \mathcal{A} x=0
$$

Let $e:=(1,1, \ldots, 1)$.

Proof.

$$
\begin{array}{cl}
\underset{x}{\inf } & \langle c, x\rangle \tag{P}\\
\text { to } & \mathcal{A} x=0 \\
& x_{1}+\cdots+x_{n}=1 \\
& x \geq 0
\end{array}
$$

$$
\sup _{t, y} t
$$

subject to $c-t e-\mathcal{A}^{*} y \geq 0$.

First, (D) is always feasible.
$\theta_{D}<0 \Longleftrightarrow \nexists y$ s.t., $c-\mathcal{A}^{*} y \geq 0$
By LP strong duality,
$\theta_{D}<0 \Longleftrightarrow \exists x^{*} \geq 0,\left\langle c, x^{*}\right\rangle=\theta_{D}, \mathcal{A} x^{*}=0, x_{1}^{*}+\cdots+x_{n}^{*}=1$. (Divide x^{*} by $\left.-\theta_{D}\right)$

Find the problem in the "proof" below

$$
\nexists y \text { s.t., } C-\mathcal{A}^{*} y \succeq 0 \Longleftrightarrow \exists X \succeq 0 \text {, s.t. }\langle C, X\rangle=-1, \mathcal{A} X=0
$$

Let $/$ be the identity matrix.

"Proof."

$$
\begin{array}{rlrl}
\inf _{x} & \langle C, X\rangle & (\mathrm{P}) & \sup _{t, y} t \\
\text { subject to } & \mathcal{A} X=0 & & \text { subject to } \\
& \operatorname{trace}(X)=1 & & \\
& X \succeq 0 & & \mathcal{A}^{*} y \succeq 0 . \\
& &
\end{array}
$$

First, (D) is always feasible and satisfies Slater.
$\theta_{D}<0 \Longleftrightarrow \nexists y$ s.t., $C-\mathcal{A}^{*} y \succeq 0$
By CLP strong duality under Slater,
$\theta_{D}<0 \Longleftrightarrow \exists X^{*} \geq 0,\left\langle C, X^{*}\right\rangle=\theta_{D}, \mathcal{A} X^{*}=0$, trace $(X)=1$. (Divide X^{*} by $\left.-\theta_{D}\right)$

Farkas' Lemma in SDP?

$$
\nexists y \text { s.t., } C-\mathcal{A}^{*} y \succeq 0 \stackrel{?}{\Longleftrightarrow} \exists X \succeq 0 \text {, s.t. }\langle C, X\rangle=-1, \mathcal{A} X=0
$$

$$
\begin{array}{ll}
\sup _{t} & 0 \\
\text { s.t. } & \left(\begin{array}{ll}
t & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)-t\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right) \succeq 0
\end{array}
$$

However, $\langle C, X\rangle=-1, \mathcal{A} X=0 \Rightarrow X_{12}=-0.5, X_{11}=0, X$ cannot be positive semidefinite.

- (D) is infeasible but there is no $X \succeq 0$ with $\langle C, X\rangle=-1, \mathcal{A} X=0$
- (D) is weakly infeasible, i.e., $(C+\operatorname{range} \mathcal{A}) \cap \mathcal{K}=\emptyset$ but $\operatorname{dist}(C+\operatorname{range} \mathcal{A}, \mathcal{K})=0$.

The Facial Reduction Algorithm Again

Assumptions: $\left(c+\right.$ range $\left.\mathcal{A}^{*}\right) \cap \mathcal{K} \neq \emptyset$.
(1) Let $\mathcal{F}_{1}=\mathcal{K}$ and $i \leftarrow 1$.
(2) If $\left(c+\operatorname{range} \mathcal{A}^{*}\right) \cap \operatorname{ri} \mathcal{F}_{i} \neq \emptyset$, we are done, \mathcal{F}_{i} is the minimal face.
(3) If $\left(c+\operatorname{range} \mathcal{A}^{*}\right) \cap \operatorname{ri} \mathcal{F}_{i}=\emptyset$, then we invoke the (partial polyhedral) proper separation theorem.
There exists $x_{i} \in \mathcal{E}$ and $\alpha \in \mathbb{R}$ such that

$$
\left\langle x_{i}, c-\mathcal{A}^{*} y\right\rangle \leq \alpha \leq\left\langle x_{i}, z\right\rangle, \quad \forall y \in \mathbb{R}^{m}, \forall z \in \mathcal{F}_{i}
$$

Therefore

- $\alpha \leq 0, x_{i} \in \mathcal{F}_{i}^{*}$
- $\left\langle x_{i}, c\right\rangle \leq 0$ and $\mathcal{A} x_{i}=0$.

Two cases:
(0) If $\alpha<0$, then $\left(c+\right.$ range $\left.\mathcal{A}^{*}\right) \cap \mathcal{K}=\emptyset$ (Infeasibility detected)
(D) If $\alpha=0$, then $x_{i} \notin \mathcal{F}_{i}^{\perp}$ holds and we let $\mathcal{F}_{i+1} \leftarrow \mathcal{F}_{i} \cap\left\{x_{i}\right\}^{\perp}$ and $i \leftarrow i+1$. Go to Step 2. $\left(c+\right.$ range $\mathcal{A}^{*} \subseteq\left\{x_{i}\right\}^{\perp}$ holds $)$

The FR Farkas' Lemma

" $c-\mathcal{A}^{*} y \in \mathcal{K}^{\prime}$ " is infeasible if and only if there are x_{1}, \ldots, x_{ℓ} such that

- $x_{i} \in \mathcal{F}_{i}^{*} \cap \operatorname{ker} \mathcal{A} \cap\{c\}^{\perp}$, for $i=1, \ldots, \ell-1$, where
- $\mathcal{F}_{1}=\mathcal{K}$
- $\mathcal{F}_{i}=\mathcal{F}_{i-1} \cap\left\{x_{i-1}\right\}^{\perp}$, for $i \geq 2$.
- $x_{\ell} \in \mathcal{F}_{\ell}^{*} \cap \operatorname{ker} \mathcal{A}$ and $\left\langle c, x_{\ell}\right\rangle=-1$.

Theorem

An infeasible CLP has a finite certificate of infeasibility.

Example

$$
\begin{array}{ll}
\sup _{t} & 0 \tag{D}\\
\text { s.t. } & \left(\begin{array}{ll}
t & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)-t\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right) \succeq 0
\end{array}
$$

- $X_{1}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \in \mathcal{S}_{+}^{2} \cap \operatorname{ker} \mathcal{A} \cap\{C\}^{\perp}$
- $X_{2}=\left(\begin{array}{cc}0 & -0.5 \\ -0.5 & 0\end{array}\right) \in\left(\mathcal{S}_{+}^{2} \cap\left\{X_{1}\right\}^{\perp}\right)^{*}=\left\{\left.\left(\begin{array}{cc}a & * \\ * & *\end{array}\right) \right\rvert\, a \geq 0\right\}$ and $\left\langle C, X_{2}\right\rangle=-1$.
X_{1} and X_{2} form a certificate that (D) is infeasible.

Roots of bad behavior in CLP

$$
\operatorname{dist}(U, V):=\inf _{x \in U, y \in V}\|x-y\|
$$

Note that $\operatorname{dist}(U, V)=\operatorname{dist}(0, U-V)$.

- dist $(U, V)=0 \Leftrightarrow 0 \in \operatorname{cl}((U-V))$
- $U \cap V=\emptyset$ and $\operatorname{dist}(U, V)=0 \Rightarrow U-V$ is not closed.

Many strange phenomena in CLP can be traced to the lack of closedness of certain maps or sums

Example 1 - Failure of Farkas' Lemma

$$
C-\mathcal{A} t=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)-t\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
t & 1 \\
1 & 0
\end{array}\right) \succeq 0
$$

- $(C+\operatorname{range} \mathcal{A}) \cap \mathcal{S}_{+}^{2}=\emptyset$ but dist $\left(C+\operatorname{range} \mathcal{A}, \mathcal{S}_{+}^{2}\right)=0$, so \mathcal{S}_{+}^{2} - range $\mathcal{A}-C$ is not closed.
- In particular, $\mathcal{S}_{+}^{2}+\operatorname{range} \mathcal{A}$ is not closed.

Example 2 - Unattained optima

$$
\begin{array}{ll}
\sup _{t, s} & -s \tag{D}\\
\text { s.t. } & \left(\begin{array}{ll}
t & 1 \\
1 & s
\end{array}\right) \succeq 0
\end{array}
$$

$\theta_{D}=0$ but there is no feasible solution with $s=0$.
Define

$$
\hat{\mathcal{A}}(t, s):=\left(-s,\left(\begin{array}{ll}
t & 0 \\
0 & s
\end{array}\right)\right)
$$

and

$$
\hat{C}:=\left(-\theta_{D},\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)
$$

Then, $\operatorname{dist}\left(\hat{C}+\operatorname{range} \hat{\mathcal{A}}, 0 \times \mathcal{S}_{+}^{2}\right)=\operatorname{dist}\left(\hat{C}, 0 \times \mathcal{S}_{+}^{2}+\operatorname{range} \hat{\mathcal{A}}\right)=0$

- $(\hat{C}+$ range $\hat{\mathcal{A}}) \cap\left(0 \times \mathcal{S}_{+}^{2}\right)=\emptyset$, so $\left(0 \times \mathcal{S}_{+}^{2}\right)+$ range $\hat{\mathcal{A}}$ is not closed.

Fundamental questions

A common pattern:

- Strange thing happens $\Rightarrow \mathcal{K}+\mathcal{L}$ fails to be closed, for a certain closed convex cone \mathcal{K} and subspace \mathcal{L}.

Fundamental question

Given convex cones $\mathcal{K}_{1}, \mathcal{K}_{2}$ when is $\mathcal{K}_{1}+\mathcal{K}_{2}$ closed?
Let $S(x, y):=x+y$.

- $\mathcal{K}_{1}+\mathcal{K}_{2}$ is closed $\Longleftrightarrow S\left(\mathcal{K}_{1} \times \mathcal{K}_{2}\right)$ is closed.

Fundamental question 2

Let \mathcal{K} be a convex cone and M a linear map. When is $M \mathcal{K}$ closed?

A classical result

If $\operatorname{ri}\left(\mathcal{K}_{1}^{*}\right) \cap \operatorname{ri}\left(\mathcal{K}_{2}^{*}\right) \neq \emptyset$ then $\mathcal{K}_{1}+\mathcal{K}_{2}$ is closed.
Proof. See exercise list.

Nice cones

For $\mathcal{F} \unlhd \mathcal{K}, \mathcal{F} \neq \emptyset$ we have

$$
\mathcal{F}=\mathcal{K} \cap \operatorname{span} \mathcal{F}
$$

Therefore

$$
\mathcal{F}^{*}=\operatorname{cl}\left(\mathcal{K}^{*}+\mathcal{F}^{\perp}\right) .
$$

\mathcal{K} is nice $\Longleftrightarrow \mathcal{F}^{*}=\mathcal{K}^{*}+\mathcal{F}^{\perp}, \forall \mathcal{F} \unlhd \mathcal{K}$ $\mathcal{K}^{*}+\mathcal{F}^{\perp}$ is closed, $\forall \mathcal{F} \unlhd \mathcal{K}$.

- $\mathbb{R}_{+}^{n}, \mathcal{Q}^{n}, \mathcal{S}_{+}^{n}$ (and all symmetric cones) are nice.
- Many applications we will not discuss here: extended duals, lifts of convex sets...

Preliminary - Conjugate Faces

$$
\text { Let } \mathcal{F} \unlhd \mathcal{K}, \mathcal{F} \neq \emptyset
$$

The conjugate face of \mathcal{F} is the face $\mathcal{F}^{\Delta}:=\mathcal{K}^{*} \cap \mathcal{F}^{\perp}$

- (Exercise) $\mathcal{F}^{\Delta}=\mathcal{K}^{*} \cap\{x\}^{\perp}$ holds for $x \in \operatorname{ri} \mathcal{F}$. In particular \mathcal{F}^{Δ} is an exposed face of \mathcal{K}^{*}.
Example Let $\mathcal{F} \unlhd \mathcal{S}_{+}^{n}$ be such that

$$
\mathcal{F}=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right) \right\rvert\, A \in \mathcal{S}_{+}^{r}\right\}
$$

Then

$$
\mathcal{F}^{\Delta}=\left\{\left.\left(\begin{array}{ll}
0 & 0 \\
0 & C
\end{array}\right) \right\rvert\, C \in \mathcal{S}_{+}^{n-r}\right\}
$$

A closedness criterion by Pataki

$\mathcal{K}_{1}, \mathcal{K}_{2}$: closed convex nice cones.
Let $x \in \operatorname{ri}\left(\mathcal{K}_{1} \cap \mathcal{K}_{2}\right), \mathcal{F}_{1}:=\mathcal{F}_{\min }\left(x, \mathcal{K}_{1}\right)$ and $\mathcal{F}_{2}:=\mathcal{F}_{\text {min }}\left(x, \mathcal{K}_{2}\right)$. Then
$\mathcal{K}_{1}^{*}+\mathcal{K}_{2}^{*}$ is closed if and only if $\mathcal{F}_{1}^{\Delta}+\mathcal{F}_{2}^{\Delta}=\mathcal{F}_{1}^{\perp}+\mathcal{F}_{2}^{\perp}$.
圊 G. Pataki,
On the closedness of the linear image of a closed convex cone, Math. Oper. Res., 32 (2007), pp. 395-412.

Other exposedness properties

- Nices cones are nice, but niceness is hard to check.
- There are simpler sufficient conditions: projectional exposedness, amenability
J. M. Borwein and H. Wolkowicz.

Regularizing the abstract convex program.
Journal of Mathematical Analysis and Applications, 83(2):495-530, 1981.
B. F. Lourenço,

Amenable cones: error bounds without constraint qualifications, Mathematical Programming, 186 (2021), pp. 1-48,

Amenability

Definition (Amenable cones)

\mathcal{K} is amenable if for every (nonempty) face \mathcal{F} of \mathcal{K} there is $\kappa>0$ such that

$$
\operatorname{dist}(x, \mathcal{F}) \leq \kappa \operatorname{dist}(x, \mathcal{K}), \quad \forall x \in \operatorname{span} \mathcal{F}
$$

Or, equivalently, if there is $\kappa>0$ such that

$$
\operatorname{dist}(x, \mathcal{F}) \leq \kappa(\operatorname{dist}(x, \mathcal{K})+\operatorname{dist}(x, \operatorname{span} \mathcal{F}))
$$

Amenable cones are (particularly) nice
B. F. Lourenço,

Amenable cones: error bounds without constraint qualifications, Mathematical Programming, 186 (2021), pp. 1-48,
里
B. F. Lourenço, V. Roshchina, and J. Saunderson.

Amenable cones are particularly nice.
SIAM J. Optim., 32(3):2347-2375, September 2022. arXiv:2011.07745.

A comparison table

		Exposed	Nice	Amenable	Projectionally
Preserved under	finite intersections	\checkmark	\checkmark	\checkmark	?
	direct product	\checkmark	\checkmark	\checkmark	\checkmark
	injective linear image	\checkmark	\checkmark	\checkmark	\checkmark
Symmetric cones		\checkmark	\checkmark (CT'08)	\checkmark	\checkmark L'21
Homogeneous cones		\checkmark	\checkmark (CT'08)	\checkmark LRS'22	?
Hyperbolicity cones		\checkmark (R'05)	\checkmark	\checkmark LRS'23	?

- Facially exposed $\stackrel{P^{\prime} 13}{\Leftarrow}$ Nice $\stackrel{L^{\prime} 21}{\Leftarrow}$ Amenable $\stackrel{\text { EPBR }}{\Leftarrow}$ Projectionally exposed.
- There exists a 4D cone that is facially exposed but not nice (Roschina, SIOPT'14).
- There exists a 4D cone that is nice but not amenable LRS'22
- In dimension 4 or less: Amenable \Leftrightarrow Projectionally exposed. LRS'22

Feasibility vs Optimization

Optimization problem:

$$
\begin{aligned}
\sup _{y} & \langle b, y\rangle \\
\text { subject to } & c-\mathcal{A}^{*} y \in \mathcal{K}
\end{aligned}
$$

Feasibility problem:

$$
\begin{aligned}
\text { find } & y \\
\text { subject to } & c-\mathcal{A}^{*} y \in \mathcal{K}
\end{aligned}
$$

Are optimization problems harder than feasibility problems?
Depends, but in a very important sense no.

In Linear Programming

Consider two oracles:

- Feasibility Oracle: Receives LP data and returns a feasible solution if one exists or NO if no solution exists.
- Optimization Oracle: Receives LP data and returns an optimal solution if one exists or NO if no solution exists.

1 call to Feasibility Oracle is enough to simulate the Optimization Oracle

Proof.

Ask the Feasibility Oracle for a solution to the KKT system

$$
\left\{(x, y) \mid A x=b, c-\mathcal{A}^{T} y \geq 0, x \geq 0,\langle c, x\rangle-\langle b, y\rangle=0\right\} .
$$

In Linear Programming

Maybe you thought that was unfair. How about this?

- Dangerous Feasibility Oracle: Receives LP data and returns a feasible solution if one exists or EXPLODES if no solution exists.
- Optimization oracle: Receives LP data and returns an optimal solution if one exists or NO if no solution exists.

Can Dangerous Feasibility Oracle simulate Optimization Oracle in finite calls (without exploding)?

The short answer is yes.

In Conic Linear Programming

Consider two oracles:

- Dangerous Feasibility Oracle: Receives CLP data and returns a feasible solution if one exists or EXPLODES if no solution exists.
- Optimization Oracle: Receives CLP data returns an optimal solution if one exists or NO if no solution exists.

KKT trick no longer works because (P) or (D) may be unattained and/or there may be a duality gap.

A FR subproblem

The directions appearing in facial reduction can be found by solving the following subproblem

$\inf _{x, t, w} t$		$\left(P_{\mathcal{K}}\right)$
subject to $-\left\langle c, x-t e^{*}\right\rangle+t-w$	$=0$	(1)
$\langle e, x\rangle+w$	$=1$	(2)
$\mathcal{A} x-t \mathcal{A} e^{*}$	$=0$	(3)
$(x, t, w) \in \mathcal{K}^{*} \times \mathbb{R}_{+} \times \mathbb{R}_{+}$		
$\sup _{y_{1}, y_{2}, y_{3}} y_{2}$		$\left(D_{\mathcal{K}}\right)$
subject to $\quad c y_{1}-e y_{2}-\mathcal{A}^{\top} y_{3} \in \mathcal{K}$		(4)
$1-y_{1}\left(1+\left\langle c, e^{*}\right\rangle\right)+\left\langle e^{*}, \mathcal{A}^{\top} y_{3}\right\rangle \geq 0$		(5)
$y_{1}-y_{2} \geq 0$		(6)

It has the following properties:

- Slater's condition is satisfied at both sides. Common optimal value is finite.
- KKT trick works and Dangerous Feasibility Oracle never explodes.

Dangerously doing Facial Reduction

FR applied to $c-\mathcal{A}^{*} y \in \mathcal{K}$
(1) Let $\mathcal{F}_{1}=\mathcal{K}$ and $i \leftarrow 1$.
(2) We invoke the Dangerous Feasibility oracle with the KKT trick applied to the auxiliary problems to get either y such that $c-\mathcal{A}^{*} y \in \operatorname{ri} \mathcal{F}_{i}$ (in this case, we stop) or x_{i}, α such that

$$
\left\langle x_{i}, c-\mathcal{A}^{*} y\right\rangle \leq \alpha \leq\left\langle x_{i}, z\right\rangle, \quad \forall y \in \mathbb{R}^{m}, \forall z \in \mathcal{F}_{i}
$$

Therefore

- $\alpha \leq 0, x_{i} \in \mathcal{F}_{i}^{*}$
- $\left\langle x_{i}, c\right\rangle \leq 0$ and $\mathcal{A} x_{i}=0$.

Two cases:
(0) If $\alpha<0$, then $\left(c+\right.$ range $\left.\mathcal{A}^{*}\right) \cap \mathcal{K}=\emptyset$ (Infeasibility detected)
(0) If $\alpha=0$, then $x \notin \mathcal{F}_{i}^{*}$ holds and we let $\mathcal{F}_{i+1} \leftarrow \mathcal{F}_{i} \cap\left\{x_{i}\right\}^{\perp}$ and $i \leftarrow i+1$. Go to Step 2. $\left(c+\right.$ range $\mathcal{A}^{*} \subseteq\left\{x_{i}\right\}^{\perp}$ holds $)$

Dangerous Optimization

Simulating the Optimization Oracle:
(1) Do Facial Reduction twice to get a pair of problems $(\hat{D})(\hat{P})$ satisfying Slater's condition. If FR declares infeasibility at some point return NO
(2) Call the Dangerous Feasibility Oracle to solve the pair $(\hat{D})(\hat{P})$ and obtain θ_{D}.
(Use FR to either compute a solution with value or θ_{D} or to check that none exists (return NO in this case).

Dangerous Feasibility Oracle can simulate Optimization Oracle with at most $O(\operatorname{dim} \mathcal{E})$ calls.

```
M. V. Ramana.
An exact duality theory for semidefinite programming and its complexity implications.
Math. Prog. 77, 1995
B. F. Lourenço, M. Muramatsu, and T. Tsuchiya.
Solving SDP completely with an interior point oracle.
Optimization Methods and Software 36(2-3), 425-471 (2021)
```


Bibliography I

Convex analysis:
R. T. Rockafellar. Convex Analysis. Princeton University Press, 1997.
E. J.-B. Hiriart-Urruty and C. Lemaréchal.

Convex Analysis and Minimization Algorithms I: Fundamentals. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 1996.
Conic programming:
A. Ben-Tal and A. Nemirovski

Lectures on Modern Convex Optimization MOS-SIAM Series on Optimization, 2001

Bibliography II

MOSEK ApS.
MOSEK Modeling Cookbook Release 3.3.0, 2023.
URL:
https://docs.mosek.com/modeling-cookbook/index.html.

Semidefinite programming:

圆
M. Todd

Semidefinite optimization.
Acta Numerica, 10:515-560, 2001.
围 M. X. Goemans and D. P. Williamson
Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
Journal of the ACM, 42(6): 1115-1145, 1995

Bibliography III

M. V. Ramana.

An exact duality theory for semidefinite programming and its complexity implications.
Math. Prog. 77, 1995
囯 L. Vandenberghe and S. Boyd
Semidefinite Programming
SIAM Review, 38:49-95, 1996
Theory of cones
國
G. P. Barker,

Theory of cones,
Linear Algebra and its Applications, 39 (1981), pp. 263 - 291.

- C.-H. Sung and B.-S. Tam,

A study of projectionally exposed cones, Linear Algebra and its Applications, 139 (1990), pp. 225 - 252.

Bibliography IV

击 G．Pataki，
The geometry of semidefinite programming，in Handbook of semidefinite programming：theory，algorithms，and applications，
H．Wolkowicz，R．Saigal，and L．Vandenberghe，eds．，
Kluwer Academic Publishers，online version at
http：／／www．unc．edu／～pataki／papers／chapter．pdf， 2000.
圊 J．Renegar．
Hyperbolic programs，and their derivative relaxations．
Foundations of Computational Mathematics，6（1）：59－79， 2005.
围 G．Pataki，
On the closedness of the linear image of a closed convex cone， Math．Oper．Res．， 32 （2007），pp．395－412．
R．C．B．Chua and L．Tunçel．
Invariance and efficiency of convex representations．
Math．Program．，111（1－2，Ser．B）：113－140， 2008.

Bibliography V

盽 G．Pataki，
On the connection of facially exposed and nice cones， J．Math．Anal．Appl．， 400 （2013），pp．211－221．
嗇 V．Roshchina．
Facially exposed cones are not always nice．
SIAM J．Optim．，24（1）：257－268， 2014.
圊 B．F．Lourenço，
Amenable cones：error bounds without constraint qualifications， Math．Prog．， 186 （2021），pp．1－48，
B．B．Lourenço，V．Roshchina，and J．Saunderson．
Amenable cones are particularly nice．
SIAM J．Optim．，32（3）：2347－2375，September 2022.
arXiv：2011．07745．

Bibliography VI

B. F. Lourenço, V. Roshchina, and J. Saunderson.

Hyperbolicity cones are amenable.
Math. Prog., 2023. arXiv:2102.063595.

Facial reduction:

J. M. Borwein and H. Wolkowicz.

Regularizing the abstract convex program.
Journal of Mathematical Analysis and Applications, 83(2):495 - 530, 1981.

R H. Waki and M. Muramatsu.
Facial reduction algorithms for conic optimization problems.
Journal of Optimization Theory and Applications, 158(1):188-215,
2013.

Bibliography VII

圊
G. Pataki.

Strong duality in conic linear programming: Facial reduction and extended duals.
In Computational and Analytical Mathematics, volume 50, pages
613-634. Springer New York, 2013.

- M. Liu and G. Pataki,

Exact duals and short certificates of infeasibility and weak infeasibility in conic linear programming,
Math. Program., 167 (2018), pp. 435-480.
B. B. Lourenço, M. Muramatsu, and T. Tsuchiya.

Facial reduction and partial polyhedrality.
SIAM Journal on Optimization, 28(3):2304-2326, 2018.
國 B. F. Lourenço, M. Muramatsu, and T. Tsuchiya.
Solving SDP completely with an interior point oracle.
Optimization Methods and Software 36(2-3), 425-471 (2021)

[^0]: ${ }^{1}$ Note that $\left\langle s^{*}, x^{*}\right\rangle=\left\langle c, x^{*}\right\rangle-\left\langle b, y^{*}\right\rangle$

