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Today’s contents

1 Cones, convexity and optimization

2 Duality and facial reduction

3 Bonus content

Software: CVXPY (there are also versions for Julia, R and others):
https://www.cvxpy.org/
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Convexity basics Conic Programming Basics Expressive power

Part 1 - Cones, convexity and
optimization
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Convexity basics Conic Programming Basics Expressive power

Convex sets

Definition (Convex set)

Let C ⊆ Rn. C is convex iff

x , y ∈ C ⇒ αx + (1− α)y ∈ C ,∀α ∈ [0, 1]
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Convexity basics Conic Programming Basics Expressive power

Basic types of convex sets - affine sets

Affine set
def⇐⇒ the solution set of finitely many equations

C ⊆ Rn is affine ⇔ exists A ∈ Rm×n, b ∈ Rm such that
C = {x ∈ Rn | Ax = b}

Examples

A hyperplane {x ∈ Rn | 〈x , v〉 = α}
A vector subspace in Rn

Affine space = “translated subspace”.
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Convexity basics Conic Programming Basics Expressive power

Basic types of convex sets - polyhedral sets

Polyhedral sets
def⇐⇒ the solution set of finitely many equalities and

inequalities

C ⊆ Rn is polyhedral ⇔ exists A ∈ Rm×n, b ∈ Rm such that
C = {x ∈ Rn | Ax ≤ b}
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Convexity basics Conic Programming Basics Expressive power

Basic types of convex sets - convex cones

K is a convex cone
def⇐⇒ αx + βy ∈ K, whenever x , y ∈ K and α, β ≥ 0.

Rn
+ = {x ∈ Rn | xi ≥ 0,∀i}

n × n symmetric positive semidefinite matrices Sn+.
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Convexity basics Conic Programming Basics Expressive power

Convex functions

f : Rn → R ∪ {+∞}

f is convex
def⇐⇒ f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y),

∀x , y ∈ Rn, ∀α ∈ [0, 1].

f is convex ⇔ the epigraph of f given by
epi f := {(x , µ) | f (x) ≤ µ} is a convex set.

Examples:

f (x) = x2

f (x) = ax

f (x) = − ln(x).

Non-examples:

f (x) = ln(x)

f (x) = x3
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Convexity basics Conic Programming Basics Expressive power

Conic linear programming

min
x
〈c , x〉

subject to Ax = b

x ∈ K

K ⊆ E : closed convex cone,

A : E → Rm: linear map, b ∈ Rm, c ∈ Rn,

E is an Euclidean space equipped with an inner product 〈·, ·〉 and a
norm ‖·‖ induced by 〈·, ·〉.

Feasible region {x ∈ K | Ax = b} = “a cone intersected by an affine set”.
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Convexity basics Conic Programming Basics Expressive power

Conic Linear Programming - Alternative forms

“Minimize/Maximize a linear function, subject to equalities,
inequalities and cone constraints”

These are all CLPs:

max
x∈Rn

cT x

subject to Ax ≤ b,

Ex − d ∈ K

min
x,y

cT1 x + cT2 y

subject to A1y ≤ b1,

A2x = b2

(x1, x2) ∈ K1 ×K2
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Convexity basics Conic Programming Basics Expressive power

Linear Programming (LP)

min
x

c>x

subject to Ax = b

x ∈ Rn
+

A is a m × n matrix, b ∈ Rm, c ∈ Rn.
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Convexity basics Conic Programming Basics Expressive power

The second-order cone (a.k.a ice-cream cone)

Qn+1 := {(x0, x̄) ∈ R× Rn | x0 ≥ ‖x̄‖2},

where ‖x̄‖2 =
√
x̄2

1 + · · ·+ x̄2
n
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Convexity basics Conic Programming Basics Expressive power

Second-order cone programming (SOCP)

min
x

c>x (P)

subject to Ax = b

x ∈ Qn1 × · · · × Qnr

A is a m × n matrix, b ∈ Rm, c ∈ Rn.
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Convexity basics Conic Programming Basics Expressive power

Antenna placing problem

We want place an antenna that sends a signal that covers the whole region
below.

Where should the antenna be placed and what is the minimum radius of the
signal capable of covering all the points?
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Convexity basics Conic Programming Basics Expressive power

Antenna placing problem- Formulation

min
x∈R3

x0 (P)

subject to ‖x̄ − pi‖2 ≤ x0, ∀i = 1, . . . ,m

min
x∈R3

x0 (P)

subject to (x0, x̄ − pi ) ∈ Q3, ∀i = 1, . . . ,m
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Convexity basics Conic Programming Basics Expressive power

Antenna placing problem - solution
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Convexity basics Conic Programming Basics Expressive power

Semidefinite Programming (SDP)

min
X∈Sn

〈C ,X 〉 (P)

subject to 〈Ai ,X 〉 = bi , i = 1, . . . ,m

X � 0

Sn: n × n symmetric matrices.

X � 0 ⇐⇒ X ∈ Sn+
def⇐⇒ vTXv ≥ 0,∀v ∈ Rn.

〈X ,Y 〉 := trace(X>Y ) =
∑

i,j XijYij

‖X‖F :=
√

trace(X>X ) =
√∑

i,j X
2
ij

“Linear programming for the 21st century”
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Convexity basics Conic Programming Basics Expressive power

Linear Algebra Review

Let X ∈ Sn and v ∈ Rn.

X � 0 ⇐⇒ all the eigenvalues of X are nonnegative

X � 0 ⇐⇒ there exists a n × n symmetric matrix V such that
X = V 2.

〈X , vvT 〉 = vTXv

If X � 0, then 〈X , vvT 〉 = 0 ⇐⇒ Xv = 0.
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Convexity basics Conic Programming Basics Expressive power

SDP Example: Nearest correlation matrix problem

Suppose we are given a H ∈ Sn with diagonal entries equal to 1.

Problem: We want to find the correlation matrix that is the nearest
possible to H.

min
X∈Sn

‖X − H‖F (Cor)

subject to Xii = 1, i = 1, . . . , n

X � 0

‖·‖F is the Frobenius norm: ‖A‖F =
√
trace(AA>).
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Convexity basics Conic Programming Basics Expressive power

SDP Example: Nearest correlation matrix problem
(continued)

min
X∈Sn,t∈R

t (Cor)

subject to ‖X − H‖F ≤ t

Xii = 1, i = 1, . . . , n

X � 0

The constraint “‖X − H‖ ≤ t” can be written as a second order cone.
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Convexity basics Conic Programming Basics Expressive power

MAX-CUT

Goal: Separate the vertices in two sets S , S ′, such that the weight of the
crossing edges is maximized. (NP-Hard)

aij : weight of the edge between the i-th and j-th vertices.
xi : 1 if the i-th vertex is in S , −1 if in S ′.

max
x∈Rn

n∑
i,j=1

aij
4

(1− xixj)

subject to x2
i = 1, i = 1, . . . , n

21 / 111
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The SDP relaxation - GW’95

X ∈ Sn
+ and rank (X ) = 1 ⇔ X = xxT , for some x ∈ Rn.

Xij = xixj holds.

max
x∈Sn

n∑
i,j=1

aij
4

(1− Xij)

subject to Xii = 1, i = 1, . . . , n

X ∈ Sn
+, rank (X ) = 1

SDP relaxation:

max
x∈Sn

n∑
i,j=1

aij
4

(1− Xij)

subject to Xii = 1, i = 1, . . . , n

X ∈ Sn
+, ((((

((rank (X ) = 1

Approximation ratio: MCUT
SDP

> 87%.

Similar idea applies to many combinational optimization problems.
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Interlude - Some history

Symmetric Cone Programming: LP + SOCP + SDP + α.

SOCP and SDPs : researched intensively from the 90s on, partly
because of the advent of interior point methods.

Non-symmetric cone optimization: exponential cones, power
cones, p-cones and many others.

More recent topic, with several new solvers developed in the past few
years.
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The exponential cone

Kexp :=
{

(x , y , z) | y > 0, z ≥ yex/y
}
∪ {(x , y , z) | x ≤ 0, z ≥ 0, y = 0} .

x

y

z

1 Applications to entropy optimization, logistic regression, geometric
programming and etc..

V. Chandrasekaran, P. Shah

Relative entropy optimization and its applications.

Math. Program. 161, 1–32 (2017)
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Convexity basics Conic Programming Basics Expressive power

A geometric programming example

1 B-san wants to give a box-like present to a friend.

2 However, B-san wants to wrap it using a special wrapping paper and
B-san only has 1m2 of it.

3 Because B-san is pretentious, B-san wants the ratio between height
of the box and its width to be in [1.5, φ], where φ is the golden ratio

φ = 1+
√

5
2

4 Problem: What is the biggest box (in volume) that can be wrapped
with the special paper?
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Convexity basics Conic Programming Basics Expressive power

A geometric programming example

max
w ,h,d

whd

subject to 2(wh + wd + hd) ≤ 1

1.5 ≤ h

w
≤ φ

w > 0, h > 0, d > 0

Not a convex problem but if we make the substitutions w = eŵ ,

d = e d̂ and h = e ĥ we get

max
ŵ ,ĥ,d̂

eŵ+ĥ+d̂

subject to (eŵ+ĥ + eŵ+d̂ + e ĥ+d̂) ≤ 0.5

1.5 ≤ e ĥ−ŵ ≤ φ
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Convexity basics Conic Programming Basics Expressive power

A geometric programming example

Taking logs linearizes the objective function and some of the constraints.

max
ŵ ,ĥ,d̂

ŵ + ĥ + d̂

subject to eŵ+ĥ + eŵ+d̂ + e ĥ+d̂ ≤ 0.5

log(1.5) ≤ ĥ − ŵ ≤ log(φ)

Noting that ex ≤ t holds if and only if (x , 1, t) ∈ Kexp, we have

max
ŵ ,ĥ,d̂,t

ŵ + ĥ + d̂

subject to t1 + t2 + t3 ≤ 0.5

(ŵ + ĥ, 1, t1) ∈ Kexp, (ŵ + d̂ , 1, t2) ∈ Kexp, (ĥ + d̂ , 1, t3) ∈ Kexp

log(1.5) ≤ ĥ − ŵ ≤ log(φ)

Reminder:

Kexp :=
{

(x , y , z) | y > 0, z ≥ yex/y
}
∪ {(x , y , z) | x ≤ 0, z ≥ 0, y = 0} .
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Solution
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Convexity basics Conic Programming Basics Expressive power

Discrete distribution estimation

We want to estimate a discrete distribution p based on some prior
information.

We might know some bounds on the moments
We might have some information on the pi ’s themselves.

Maximum entropy principle: we try to find the “most random” p
that is consistent with the prior information P.

max
p∈Rn

n∑
i=1

−pi ln pi

subject to p ∈ P
n∑

i=1

pi = 1

p ∈ Rn
+
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Convexity basics Conic Programming Basics Expressive power

Exponential cone formulation

Reminder:
Kexp :=

{
(x , y , z) | y > 0, z ≥ yex/y

}
∪ {(x , y , z) | x ≤ 0, z ≥ 0, y = 0} .

max
p,t∈Rn

n∑
i=1

ti

subject to ti ≤ −pi ln pi , i = 1, . . . , n

p ∈ P, p ∈ Rn
+

n∑
i=1

pi = 1

max
p,t∈Rn

n∑
i=1

ti

subject to (ti , pi , 1) ∈ Kexp, i = 1, . . . , n

p ∈ P, p ∈ Rn
+

n∑
i=1

pi = 1
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Expressive power
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Convexity basics Conic Programming Basics Expressive power

Convex optimization

Convex optimization:

min
x

f (x)

subject to x ∈ C ,

C is a convex set and f is a convex function.
Conic linear programming (CLP)

min
x
〈c , x〉

subject to Ax = b

x ∈ K

If we let C := {x ∈ K | Ax = b}, then C is convex.

CLP is a particular case of convex optimization. However
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Convexity basics Conic Programming Basics Expressive power

CLP ∼= Convex Optimization

33 / 111



Convexity basics Conic Programming Basics Expressive power

min
x

f (x) min
x,t

t

subject to x ∈ C subject to x ∈ C

f (x) ≤ t

Let C2 := {(x , t) | x ∈ C , f (x) ≤ t} and let K be the convex cone in
E × R2 generated by C2 × {1}. That is

K := {α(x , t, 1) | α ≥ 0, (x , t) ∈ C2}.

min
x,t,α

t

subject to α = 1

(x , t, α) ∈ K

Every convex optimization problem has an equivalent CLP formulation!

CLP philosophy: concentrate the hard part of the problem inside the cone.

CVXPY works by converting a convex problem into an equivalent CLP
and calling a CLP solver.
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Convexity basics Conic Programming Basics Expressive power

More on expressive power

Some researchers believe a few cones are enough to model the vast
majority of convex applications.

The following chapters present modeling with four types of con-
vex cones: quadratic cones, power cones, exponential cone,
semidefinite cone. It is “well-known” in the convex optimiza-
tion community that this family of cones is sufficient to express
almost all convex optimization problems appearing in practice.
[MOSEK Modelling cookbook, 2023]

That said, a cone may be “too general” for a certain application ⇒
a more specific cone may be better.

Some new solvers (alfonso, DDS, Hypatia, etc) support multiple
cones

User can select the cone that best fit the application.
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Convexity basics Conic Programming Basics Expressive power

More specific vs more general cones

Qn+1 := {(x0, x̄) ∈ Rn× | x0 ≥ ‖x̄‖2},

where ‖x̄‖2 =
√
x̄2

1 + · · ·+ x̄2
n

Sn+ := {X ∈ Sn | vTXv ≥ 0,∀v ∈ Rn}

(x̄ , x0) ∈ Qn+1 ⇔


x0 x̄1 · · · x̄n
x̄1 x0 0 · · ·
...

. . . · · ·
x̄n 0 · · · x0

 ∈ Sn+1
+

Everything that can be expressed using Qn+1 can also be expressed
using Sn+1

+

However, Sn+1
+ requires (n + 1)× (n + 1) matrices, while Qn+1 is a

cone in Rn+1.
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Convexity basics Conic Programming Basics Expressive power

https://docs.mosek.com/cheatsheets/conic.pdf

Conic Modeling Cheatsheet
Cones
Quadratic cone Qn

x1 ≥
√
x22 + · · ·+ x2n

Rotated quadratic cone Qnr

2x1x2 ≥ x23 + · · ·+ x2n, x1, x2 ≥ 0

Power cone Pα,1−α3 , α ∈ (0, 1)

xα1 x
1−α
2 ≥ |x3|, x1, x2 ≥ 0

Exponential cone Kexp

x1 ≥ x2ex3/x2 , x2 ≥ 0

Simple bounds
t ≥ x2 (0.5, t, x) ∈ Q3

r

|t| ≤
√
x (0.5, x, t) ∈ Q3

r

t ≥ |x| (t, x) ∈ Q2

t ≥ 1/x, x > 0 (x, t,
√

2) ∈ Q3
r

t ≥ |x|p, p > 1 (t, 1, x) ∈ P1/p,1−1/p
3

t ≥ 1/xp, x > 0, p > 0 (t, x, 1) ∈ P1/(1+p),p/(1+p)
3

|t| ≤ xp, x > 0, p ∈ (0, 1) (x, 1, t) ∈ Pp,1−p3

t ≥ |x|p/yp−1, y ≥ 0
p > 1

(t, y, x) ∈ P1/p,1−1/p
3

t ≥ xTx/y, y ≥ 0 (0.5t, y, x) ∈ Qn+2
r

t ≥ ex (t, 1, x) ∈ Kexp

t ≤ log x (x, 1, t) ∈ Kexp

t ≥ 1/ log x, x > 1 (u, t,
√

2) ∈ Q3
r

(x, 1, u) ∈ Kexp

t ≥ ax11 · · · axnn , ai > 0 (t, 1,
∑
xi log ai) ∈ Kexp

t ≥ xex, x ≥ 0 (t, x, u) ∈ Kexp

(0.5, u, x) ∈ Q3
r

t ≥ log(1 + ex) u+ v ≤ 1
(u, 1, x− t) ∈ Kexp

(v, 1,−t) ∈ Kexp

t ≥ |x|3/2 (t, 1, x) ∈ P2/3,1/3
3

t ≥ x3/2, x ≥ 0 (s, t, x), (x, 1/8, s) ∈ Q3
r

t ≥ 1/x3, x > 0 (t, x, 1) ∈ P3/4,1/4
3

0 ≤ t ≤ x2/5, x ≥ 0 (x, 1, t) ∈ P2/5,3/5
3 , t ≥ 0

Means and averaging
Log-sum-exp
t ≥ log(

∑
exi)

(zi, 1, xi − t) ∈ Kexp

i = 1, . . . , n∑
zi ≤ 1

Harmonic mean
0 ≤ t ≤ n(

∑
x−1
i )−1

xi > 0

(zi, xi, t) ∈ Q3
r

i = 1, . . . , n∑
zi = nt/2

Geometric mean
|t| ≤ (x1 · · ·xn)1/n

xi > 0

(zi, xi, zi+1) ∈ P1−1/i,1/i
3

i = 2, . . . , n
z2 = x1, zn+1 = t

|t| ≤ √xy, x, y > 0 (x, y,
√

2t) ∈ Q3
r

Weighted geom. mean
|t| ≤ xα1

1 · · ·xαn
n , xi > 0

αi > 0,
∑
αi = 1

(zi, xi, zi+1) ∈ P1−βi,βi
3

βi = αi/(α1 + · · ·+ αi)
i = 2, . . . , n

z2 = x1, zn+1 = t

|t| ≤ x1/4y5/12z1/3
x, y, z ≥ 0

(s, z, t) ∈ P2/3,1/3
3

(x, y, s) ∈ P3/8,5/8
3

Entropy
t ≤ −x log x (1, x, t) ∈ Kexp

t ≥ x log(x/y) (y, x,−t) ∈ Kexp

t ≥ log(1 + 1/x)
x > 0

(x+ 1, u,
√

2) ∈ Q3
r

(1− u, 1,−t) ∈ Kexp

t ≤ log(1− 1/x)
x > 1

(x, u,
√

2) ∈ Q3
r

(1− u, 1, t) ∈ Kexp

t ≥ x log(1 + x/y)
x, y > 0

(y, x+ y, u) ∈ Kexp

(x+ y, y, v) ∈ Kexp

t+ u+ v = 0

Convex quadratic problems
Let Σ ∈ Rn×n, symmetric, p.s.d.
Find Σ = LLT , L ∈ Rn×k (Cholesky factor).
Then xTΣx = ‖LTx‖22.

t ≥ 1
2
xTΣx (1, t, LTx) ∈ Qk+2

r

t ≥
√
xTΣx (t, LTx) ∈ Qk+1

1
2
xTΣx+ pTx+ q ≤ 0 (1,−pTx− q, LTx) ∈ Qk+2

r

maxx c
Tx− 1

2
xTΣx max cTx− r

(1, r, LTx) ∈ Qk+2
r

cTx+ d ≥ ‖Ax+ b‖2 (cTx+ d,Ax+ b) ∈ Qm+1

Norms, x ∈ Rn

‖ · ‖1, t ≥
∑
|xi| (zi, xi) ∈ Q2, t =

∑
zi

‖ · ‖2, t ≥ (
∑
x2i )

1/2 (t, x) ∈ Qn+1

‖ · ‖p, p > 1
t ≥ (

∑
|xi|p)1/p

(zi, t, xi) ∈ P1/p,1−1/p
3

i = 1, . . . , n∑
zi = t

Geometry
Bounding ball
minx maxi ‖x− xi‖2

min r
(r, x− xi) ∈ Qn+1

Geometric median
minx

∑
‖x− xi‖2

min
∑
ti

(ti, x− xi) ∈ Qn+1

Analytic center
maxx

∑
log(bi − aTi x)

max
∑
ti

(bi − aTi x, 1, ti) ∈ Kexp

Regression and fitting
Regularized least squares
minw ‖Xw− y‖22 +λ‖w‖22

min t+ λr
(0.5, t,Xw − y) ∈ Qm+2

r

(0.5, r, w) ∈ Qn+2
r

Max likelihood
maxp p

a1
1 · · · pann

max
∑
aiti

(pi, 1, ti) ∈ Kexp

Logistic cost function

t ≥ − log(1/(1 + e−θ
T x))

u+ v ≤ 1
(u, 1,−θTx− t) ∈ Kexp

(v, 1,−t) ∈ Kexp

Risk-return
Σ ∈ Rn×n – covariance, Σ = LLT , L ∈ Rn×k
maxx α

Tx
s.t. xTΣx ≤ γ

maxx α
Tx

(
√
γ, LTx) ∈ Qk+1

maxx α
Tx− δxTΣx maxx α

Tx− δr
(0.5, r, LTx) ∈ Qk+2

r

Risk plus x1.5 impact cost
t ≥ δxTΣx+ β

∑
|xi|3/2

t ≥ δr + β
∑
ui

(0.5, r, LTx) ∈ Qk+2
r

(ui, 1, xi) ∈ P2/3,1/3
3

Risk in factor model
γ ≥ xT (D + FSFT )x
D – specific risk (diag.)
F ∈ Rn×k – factor loads
S = UUT – factor cov.

γ ≥ t+ s
(0.5, t,

√
Dx) ∈ Qn+2

r

(0.5, s, UTFTx) ∈ Qk+2
r
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Part 2 - Duality and facial reduction
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More convex analysis Duality Even more convex analysis Facial reduction

More convex analysis
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More convex analysis Duality Even more convex analysis Facial reduction

Topological Interior

E : Euclidean space (i.e., Rn) with inner product 〈·, ·〉 and ‖·‖
B(x , r) is the open ball centered in x with radius r , i.e.,
B(x , r) = {y | ‖y − x‖ < r}.

Let C ⊆ E

Interior

intC := {x ∈ C | ∃r > 0, s.t.,B(x , r) ⊆ C}.
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More convex analysis Duality Even more convex analysis Facial reduction

Relative interior

Definition (Relative interior)

x is a relative interior point of C (i.e., x ∈ riC ) if for every y ∈ C , the
line segment connecting x and y can be extended past x while staying
inside C .

x ∈ riC
def⇐⇒ ∀y ∈ C ,∃µ > 1, s.t. µx + (1− µ)y ∈ C

riC = C
def⇐⇒ C is relatively open.
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More convex analysis Duality Even more convex analysis Facial reduction

Closure

E : finite dimensional Euclidean space
C ⊆ E : convex set

Definition (Closure)

The closure clC of C is the set of limit points of C ⇔ smallest closed set
containing C .

clC = C
def⇐⇒ C is closed
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More convex analysis Duality Even more convex analysis Facial reduction

Properties of closures and relative interiors

E : finite dimensional Euclidean space
C ⊆ E : convex set

riC and clC are convex.

riC 6= ∅ if C 6= ∅.
ri (clC ) = riC

ri ri (C ) = riC “relative interiors are relatively open”

cl (clC ) = clC “closures are closed”

Examples

riRn
+ = {x ∈ Rn | xi > 0,∀i}

riSn+ = symmetric positive definite matrices.
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More convex analysis Duality Even more convex analysis Facial reduction

Polars and duals of cones

K ⊆ E : convex cone.

K◦ = {y ∈ E | 〈x , y〉 ≤ 0,∀x ∈ K}.
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More convex analysis Duality Even more convex analysis Facial reduction

Polars of cones - Examples and Properties

K ⊆ E : convex cone.

Bipolar Theorem: K◦◦ = cl (K).

(Rn
+)◦ = −Rn

+

(Sn+)◦ = −Sn+.

(Qn
p)◦ = −Qn

q, where 1/p + 1/q = 1, p ∈ (1,∞),
Qn

p := {(x0, x̄) | ‖x̄‖p ≤ x0}.

Dual cone

K∗ := −K◦ = {y ∈ E | 〈x , y〉 ≥ 0,∀x ∈ K}

Bipolar Theorem: K∗∗ = cl (K).

(Rn
+)∗ = Rn

+.

(Sn+)∗ = Sn+.

(Qn
p)∗ = Qn

q, where 1/p + 1/q = 1, p ∈ (1,∞),
Qn

p := {(x0, x̄) | ‖x̄‖p ≤ x0}.
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Recall our basic conic linear program

��*
inf

min
x
〈c, x〉 (P)

subject to Ax = b

x ∈ K

Suppose we wish to relax the linear constraints:

L(y) := inf
x∈K

[〈c, x〉+ 〈y , b −Ax〉)]

= inf
x∈K

[〈c −A∗y , x〉+ 〈b, y〉]

= 〈b, y〉+ inf
x∈K
〈c −A∗y , x〉

=

{
〈b, y〉 if c −A∗y ∈ K∗

−∞ otherwise

Denote the optimal value of (P) by θP . Then:

θP ≥ L(y), ∀y
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Relaxing the CLP

inf
x
〈c, x〉 (P)

subject to Ax = b

x ∈ K

We have

L(y) =

{
〈b, y〉 if c −A∗y ∈ K∗

−∞ otherwise

and
θP ≥ L(y), ∀y

Which leads to
θP ≥ sup

y
L(y)

The dual problem is the task of finding the y that provides the tightest
(Lagrangian) relaxation to (P)
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Primal dual conic linear program (CLP)

inf
x
〈c , x〉 (P)

subject to Ax = b

x ∈ K

sup
y
〈b, y〉 (D)

subject to c −A∗y ∈ K∗.

K∗ := {s ∈ E | 〈s, x〉 ≥ 0,∀x ∈ K}. (dual cone)

We denote the primal and dual optimal values by θP and θD .

Proposition (Weak duality)

θP ≥ θD
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Example - Eigenvalues via SDP duality

Suppose that C ∈ Sn is a fixed matrix and consider the SDP:

sup
y∈R

y (D)

s.t. C − yIn � 0,

where In is the n× n identity matrix. Then θD = λmin(C ), where λmin(C )
is the minimum eigenvalue of C . The primal is:

inf
X∈Sn

〈C ,X 〉 (P)

s.t. 〈In,X 〉 = trace(X ) = 1

X � 0

If v ∈ Rn is an eigenvector of C associated to λmin(C ) with ‖v‖ = 1,
then X ∗ := vv> is optimal to (P).

θP = θD = λmin(C ).
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Strong duality in CLP

Theorem (Strong duality Theorem - Primal version)

Suppose that

(P) has a relative interior feasible solution, i.e., there exists x such that Ax = b
and x ∈ riK (Primal Slater Condition)

Then:

θP = θD .

(D) has optimal solutions if θP is finite.

Theorem (Strong duality Theorem - Dual version)

Suppose that

(D) has a relative interior feasible solution, i.e., there exists y such that
c −A∗y ∈ riK∗. (Dual Slater Condition)

Then:

θP = θD .

(P) has optimal solutions if θD is finite.
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Optimality conditions

inf
x
〈c, x〉 (P)

subject to Ax = b

x ∈ K

sup
y
〈b, y〉 (D)

subject to c −A∗y ∈ K∗.

A sufficient condition for (x∗, y∗) to be optimal is that the following are
satisfied:

Primal feasibility: Ax∗ = b, x∗ ∈ K
Dual feasibility: s∗ ∈ K∗, where s∗ := c −A∗y∗

Complementary slackness (i.e., zero duality gap1): 〈s∗, x∗〉 = 0.

If the primal and dual Slater conditions hold, the conditions above are
necessary too.

1Note that 〈s∗, x∗〉 = 〈c, x∗〉 − 〈b, y∗〉
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Ex1 - MAXCUT-SDP

inf
x∈Sn

〈A,X 〉 (P)

s.t Xii = 1, i = 1, . . . , n

X ∈ Sn+

sup
y∈Rn

y1 + · · ·+ yn (D)

s.t. A−
n∑

i=1

Eiyi ∈ Sn+,

where Ei is the matrix that has 1 in the (i , i)-entry and zero elsewhere.

Both primal and dual Slater conditions are satisfied ⇒ θP = θD
and both problems are attained.
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Ex2 - Dual Slater Condition holds, but no dual optimal
solution

sup
t,s

−s (D)

s.t.

(
t 1
1 s

)
� 0

inf
X∈S2

2X12 (P)

s.t. − X11 = 0

− X22 = −1

X � 0.

The dual satisfies Slater condition, θD is finite but no dual optimal
solutions exists. θD is unattained.

The primal does not satisfy Slater conditions, but has an optimal
solution.

θP = θD holds.
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Some clarification

Keep in mind the following:

inf(0, 1) = 0, but 0 6∈ (0, 1). “The infimum is finite but an optimal
solution does not exist”.

Primal side

θP is finite ⇔ θP is a real number.

θP is attained ⇔ there is a feasible x∗ such that θP = 〈c , x∗〉.
θP = −∞ ((P) is unbounded) ⇔ there is a sequence {xk} of
feasible solutions such that limk→∞〈c , xk〉 → −∞
By convention θP = +∞ iff (P) is infeasible

Dual side

θD is finite ⇔ θD is a real number.

θD is attained ⇔ there is a feasible y∗ such that θD = 〈b, y∗〉.
θD = −∞ ((D) is unbounded) ⇔ there is a sequence {yk} of
feasible solutions such that limk→∞〈b, yk〉 → −∞
By convention θD = +∞ iff (D) is infeasible

54 / 111



More convex analysis Duality Even more convex analysis Facial reduction

Ex3 - Positive gap SDP

sup
t,s

−s (D)

s.t.

 t 1 s − 1
1 s 0

s − 1 0 0

 � 0

inf
X∈S3

2X12−2X13 (P)

s.t. X11 = 0

− X22 − 2X13 = −1

X � 0.
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Positive gap SDP

sup
t,s

��*
−1

−s (D)

s.t.

 t 1 s − 1
1 s 0

s − 1 0 0

 � 0

inf
X∈S3 �

��*
0

2X12��
��:0−2X13 (P)

s.t. X11 = 0

− X22 − 2X13 = −1

X � 0.

θD = −1 and θP = 0. Neither the primal nor the dual satisfy Slater

Ok, so what? How bad can this be?
To correct this we substitute S3

+ for

S2
+ ⊕ 0 =


a b 0
b c 0
0 0 0

∣∣∣∣∣∣
(
a b
b c

)
∈ S2

+

 .
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Example

sup
t,s
��*
−1

−s (D’)

s.t.

 t 1 s − 1
1 s 0

s − 1 0 0

 ∈ S2
+ ⊕ 0

Still, θD′ = −1. Let’s take a look at the primal problem. . .

(S2
+ ⊕ 0)∗ =


a b ∗
b c ∗
∗ ∗ ∗

∣∣∣∣∣∣
(
a b
b c

)
∈ S2

+

 .

inf
x �

��* 0
2x12���:

−1
−2x13 (P’)

s.t. x11 = 0

− x22 − 2x13 = −1(
x11 x12

x21 x22

)
∈ S2

+.
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What happened?

S3
+ ⇒ S2

+ ⊕ 0: The feasible region of (D) stays the same ⇒
θD = θD′ = −1.

S3
+ ⇒ (S2

+ ⊕ 0)∗: The feasible region of (P) expands ⇒
−1 = θP′ ≤ θP = 0.

S2
+ ⊕ 0 a face of S3

+ with two key properties:

it contains the feasible region of (D)

Slater’s condition is satisfied at (D’).

This is an example of Facial Reduction
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Even more convex analysis
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Separating hyperplanes

H = {x ∈ E | 〈x , y〉 = θ}: hyperplane (x 6= 0)
C1,C2: convex sets
Define the closed half-spaces

H+ := {x ∈ E | 〈x , y〉 ≥ θ}, H− := {x ∈ E | 〈x , y〉 ≤ θ}

Bε: unit ball of radius ε

C1 and C2 are separated by H
def⇐⇒ C1 and C2 belong to different

closed half-spaces defined by H.

C1 and C2 are properly separated by H
def⇐⇒ C1 and C2 belong to

different closed half-spaces and at least one of them is not
contained in H.

C1 and C2 are strongly separated by H
def⇐⇒ ∃ε > 0 such that

C1 + Bε and C2 + Bε belong to different open half-spaces defined by
H.
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Separating hyperplanes - Examples
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Some results

C1,C2 ⊆ E : nonempty closed convex sets.

1 C1 and C2 can be strongly separated ⇔
dist (C1,C2) = infx,y‖x − y‖ > 0 ⇔ 0 6∈ cl (C1 − C2)

2 C1 and C2 can be properly separated ⇔ (riC1) ∩ (riC2) = ∅.
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Faces of convex sets

Definition (Face)

Let C ,F be convex sets such that F ⊆ C . F is a face of C
def⇐⇒ for

every α ∈ (0, 1) and every x , y ∈ C

αx + (1− α)y ∈ F ⇒ x , y ∈ F

We write F � C .
A face that is a singleton {x} is called an extreme point
A face F of dimension 1 of a cone K is called an extreme ray.
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Supporting hyperplanes

H = {x ∈ E | 〈c , x〉 = θ}: hyperplane
C ⊆ E : convex set
H+ := {x ∈ E | 〈c , x〉 ≥ θ}, H− := {x ∈ E | 〈c , x〉 ≤ θ}

H is a supporting hyperplane of C
def⇐⇒ H ∩ C 6= ∅ and C is contained

in one of the closed half-spaces defined by H.
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Examples of supporting hyperplanes
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Exposed faces

F � C is exposed
def⇐⇒ F = C ∩ H holds for some supporting

hyperplane H of C

If all nonempty faces of C are exposed we say that C is facially exposed.

1 If K is a cone, F � K is exposed iff F = K ∩ {s}⊥ for some some
s ∈ K∗.
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Faces of Sn+

Theorem

Let ∅ 6= F � Sn+. Then, there exists a n × n orthogonal matrix Q such
that

Q>FQ =

{(
A 0
0 0

)
| A ∈ Sr+

}

Every nonempty face of Sn+ is exposed and is linearly isomorphic to a Ss+
for s ≤ n.
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Minimal Face

C ,K ⊆ E : convex sets

Definition (Minimal Face)

Suppose C ⊆ K . The minimal face of C with respect to K , is the
smallest face of K containing C . We write Fmin(C ,K ).

Fmin(C ,K ) =
⋂
F�K
C⊆F

F

Key property
Let ∅ 6= C ⊆ K .

Fmin(C ,K ) = F ⇐⇒ C ⊆ F and C ∩ riF 6= ∅.
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Facial Reduction - The basic idea

sup
y∈Rm

〈b, y〉 (D)

s.t. c −A∗y ∈ K.
Let FD = {c −A∗y | c −A∗y ∈ K} = (c + rangeA∗) ∩ K, this are the
feasible slacks of (D).

We define the minimal face of (D) as FD
min = Fmin(FD ,K).

Note: FD
min = K ⇐⇒ (D) satisfies Slater’s condition.

inf
x
〈c, x〉 (P̂)

subject to Ax = b

x ∈ (FD
min)∗

sup
y
〈b, y〉 (D̂)

subject to c −A∗y ∈ FD
min.

Now, (D̂) satisfies Slater’s condition.
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Facial Reduction - Example

sup
t,s

−s (D)

s.t.

 t 1 s − 1
1 s 0

s − 1 0 0

 � 0

FD =


t 1 0

1 1 0
0 0 0

 | (t 1
1 1

)
� 0


FD

min =


a b 0
b c 0
0 0 0

 | (a b
b c

)
� 0

 = S2
+ ⊕ 0.
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Facial Reduction - Continued

sup
t,s

−s (D)

s.t.

 t 1 s − 1
1 s 0

s − 1 0 0

 � 0

FD
min =


a b 0
b c 0
0 0 0

 | (a b
b c

)
� 0

 = S2
+ ⊕ 0.

(FD
min)∗ =


a b ∗
b c ∗
∗ ∗ ∗

 | (a b
b c

)
� 0

 = (S2
+ ⊕ 0)∗.
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The Facial Reduction Algorithm

So... How do we compute FD
min in practice?

Answer: separating hyperplane theorem.
V: Polyhedral set and K a convex set

V ∩ (riK ) = ∅ ⇔ V and K can be properly separated by H in such a
way that H does not contain K .
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The Facial Reduction Algorithm

sup
y∈Rm

m∑
i=1

biyi (D)

s.t. C −
m∑
i=1

yiAi � 0.

Let V = {C −
∑m

i=1 yiAi | y ∈ Rm} and K = Sn+.

Slater’s condition is not satisfied ⇐⇒ V ∩ (riK) = ∅.
There exists 0 6= X ∈ Sn and α ∈ R such that

〈X ,C −
m∑
i=1

yiAi 〉 ≤ α ≤ 〈X ,Z〉, ∀y ∈ Rm, ∀Z ∈ Sn
+.

Therefore

α ≤ 0, X ∈ Sn
+

〈X ,C〉 ≤ 0 and 〈X ,Ai 〉 = 0, for every i .
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The Facial Reduction Algorithm

sup
y∈Rm

m∑
i=1

biyi (D)

s.t. C −
m∑
i=1

yiAi ∈ Sn+.

Suppose Slater’s condition is not satisfied, then there exists 0 6= X1 ∈ Sn
such that

X1 ∈ F1 := Sn+
〈X1,C 〉 ≤ 0 and 〈X1,Ai 〉 = 0, for every i .

Two cases:

1 〈X1,C 〉 < 0⇒ (D) is infeasible.

2 〈X1,C 〉 = 0⇒ X1 6∈ (Sn+)⊥, so FD ⊆ Sn+ ∩ {X1}⊥ ( Sn+.
F2 := Sn+ ∩ {X1}⊥ is a face of Sn+ that is smaller than Sn+.
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The Facial Reduction Algorithm

sup
y∈Rm

m∑
i=1

biyi (D2)

s.t. C −
m∑
i=1

yiAi ∈ F2.

If Slater’s condition is not satisfied for (D2), then there exists
0 6= X2 ∈ Sn such that

X2 ∈ (F2)∗.

〈X2,C 〉 ≤ 0 and 〈X2,Ai 〉 = 0, for every i .

Two cases:

1 〈X2,C 〉 < 0⇒ (D) is infeasible.

2 〈X2,C 〉 = 0⇒ X2 6∈ (F2)⊥, so FD ⊆ F2 ∩ {X2}⊥ ( F2.
F3 = F2 ∩ {X2}⊥ is a face of Sn+ that is smaller than F2.
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The Facial Reduction Algorithm

sup
y∈Rm

m∑
i=1

biyi (D3)

s.t. C −
m∑
i=1

yiAi ∈ F3.

If Slater’s condition is not satisfied for (D3), then there exists
0 6= X3 ∈ Sn such that

X3 ∈ (F3)∗.

〈X3,C 〉 ≤ 0 and 〈X3,Ai 〉 = 0, for every i .

Two cases:

1 〈X3,C 〉 < 0⇒ (D) is infeasible.

2 〈X3,C 〉 = 0⇒ X3 6∈ (F3)⊥, so FD ⊆ F3 ∩ {X3}⊥ ( F3.
F4 := F3 ∩ {X3}⊥ is a face of Sn+ that is smaller than F3.
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The Facial Reduction Algorithm - General form

Assumptions:

(c + rangeA∗) ∩ K 6= ∅.

1 Let F1 = K and i ← 1.

2 If (c + rangeA∗) ∩ riFi 6= ∅, we are done.

3 If (c + rangeA∗) ∩ riFi = ∅, then we invoke a separation theorem.

There exists xi ∈ F∗i \ F⊥i and xi ∈ kerA ∩ {c}⊥.
Let Fi+1 ← Fi ∩ {xi}⊥ and i ← i + 1. Go to Step 2.
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Facial Reduction - Continued

sup
t,s

−s (D)

s.t.

 t 1 s − 1
1 s 0

s − 1 0 0

 � 0

We can take X1 :=

0 0 0
0 0 0
0 0 1
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The Facial Reduction Algorithm

If (D) is feasible, the algorithm construct a chain of faces:

FD
min = F` ( · · · ⊆ F1 = K.

Therefore, the Facial Reduction Algorithm always finds the minimal
face FD

min.
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Part 3 - Bonus contents
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Farkas Lemma’ in LP

6 ∃y s.t., c −A∗y ≥ 0 ⇐⇒ ∃x ≥ 0, s.t. 〈c , x〉 = −1,Ax = 0

Let e := (1, 1, . . . , 1).

Proof.

inf
x
〈c, x〉 (P)

subject to Ax = 0

x1 + · · ·+ xn = 1

x ≥ 0

sup
t,y

t (D)

subject to c − te −A∗y ≥ 0.

First, (D) is always feasible.
θD < 0 ⇐⇒ 6 ∃y s.t., c −A∗y ≥ 0
By LP strong duality,
θD < 0 ⇐⇒ ∃x∗ ≥ 0, 〈c, x∗〉 = θD ,Ax∗ = 0, x∗1 + · · ·+ x∗n = 1. (Divide x∗ by
−θD)
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Find the problem in the “proof” below

6 ∃y s.t., C −A∗y � 0 ⇐⇒ ∃X � 0, s.t. 〈C ,X 〉 = −1,AX = 0

Let I be the identity matrix.

“Proof.”

inf
x
〈C ,X 〉 (P)

subject to AX = 0

trace(X ) = 1

X � 0

sup
t,y

t (D)

subject to C − tI −A∗y � 0.

First, (D) is always feasible and satisfies Slater.
θD < 0 ⇐⇒ 6 ∃y s.t.,C −A∗y � 0
By CLP strong duality under Slater,
θD < 0 ⇐⇒ ∃X ∗ ≥ 0, 〈C ,X ∗〉 = θD ,AX ∗ = 0, trace(X ) = 1. (Divide X ∗ by
−θD)
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Farkas’ Lemma in SDP?

6 ∃y s.t. , C −A∗y � 0
?⇐⇒ ∃X � 0, s.t. 〈C ,X 〉 = −1,AX = 0

sup
t

0 (D)

s.t.

(
t 1
1 0

)
=

(
0 1
1 0

)
− t

(
−1 0
0 0

)
� 0

However, 〈C ,X 〉 = −1,AX = 0⇒ X12 = −0.5, X11 = 0, X cannot be
positive semidefinite.

(D) is infeasible but there is no X � 0 with 〈C ,X 〉 = −1,AX = 0

(D) is weakly infeasible, i.e., (C + rangeA) ∩ K = ∅ but
dist (C + rangeA,K) = 0.
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The Facial Reduction Algorithm Again

Assumptions: (c + rangeA∗) ∩ K 6= ∅.
1 Let F1 = K and i ← 1.

2 If (c + rangeA∗) ∩ riFi 6= ∅, we are done, Fi is the minimal face.

3 If (c + rangeA∗) ∩ riFi = ∅, then we invoke the (partial polyhedral)
proper separation theorem.

There exists xi ∈ E and α ∈ R such that

〈xi , c −A∗y〉 ≤ α ≤ 〈xi , z〉, ∀y ∈ Rm,∀z ∈ F .
i

Therefore

α ≤ 0, xi ∈ F∗i
〈xi , c〉 ≤ 0 and Axi = 0.

Two cases:

(a) If α < 0, then (c + rangeA∗) ∩ K = ∅ (Infeasibility detected)
(b) If α = 0, then xi 6∈ F⊥i holds and we let Fi+1 ← Fi ∩ {xi}⊥ and

i ← i + 1. Go to Step 2. (c + rangeA∗ ⊆ {xi}⊥ holds)
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The FR Farkas’ Lemma

“c −A∗y ∈ K” is infeasible if and only if there are x1, . . . , x` such that

xi ∈ F∗i ∩ kerA ∩ {c}⊥, for i = 1, . . . , `− 1, where

F1 = K
Fi = Fi−1 ∩ {xi−1}⊥, for i ≥ 2.

x` ∈ F∗` ∩ kerA and 〈c , x`〉 = −1.

Theorem

An infeasible CLP has a finite certificate of infeasibility.
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Example

sup
t

0 (D)

s.t.

(
t 1
1 0

)
=

(
0 1
1 0

)
− t

(
−1 0
0 0

)
� 0

X1 =

(
0 0
0 1

)
∈ S2

+ ∩ kerA ∩ {C}⊥

X2 =

(
0 −0.5
−0.5 0

)
∈ (S2

+ ∩ {X1}⊥)∗ =

{(
a ∗
∗ ∗

)
| a ≥ 0

}
and

〈C ,X2〉 = −1.

X1 and X2 form a certificate that (D) is infeasible.
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Roots of bad behavior in CLP

dist (U,V ) := inf
x∈U,y∈V

‖x − y‖

Note that dist (U,V ) = dist (0,U − V ).

dist (U,V ) = 0⇔ 0 ∈ cl ((U − V ))

U ∩ V = ∅ and dist (U,V ) = 0⇒ U − V is not closed.

Many strange phenomena in CLP can be traced to the lack of closedness
of certain maps or sums
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Example 1 - Failure of Farkas’ Lemma

C −At =

(
0 1
1 0

)
− t

(
−1 0
0 0

)
=

(
t 1
1 0

)
� 0

(C + rangeA) ∩ S2
+ = ∅ but dist (C + rangeA,S2

+) = 0, so
S2

+ − rangeA− C is not closed.

In particular, S2
+ + rangeA is not closed.
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Example 2 - Unattained optima

sup
t,s

−s (D)

s.t.

(
t 1
1 s

)
� 0

θD = 0 but there is no feasible solution with s = 0.
Define

Â(t, s) :=

(
−s,

(
t 0
0 s

))
and

Ĉ :=

(
−θD ,

(
0 1
1 0

))
Then, dist (Ĉ + range Â, 0× S2

+) = dist (Ĉ , 0× S2
+ + range Â) = 0

(Ĉ + range Â)∩ (0×S2
+) = ∅, so (0×S2

+) + range Â is not closed.
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Fundamental questions

A common pattern:

Strange thing happens ⇒ K + L fails to be closed, for a certain
closed convex cone K and subspace L.

Fundamental question

Given convex cones K1,K2 when is K1 +K2 closed?

Let S(x , y) := x + y .

K1 +K2 is closed ⇐⇒ S(K1 ×K2) is closed.

Fundamental question 2

Let K be a convex cone and M a linear map. When is MK closed?
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A classical result

If ri (K∗1) ∩ ri (K∗2) 6= ∅ then K1 +K2 is closed.

Proof. See exercise list.
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Nice cones

For F � K,F 6= ∅ we have

F = K ∩ spanF .

Therefore
F∗ = cl (K∗ + F⊥).

K is nice ⇐⇒ F∗ = K∗ + F⊥, ∀F � K ⇐⇒
K∗ + F⊥ is closed, ∀F � K.

Rn
+,Qn,Sn+ (and all symmetric cones) are nice.

Many applications we will not discuss here: extended duals, lifts of
convex sets...
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Preliminary - Conjugate Faces

Let F � K, F 6= ∅.

The conjugate face of F is the face F∆ := K∗ ∩ F⊥

(Exercise) F∆ = K∗ ∩ {x}⊥ holds for x ∈ riF . In particular F∆ is
an exposed face of K∗.

Example Let F � Sn+ be such that

F =

{(
A 0
0 0

)
| A ∈ Sr+

}
Then

F∆ =

{(
0 0
0 C

)
| C ∈ Sn−r+

}
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A closedness criterion by Pataki

K1,K2: closed convex nice cones.
Let x ∈ ri (K1 ∩ K2), F1 := Fmin(x ,K1) and F2 := Fmin(x ,K2). Then

K∗1 +K∗2 is closed if and only if F∆
1 + F∆

2 = F⊥1 + F⊥2 .

G. Pataki,
On the closedness of the linear image of a closed convex cone,
Math. Oper. Res., 32 (2007), pp. 395–412.
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Other exposedness properties

Nices cones are nice, but niceness is hard to check.

There are simpler sufficient conditions: projectional exposedness,
amenability

J. M. Borwein and H. Wolkowicz.

Regularizing the abstract convex program.

Journal of Mathematical Analysis and Applications, 83(2):495 – 530, 1981.

B. F. Lourenço,

Amenable cones: error bounds without constraint qualifications,

Mathematical Programming, 186 (2021), pp. 1–48,
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Amenability

Definition (Amenable cones)

K is amenable if for every (nonempty) face F of K there is κ > 0 such
that

dist (x ,F) ≤ κdist (x ,K), ∀x ∈ spanF .

Or, equivalently, if there is κ > 0 such that

dist (x ,F) ≤ κ(dist (x ,K) + dist (x , spanF)).

Amenable cones are (particularly) nice

B. F. Lourenço,

Amenable cones: error bounds without constraint qualifications,

Mathematical Programming, 186 (2021), pp. 1–48,

B. F. Lourenço, V. Roshchina, and J. Saunderson.

Amenable cones are particularly nice.

SIAM J. Optim., 32(3):2347–2375, September 2022. arXiv:2011.07745.
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A comparison table

Exposed Nice Amenable Projectionally

Preserved
under

finite
intersections

3 3 3 ?

direct
product

3 3 3 3

injective
linear image

3 3 3 3

Symmetric cones 3 3(CT’08) 3 3L’21

Homogeneous cones 3 3(CT’08) 3LRS’22 ?

Hyperbolicity cones 3(R’05) 3 3LRS’23 ?

Facially exposed
P’13⇐ Nice

L’21⇐ Amenable
EPBR⇐ Projectionally

exposed.

There exists a 4D cone that is facially exposed but not nice
(Roschina, SIOPT’14).

There exists a 4D cone that is nice but not amenable LRS’22

In dimension 4 or less: Amenable ⇔ Projectionally exposed. LRS’22
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Feasibility vs Optimization

Optimization problem:

sup
y
〈b, y〉

subject to c −A∗y ∈ K

Feasibility problem:

find y

subject to c −A∗y ∈ K

Are optimization problems harder than feasibility problems?

Depends, but in a very important sense no.
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In Linear Programming

Consider two oracles:

Feasibility Oracle: Receives LP data and returns a feasible solution
if one exists or NO if no solution exists.

Optimization Oracle: Receives LP data and returns an optimal
solution if one exists or NO if no solution exists.

1 call to Feasibility Oracle is enough to simulate the Optimization
Oracle

Proof.

Ask the Feasibility Oracle for a solution to the KKT system
{(x , y) | Ax = b, c −AT y ≥ 0, x ≥ 0, 〈c , x〉 − 〈b, y〉 = 0}.
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In Linear Programming

Maybe you thought that was unfair. How about this?

Dangerous Feasibility Oracle: Receives LP data and returns a
feasible solution if one exists or EXPLODES if no solution exists.

Optimization oracle: Receives LP data and returns an optimal
solution if one exists or NO if no solution exists.

Can Dangerous Feasibility Oracle simulate Optimization Oracle in
finite calls (without exploding)?

The short answer is yes.
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In Conic Linear Programming

Consider two oracles:

Dangerous Feasibility Oracle: Receives CLP data and returns a
feasible solution if one exists or EXPLODES if no solution exists.

Optimization Oracle: Receives CLP data returns an optimal
solution if one exists or NO if no solution exists.

KKT trick no longer works because (P) or (D) may be unattained and/or
there may be a duality gap.
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A FR subproblem
The directions appearing in facial reduction can be found by solving the
following subproblem

inf
x,t,w

t (PK)

subject to − 〈c, x − te∗〉 + t − w = 0 (1)

〈e, x〉 + w = 1 (2)

Ax − tAe∗ = 0 (3)

(x, t, w) ∈ K∗ × R+ × R+

sup
y1,y2,y3

y2 (DK)

subject to cy1 − ey2 −A
>y3 ∈ K (4)

1 − y1(1 + 〈c, e∗〉) + 〈e∗,A>y3〉 ≥ 0 (5)

y1 − y2 ≥ 0 (6)

It has the following properties:

Slater’s condition is satisfied at both sides. Common optimal value
is finite.

KKT trick works and Dangerous Feasibility Oracle never
explodes.
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Dangerously doing Facial Reduction

FR applied to c −A∗y ∈ K
1 Let F1 = K and i ← 1.

2 We invoke the Dangerous Feasibility oracle with the KKT trick applied
to the auxiliary problems to get either y such that c −A∗y ∈ riFi (in
this case, we stop) or xi , α such that

〈xi , c −A∗y〉 ≤ α ≤ 〈xi , z〉, ∀y ∈ Rm,∀z ∈ F .
i

Therefore

α ≤ 0, xi ∈ F∗i
〈xi , c〉 ≤ 0 and Axi = 0.

Two cases:

(a) If α < 0, then (c + rangeA∗) ∩ K = ∅ (Infeasibility detected)
(b) If α = 0, then x 6∈ F∗i holds and we let Fi+1 ← Fi ∩ {xi}⊥ and

i ← i + 1. Go to Step 2. (c + rangeA∗ ⊆ {xi}⊥ holds)
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Dangerous Optimization

Simulating the Optimization Oracle:

1 Do Facial Reduction twice to get a pair of problems (D̂) (P̂)
satisfying Slater’s condition. If FR declares infeasibility at some
point return NO

2 Call the Dangerous Feasibility Oracle to solve the pair (D̂) (P̂)
and obtain θD .

3 Use FR to either compute a solution with value or θD or to check
that none exists (return NO in this case).

Dangerous Feasibility Oracle can simulate Optimization Oracle with
at most O(dim E) calls.

M. V. Ramana.

An exact duality theory for semidefinite programming and its complexity implications.
Math. Prog. 77, 1995

B. F. Lourenço, M. Muramatsu, and T. Tsuchiya.

Solving SDP completely with an interior point oracle.
Optimization Methods and Software 36(2-3), 425–471 (2021)
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