Exercise Smörgåsbord for a Conic Summer

Bruno F. Lourenço Institute of Statistical Mathematics

August 10th, 2023

Part 1

1. Given a closed convex set $C \subseteq \mathbb{R}^n$ and point x_0 , the projection of x_0 onto C is defined as the solution of the following problem

$$\inf_{x \in C} \|x - x_0\|$$

Suppose that C is a polyhedral set of the form $C := \{x \mid Ax \leq b\}$, where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$

- (a) Show that the problem of computing the projection of x_0 onto C can be written as a second order cone program (SOCP). (You are allowed to use inequality constraints as well)
- (b) Use CVXPY to compute the projection of (-1, 2, 3) onto the tetrahedron given by

$$C = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid -x_1 - x_2 - x_3 \le 1, -x_1 + x_2 + x_3 \le 1, x_1 - x_2 + x_3 \le 1, x_1 + x_2 - x_3 \le 1\}$$

- 2. (An example adapted from (Boyd and Vandenberghe, 2004)) Let X be a discrete random variable that takes 100 equidistant values in the interval [-1, 1]. We know that:
 - $EX \in [-0.1, 0.1]$
 - $EX^2 \in [0.5, 0.6]$
 - $E(3X^3 2X) \in [-0.3, -0.2]$
 - $P(X < 0) \in [0.3, 0.4]$

Use CVXPY to find the the maximum entropy distribution consistent with this prior information.

Part 2

In what follows, we will always assume that \mathcal{E} is a real finite dimensional space equipped with an inner product $\langle \cdot, \cdot \rangle$ and an induced norm given such that $||x|| := \sqrt{\langle x, x \rangle}$ for $x \in \mathcal{E}$

3. (Warm-up) Let $C \subseteq \mathcal{E}$ be a convex set and $\mathcal{K} \subseteq \mathcal{E}$, $\hat{\mathcal{K}} \subseteq \mathcal{E}$ be closed convex cones. Prove the following.

- (a) $(\mathcal{K} + \hat{\mathcal{K}})^* = \mathcal{K}^* \cap \hat{\mathcal{K}}^*$, where $\mathcal{K} + \hat{\mathcal{K}} \coloneqq \{x + y \mid x \in \mathcal{K}, y \in \hat{\mathcal{K}}\}$.
- (b) $\mathcal{K} \subseteq \hat{\mathcal{K}} \iff \hat{\mathcal{K}}^* \subseteq \mathcal{K}^*$.
- (c) $(\operatorname{ri} \mathcal{K})^* = \mathcal{K}^*$
- (d) \mathcal{F} is a face of $\mathcal{K} \iff$ for all $x, y \in \mathcal{K}$, we have that $x + y \in \mathcal{F}$ implies $x, y \in \mathcal{F}$.
- (e) \mathcal{F} and $\hat{\mathcal{F}}$ are both faces of $C \Rightarrow \mathcal{F} \cap \hat{\mathcal{F}}$ is a face of C.
- (f) Prove or give a counter-example: If $\hat{\mathcal{F}}$ is a face of \mathcal{F} and \mathcal{F} is a face of C then $\hat{\mathcal{F}}$ is a face of C.
- (g) Prove or give a counter-example: If $\hat{\mathcal{F}}$ is an exposed face of \mathcal{F} and \mathcal{F} is an exposed face of C, then $\hat{\mathcal{F}}$ is an exposed face of C.
- (Obs: All items admit short proofs)
- 4. (The dual of the dual...) Consider a conic linear program (CLP) in dual format:

$$\sup_{y \in \mathbb{R}^m} \langle b, y \rangle \tag{D}$$

ubject to $c - \mathcal{A}^* y \in \mathcal{K}^*.$

For $x \in \mathcal{K}$, define $\mathcal{L}(x) \coloneqq \sup_{y \in \mathbb{R}^m} \left[\langle b, y \rangle + \langle c - \mathcal{A}^* y, x \rangle \right]$.

 \mathbf{S}

- (a) Show that $\theta_D \leq \mathcal{L}(x)$ holds for all $x \in \mathcal{K}$.
- (b) The previous item implies that $\theta_D \leq \inf_{x \in \mathcal{K}} \mathcal{L}(x)$. What is the relation between $\inf_{x \in \mathcal{K}} \mathcal{L}(x)$ and the primal counterpart of (D)?
- 5. (Slightly harder stuff) Let $C \subseteq \mathcal{E}$ be a convex set.
 - (a) Let $\mathcal{F} \trianglelefteq C$. Show that if $\operatorname{cl} \mathcal{F} \subseteq C$, then \mathcal{F} is closed. Conclude that faces of closed convex sets are closed. (A hint that may make the problem too easy: For a convex set $S, x \in \operatorname{ri} S$ and $y \in \operatorname{cl} S$, we have $\alpha x + (1 \alpha)y \in \operatorname{ri} S$ for all $\alpha \in (0, 1)$.)
 - (b) Let $\mathcal{F}_1 \leq C$, $\mathcal{F}_2 \leq C$ be nonempty. Show that $(\mathrm{ri} \mathcal{F}_1) \cap (\mathcal{F}_2) \neq \emptyset \iff \mathcal{F}_1 \subseteq \mathcal{F}_2$. Conclude that the relative interiors of different faces never intersect.
 - (c) Let $\mathcal{F} \leq C$ be nonempty with $\mathcal{F} \neq C$. Show that there exists an *exposed* face $\mathcal{F}' \leq C$ such that $\mathcal{F}' \neq C$ and $\mathcal{F} \subseteq \mathcal{F}'$ (In particular, $\mathcal{F} \leq \mathcal{F}'$). Hint: use a separation theorem.
- 6. (Faces of the intersection) Let $\mathcal{K}_1 \subseteq \mathcal{E}$, $\mathcal{K}_2 \subseteq \mathcal{E}$ be closed convex cones.
 - (a) (Easy) Prove that if $\mathcal{F}_1 \trianglelefteq \mathcal{K}_1$, $\mathcal{F}_2 \trianglelefteq \mathcal{K}_2$ then $\mathcal{F}_1 \cap \mathcal{F}_2 \trianglelefteq \mathcal{K}_1 \cap \mathcal{K}_2$
 - (b) (A bit harder) Prove that if $\mathcal{F} \trianglelefteq \mathcal{K}_1 \cap \mathcal{K}_2$ is nonempty, then there exists $\mathcal{F}_1 \trianglelefteq \mathcal{K}_1$ and $\mathcal{F}_2 \trianglelefteq \mathcal{K}_2$ such that $\mathcal{F} = \mathcal{F}_1 \cap \mathcal{F}_2$ and $(\operatorname{ri} \mathcal{F}_1) \cap (\operatorname{ri} \mathcal{F}_2) \neq \emptyset$. Hint: $(\operatorname{Use} \mathcal{F}_{\min}(\mathcal{F}, \mathcal{K}_1), \mathcal{F}_{\min}(\mathcal{F}, \mathcal{K}_2))$.
- 7. (Faces of the positive semidefinite cone)
 - (a) Let $\mathcal{F} \trianglelefteq \mathcal{S}^n_+$, $X \in \operatorname{ri} \mathcal{F}$ and $Y \in \mathcal{F}$. Show that ker $X \subseteq \ker Y$. Conclude that the subspace ker X is constant over $X \in \operatorname{ri} \mathcal{F}$.
 - (b) Let $\mathcal{F} \trianglelefteq \mathcal{S}_+^n$, $X \in \operatorname{ri} \mathcal{F}$ and $Y \in \mathcal{S}_+^n$. Show that ker $X \subseteq \ker Y$ implies $Y \in \mathcal{F}$. (Hint: first show that there exists $\alpha > 0$ such that $X \alpha Y \in \mathcal{S}_+^n$)
 - (c) From the previous item conclude that $\mathcal{F} = \{X \in \mathcal{S}^n_+ \mid V \subseteq \ker X\}$, where V is the common kernel of the elements in ri \mathcal{F} .
 - (d) Conversely, show that if V is a subspace of \mathbb{R}^n , then $\mathcal{F}_V := \{X \in \mathcal{S}^n_+ \mid V \subseteq \ker X\}$ is a face of \mathcal{S}^n_+ .
 - (e) Conclude that the map $V \mapsto \mathcal{F}_V$ is a bijection between the subspaces of \mathbb{R}^n and the nonempty faces of \mathcal{S}^n_+ .
 - (f) Show that all nonempty faces of \mathcal{S}^n_+ are exposed. (Hint: For a face \mathcal{F}_V construct an exposing matrix from a basis of V^{\perp} .)

8. (An exercise in facial reduction) Consider the following SDP in dual format.

$$\sup_{t,s} -s \tag{D}$$
s.t. $\begin{pmatrix}
0 & s-1 & 0 \\
s-1 & t & 0 \\
0 & 0 & s
\end{pmatrix} \succeq 0$

- (a) Write down the corresponding primal problem.
- (b) Compute the primal and dual optimal values (i.e., θ_P and θ_D). Also, compute a primal optimal solution and a dual optimal solution.
- (c) Compute \mathcal{F}_{\min}^D and $(\mathcal{F}_{\min}^D)^*$.
- (d) Consider the following problem

$$\sup_{t,s} -s \tag{\hat{D}}$$
s.t. $\begin{pmatrix}
0 & s-1 & 0 \\
s-1 & t & 0 \\
0 & 0 & s
\end{pmatrix} \in \mathcal{F}_{\min}^{D}$

Write down the corresponding primal problem (\hat{P}) and compute the optimal value of both (\hat{D}) and (\hat{P}) .

(e) With respect the previous item, compute an optimal solution X^* to $(\hat{\mathbf{P}})$. Is X^* feasible for (\mathbf{P}) (the primal problem of (\mathbf{D}))?

Part 3

9. (A FR Farkas' Lemma exercise) Use facial reduction to prove that the following semidefinite feasibility problem is infeasible

find
$$t, s \in \mathbb{R}$$
 such that $\begin{pmatrix} t & 1 & s \\ 1 & s & 1 \\ s & 1 & 0 \end{pmatrix} \succeq 0$

10. (A closedness criterion via duality) Let $\mathcal{K}_1 \subseteq \mathcal{E}$, $\mathcal{K}_2 \subseteq \mathcal{E}$ be closed convex cones. Let $c \in cl(\mathcal{K}_1 + \mathcal{K}_2)$ and consider the following problem:

$$\begin{array}{ll} \inf_{(x,z)\in\mathcal{E}\times\mathcal{E}} & \langle c,x \rangle & (\mathbf{P}) \\ \text{subject to} & x=z \\ & (x,z)\in(\mathcal{K}_1^*)\times(\mathcal{K}_2^*) \end{array}$$

- (a) Prove that $\theta_P = 0$.
- (b) Write down the dual of (P).
- (c) Conclude that if $\operatorname{ri}(\mathcal{K}_1^*) \cap \operatorname{ri}(\mathcal{K}_2^*) \neq \emptyset$ then $\mathcal{K}_1 + \mathcal{K}_2$ is closed.
- 11. (Conjugate faces) Let $\mathcal{F} \trianglelefteq \mathcal{K}$ be nonempty, where $\mathcal{K} \subseteq \mathcal{E}$ is a closed convex cone.
 - (a) Show that $\mathcal{F}^{\Delta} = \mathcal{K}^* \cap \{x\}^{\perp}$ holds for $x \in \operatorname{ri} \mathcal{F}$. In particular \mathcal{F}^{Δ} is an exposed face of \mathcal{K}^*
 - (b) (Harder but doable) Show that \mathcal{F} is exposed if and only if $\mathcal{F} = \mathcal{F}^{\Delta\Delta}$.
- 12. Prove that \mathcal{S}^n_+ is nice.

- 13. (Hard, but we will split in small parts so that it is manageable) Let $\mathcal{K}_1 \subseteq \mathcal{E}$, $\mathcal{K}_2 \subseteq \mathcal{E}$ be nonempty nice closed convex cones. Here, we prove $\mathcal{K}_1 \cap \mathcal{K}_2$ is nice as well.
 - (a) The span of a convex cone $\mathcal{K} \subseteq \mathcal{E}$ is the smallest subspace containing \mathcal{K} and one may check that span $\mathcal{K} = \mathcal{K} \mathcal{K}$. Prove that if $x \in \operatorname{ri} \mathcal{K}$, then span $\mathcal{K} = \{x + z \mid \exists t > 0, x \pm tz \in \mathcal{K}\}$.
 - (b) Prove that if \$\mathcal{F}_1\$ and \$\mathcal{F}_2\$ are convex cones satisfying (ri\$\mathcal{F}_1\$) ∩ (ri\$\mathcal{F}_2\$) ≠ \$\empsilon\$, then span \$(\mathcal{F}_1\$ ∩ \$\mathcal{F}_2\$) = \$\mathcal{S}\$ span \$\mathcal{F}_1\$ ∩ span \$\mathcal{F}_2\$. Compute \$(\mathcal{F}_1\$ ∩ \$\mathcal{F}_2\$)[⊥]\$. (Hint: you may use the fact that ri\$(\$C\$ ∩ \$D\$) = ri\$(\$C\$) ∩ ri\$(\$D\$) holds, if (ri\$C\$) ∩ (ri\$D\$) ≠ \$\empsilon\$)
 Also, give a counter-example showing that if (ri\$\mathcal{F}_1\$) ∩ (ri\$\mathcal{F}_2\$) = \$\empsilon\$, then it may happen that span \$(\mathcal{F}_1\$ ∩ \$\mathcal{F}_2\$) ≠ \$\mathcal{S}\$ span \$\mathcal{F}_1\$ ∩ \$\mathcal{S}\$ span \$\mathcal{F}_2\$.
 - (c) Suppose that $(\operatorname{ri} \mathcal{K}_1) \cap (\operatorname{ri} \mathcal{K}_2) \neq \emptyset$ and show that $\mathcal{K}_1 \cap \mathcal{K}_2$ is nice. Hint: (Use 6.(b), 10.(c) and the previous items)
 - (d) Show that $\mathcal{K}_1 \cap \mathcal{K}_2$ is nice without assuming that $(\mathrm{ri} \, \mathcal{K}_1) \cap (\mathrm{ri} \, \mathcal{K}_2) \neq \emptyset$.
- 14. (For those who have some knowledge of convex analysis) We will show that if a nonempty closed convex cone $\mathcal{K} \subseteq \mathcal{E}$ is amenable, then \mathcal{K} is nice.
 - (a) For a nonempty $\mathcal{F} \leq \mathcal{K}$, show that the amenability condition implies the existence of $\alpha > 0$ such that

$$\frac{\alpha}{2}\operatorname{dist}(x,\mathcal{F})^2 \leq \frac{\operatorname{dist}(x,\mathcal{K})^2}{2} + \frac{\operatorname{dist}(x,\operatorname{span}\mathcal{F})^2}{2}, \forall x \in \mathcal{E}$$

(b) Let $f, g: \mathcal{E} \to \mathbb{R} \cup \{+\infty\}$ be closed proper convex functions. Their infinal convolution is defined as

$$(f\Box g)(x) := \inf\{f(x_1) + g(x_2) \mid x_1 + x_2 = x\}$$

For $C \subseteq \mathcal{E}$ a convex set, $\frac{1}{2}$ dist $(x, C)^2$ is the infimal convolution between the indicator function δ_C and the quadratic map $\|\cdot\|^2/2$.

We also recall that for closed proper convex functions f, g and their conjugates we have $f \leq g \Leftrightarrow g^* \leq f^*$ and $(f+g)^* = \operatorname{cl}(f^* \Box g^*)$. In the particular case where the domains of f and g are \mathcal{E} , we have $(f+g)^* = (f^* \Box g^*)$.

Using item (a) and the facts mentioned above, show that if \mathcal{K} is amenable then it is nice.