Exercise Smörgåsbord for a Conic Summer

Bruno F. Lourenço
Institute of Statistical Mathematics

August 10th, 2023

Part 1

1. Given a closed convex set $C \subseteq \mathbb{R}^{n}$ and point x_{0}, the projection of x_{0} onto C is defined as the solution of the following problem

$$
\inf _{x \in C}\left\|x-x_{0}\right\|
$$

Suppose that C is a polyhedral set of the form $C:=\{x \mid A x \leq b\}$, where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$
(a) Show that the problem of computing the projection of x_{0} onto C can be written as a second order cone program (SOCP). (You are allowed to use inequality constraints as well)
(b) Use CVXPY to compute the projection of $(-1,2,3)$ onto the tetrahedron given by

$$
C=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid-x_{1}-x_{2}-x_{3} \leq 1,-x_{1}+x_{2}+x_{3} \leq 1, x_{1}-x_{2}+x_{3} \leq 1, x_{1}+x_{2}-x_{3} \leq 1\right\}
$$

2. (An example adapted from (Boyd and Vandenberghe, 2004)) Let X be a discrete random variable that takes 100 equidistant values in the interval $[-1,1]$. We know that:

- $E X \in[-0.1,0.1]$
- $E X^{2} \in[0.5,0.6]$
- $E\left(3 X^{3}-2 X\right) \in[-0.3,-0.2]$
- $P(X<0) \in[0.3,0.4]$

Use CVXPY to find the the maximum entropy distribution consistent with this prior information.

Part 2

In what follows, we will always assume that \mathcal{E} is a real finite dimensional space equipped with an inner product $\langle\cdot, \cdot\rangle$ and an induced norm given such that $\|x\|:=\sqrt{\langle x, x\rangle}$ for $x \in \mathcal{E}$
3. (Warm-up) Let $C \subseteq \mathcal{E}$ be a convex set and $\mathcal{K} \subseteq \mathcal{E}, \hat{\mathcal{K}} \subseteq \mathcal{E}$ be closed convex cones. Prove the following.
(a) $(\mathcal{K}+\hat{\mathcal{K}})^{*}=\mathcal{K}^{*} \cap \hat{\mathcal{K}}^{*}$, where $\mathcal{K}+\hat{\mathcal{K}}:=\{x+y \mid x \in \mathcal{K}, y \in \hat{\mathcal{K}}\}$.
(b) $\mathcal{K} \subseteq \hat{\mathcal{K}} \Longleftrightarrow \hat{\mathcal{K}}^{*} \subseteq \mathcal{K}^{*}$.
(c) $(\text { ri } \mathcal{K})^{*}=\mathcal{K}^{*}$
(d) \mathcal{F} is a face of $\mathcal{K} \Longleftrightarrow$ for all $x, y \in \mathcal{K}$, we have that $x+y \in \mathcal{F}$ implies $x, y \in \mathcal{F}$.
(e) \mathcal{F} and $\hat{\mathcal{F}}$ are both faces of $C \Rightarrow \mathcal{F} \cap \hat{\mathcal{F}}$ is a face of C.
(f) Prove or give a counter-example: If $\hat{\mathcal{F}}$ is a face of \mathcal{F} and \mathcal{F} is a face of C then $\hat{\mathcal{F}}$ is a face of C.
(g) Prove or give a counter-example: If $\hat{\mathcal{F}}$ is an exposed face of \mathcal{F} and \mathcal{F} is an exposed face of C, then $\hat{\mathcal{F}}$ is an exposed face of C.
(Obs: All items admit short proofs)
4. (The dual of the dual...) Consider a conic linear program (CLP) in dual format:

$$
\begin{align*}
\sup _{y \in \mathbb{R}^{m}} & \langle b, y\rangle \tag{D}\\
\text { subject to } & c-\mathcal{A}^{*} y \in \mathcal{K}^{*} .
\end{align*}
$$

For $x \in \mathcal{K}$, define $\left.\mathcal{L}(x):=\sup _{y \in \mathbb{R}^{m}}\left[\langle b, y\rangle+\left\langle c-\mathcal{A}^{*} y, x\right\rangle\right)\right]$.
(a) Show that $\theta_{D} \leq \mathcal{L}(x)$ holds for all $x \in \mathcal{K}$.
(b) The previous item implies that $\theta_{D} \leq \inf _{x \in \mathcal{K}} \mathcal{L}(x)$. What is the relation between $\inf _{x \in \mathcal{K}} \mathcal{L}(x)$ and the primal counterpart of (D) ?
5. (Slightly harder stuff) Let $C \subseteq \mathcal{E}$ be a convex set.
(a) Let $\mathcal{F} \unlhd C$. Show that if $\operatorname{cl} \mathcal{F} \subseteq C$, then \mathcal{F} is closed. Conclude that faces of closed convex sets are closed. (A hint that may make the problem too easy: For a convex set $S, x \in$ ris and $y \in \mathrm{cl} S$, we have $\alpha x+(1-\alpha) y \in \operatorname{ri} S$ for all $\alpha \in(0,1)$.)
(b) Let $\mathcal{F}_{1} \unlhd C, \mathcal{F}_{2} \unlhd C$ be nonempty. Show that (ri $\left.\mathcal{F}_{1}\right) \cap\left(\mathcal{F}_{2}\right) \neq \emptyset \Longleftrightarrow \mathcal{F}_{1} \subseteq \mathcal{F}_{2}$. Conclude that the relative interiors of different faces never intersect.
(c) Let $\mathcal{F} \unlhd C$ be nonempty with $\mathcal{F} \neq C$. Show that there exists an exposed face $\mathcal{F}^{\prime} \unlhd C$ such that $\mathcal{F}^{\prime} \neq C$ and $\mathcal{F} \subseteq \mathcal{F}^{\prime}$ (In particular, $\mathcal{F} \unlhd \mathcal{F}^{\prime}$). Hint: use a separation theorem.
6. (Faces of the intersection) Let $\mathcal{K}_{1} \subseteq \mathcal{E}, \mathcal{K}_{2} \subseteq \mathcal{E}$ be closed convex cones.
(a) (Easy) Prove that if $\mathcal{F}_{1} \unlhd \mathcal{K}_{1}, \mathcal{F}_{2} \unlhd \mathcal{K}_{2}$ then $\mathcal{F}_{1} \cap \mathcal{F}_{2} \unlhd \mathcal{K}_{1} \cap \mathcal{K}_{2}$
(b) (A bit harder) Prove that if $\mathcal{F} \unlhd \mathcal{K}_{1} \cap \mathcal{K}_{2}$ is nonempty, then there exists $\mathcal{F}_{1} \unlhd \mathcal{K}_{1}$ and $\mathcal{F}_{2} \unlhd \mathcal{K}_{2}$ such that $\mathcal{F}=\mathcal{F}_{1} \cap \mathcal{F}_{2}$ and (ri $\left.\mathcal{F}_{1}\right) \cap\left(\right.$ ri $\left.\mathcal{F}_{2}\right) \neq \emptyset$. Hint: (Use $\mathcal{F}_{\min }\left(\mathcal{F}, \mathcal{K}_{1}\right), \mathcal{F}_{\min }\left(\mathcal{F}, \mathcal{K}_{2}\right)$.)
7. (Faces of the positive semidefinite cone)
(a) Let $\mathcal{F} \unlhd \mathcal{S}_{+}^{n}, X \in \operatorname{ri} \mathcal{F}$ and $Y \in \mathcal{F}$. Show that ker $X \subseteq \operatorname{ker} Y$. Conclude that the subspace ker X is constant over $X \in \operatorname{ri} \mathcal{F}$.
(b) Let $\mathcal{F} \unlhd \mathcal{S}_{+}^{n}, X \in \operatorname{ri} \mathcal{F}$ and $Y \in \mathcal{S}_{+}^{n}$. Show that $\operatorname{ker} X \subseteq \operatorname{ker} Y$ implies $Y \in \mathcal{F}$. (Hint: first show that there exists $\alpha>0$ such that $X-\alpha Y \in \mathcal{S}_{+}^{n}$)
(c) From the previous item conclude that $\mathcal{F}=\left\{X \in \mathcal{S}_{+}^{n} \mid V \subseteq \operatorname{ker} X\right\}$, where V is the common kernel of the elements in ri \mathcal{F}.
(d) Conversely, show that if V is a subspace of \mathbb{R}^{n}, then $\mathcal{F}_{V}:=\left\{X \in \mathcal{S}_{+}^{n} \mid V \subseteq\right.$ ker $\left.X\right\}$ is a face of \mathcal{S}_{+}^{n}.
(e) Conclude that the map $V \mapsto \mathcal{F}_{V}$ is a bijection between the subspaces of \mathbb{R}^{n} and the nonempty faces of \mathcal{S}_{+}^{n}.
(f) Show that all nonempty faces of \mathcal{S}_{+}^{n} are exposed. (Hint: For a face \mathcal{F}_{V} construct an exposing matrix from a basis of V^{\perp}.)
8. (An exercise in facial reduction) Consider the following SDP in dual format.

$$
\begin{array}{ll}
\sup _{t, s} & -s \tag{D}\\
\text { s.t. } & \left(\begin{array}{ccc}
0 & s-1 & 0 \\
s-1 & t & 0 \\
0 & 0 & s
\end{array}\right) \succeq 0
\end{array}
$$

(a) Write down the corresponding primal problem.
(b) Compute the primal and dual optimal values (i.e., θ_{P} and θ_{D}). Also, compute a primal optimal solution and a dual optimal solution.
(c) Compute $\mathcal{F}_{\text {min }}^{D}$ and $\left(\mathcal{F}_{\text {min }}^{D}\right)^{*}$.
(d) Consider the following problem

$$
\begin{array}{ll}
\sup _{t, s} & -s \tag{D}\\
\text { s.t. } & \left(\begin{array}{ccc}
0 & s-1 & 0 \\
s-1 & t & 0 \\
0 & 0 & s
\end{array}\right) \in \mathcal{F}_{\min }^{D}
\end{array}
$$

Write down the corresponding primal problem $(\hat{\mathrm{P}})$ and compute the optimal value of both $(\hat{\mathrm{D}})$ and ($\hat{\mathrm{P}}$).
(e) With respect the previous item, compute an optimal solution X^{*} to ($\hat{\mathrm{P}}$). Is X^{*} feasible for (P) (the primal problem of (D))?

Part 3

9. (A FR Farkas' Lemma exercise) Use facial reduction to prove that the following semidefinite feasibility problem is infeasible

$$
\text { find } t, s \in \mathbb{R} \text { such that }\left(\begin{array}{ccc}
t & 1 & s \\
1 & s & 1 \\
s & 1 & 0
\end{array}\right) \succeq 0
$$

10. (A closedness criterion via duality) Let $\mathcal{K}_{1} \subseteq \mathcal{E}, \mathcal{K}_{2} \subseteq \mathcal{E}$ be closed convex cones. Let $c \in \operatorname{cl}\left(\mathcal{K}_{1}+\mathcal{K}_{2}\right)$ and consider the following problem:

$$
\begin{align*}
\inf _{(x, z) \in \mathcal{E} \times \mathcal{E}} & \langle c, x\rangle \tag{P}\\
\text { subject to } & x=z \\
& (x, z) \in\left(\mathcal{K}_{1}^{*}\right) \times\left(\mathcal{K}_{2}^{*}\right)
\end{align*}
$$

(a) Prove that $\theta_{P}=0$.
(b) Write down the dual of (P).
(c) Conclude that if $\operatorname{ri}\left(\mathcal{K}_{1}^{*}\right) \cap \operatorname{ri}\left(\mathcal{K}_{2}^{*}\right) \neq \emptyset$ then $\mathcal{K}_{1}+\mathcal{K}_{2}$ is closed.
11. (Conjugate faces) Let $\mathcal{F} \unlhd \mathcal{K}$ be nonempty, where $\mathcal{K} \subseteq \mathcal{E}$ is a closed convex cone.
(a) Show that $\mathcal{F}^{\Delta}=\mathcal{K}^{*} \cap\{x\}^{\perp}$ holds for $x \in \operatorname{ri} \mathcal{F}$. In particular \mathcal{F}^{Δ} is an exposed face of \mathcal{K}^{*}
(b) (Harder but doable) Show that \mathcal{F} is exposed if and only if $\mathcal{F}=\mathcal{F}^{\Delta \Delta}$.
12. Prove that \mathcal{S}_{+}^{n} is nice.
13. (Hard, but we will split in small parts so that it is manageable) Let $\mathcal{K}_{1} \subseteq \mathcal{E}, \mathcal{K}_{2} \subseteq \mathcal{E}$ be nonempty nice closed convex cones. Here, we prove $\mathcal{K}_{1} \cap \mathcal{K}_{2}$ is nice as well.
(a) The span of a convex cone $\mathcal{K} \subseteq \mathcal{E}$ is the smallest subspace containing \mathcal{K} and one may check that $\operatorname{span} \mathcal{K}=\mathcal{K}-\mathcal{K}$. Prove that if $x \in$ ri \mathcal{K}, then $\operatorname{span} \mathcal{K}=\{x+z \mid \exists t>0, x \pm t z \in \mathcal{K}\}$.
(b) Prove that if \mathcal{F}_{1} and \mathcal{F}_{2} are convex cones satisfying (ri $\left.\mathcal{F}_{1}\right) \cap\left(\right.$ ri $\left.\mathcal{F}_{2}\right) \neq \emptyset$, then $\operatorname{span}\left(\mathcal{F}_{1} \cap \mathcal{F}_{2}\right)=$ $\operatorname{span} \mathcal{F}_{1} \cap \operatorname{span} \mathcal{F}_{2}$. Compute $\left(\mathcal{F}_{1} \cap \mathcal{F}_{2}\right)^{\perp}$. (Hint: you may use the fact that $\operatorname{ri}(C \cap D)=\operatorname{ri}(C) \cap \operatorname{ri}(D)$ holds, if (ri $C) \cap($ ri $D) \neq \emptyset)$
Also, give a counter-example showing that if $\left(\right.$ ri $\left.\mathcal{F}_{1}\right) \cap\left(\right.$ ri $\left.\mathcal{F}_{2}\right)=\emptyset$, then it may happen that $\operatorname{span}\left(\mathcal{F}_{1} \cap\right.$ $\left.\mathcal{F}_{2}\right) \neq \operatorname{span} \mathcal{F}_{1} \cap \operatorname{span} \mathcal{F}_{2}$.
(c) Suppose that $\left(\right.$ ri $\left.\mathcal{K}_{1}\right) \cap\left(\right.$ ri $\left.\mathcal{K}_{2}\right) \neq \emptyset$ and show that $\mathcal{K}_{1} \cap \mathcal{K}_{2}$ is nice. Hint: (Use 6.(b), 10.(c) and the previous items)
(d) Show that $\mathcal{K}_{1} \cap \mathcal{K}_{2}$ is nice without assuming that (ri $\left.\mathcal{K}_{1}\right) \cap\left(\right.$ ri $\left.\mathcal{K}_{2}\right) \neq \emptyset$.
14. (For those who have some knowledge of convex analysis) We will show that if a nonempty closed convex cone $\mathcal{K} \subseteq \mathcal{E}$ is amenable, then \mathcal{K} is nice.
(a) For a nonempty $\mathcal{F} \unlhd \mathcal{K}$, show that the amenability condition implies the existence of $\alpha>0$ such that

$$
\frac{\alpha}{2} \operatorname{dist}(x, \mathcal{F})^{2} \leq \frac{\operatorname{dist}(x, \mathcal{K})^{2}}{2}+\frac{\operatorname{dist}(x, \operatorname{span} \mathcal{F})^{2}}{2}, \forall x \in \mathcal{E}
$$

(b) Let $f, g: \mathcal{E} \rightarrow \mathbb{R} \cup\{+\infty\}$ be closed proper convex functions. Their infimal convolution is defined as

$$
(f \square g)(x):=\inf \left\{f\left(x_{1}\right)+g\left(x_{2}\right) \mid x_{1}+x_{2}=x\right\}
$$

For $C \subseteq \mathcal{E}$ a convex set, $\frac{1}{2} \operatorname{dist}(x, C)^{2}$ is the infimal convolution between the indicator function δ_{C} and the quadratic map $\|\cdot\|^{2} / 2$.
We also recall that for closed proper convex functions f, g and their conjugates we have $f \leq g \Leftrightarrow$ $g^{*} \leq f^{*}$ and $(f+g)^{*}=\operatorname{cl}\left(f^{*} \square g^{*}\right)$. In the particular case where the domains of f and g are \mathcal{E}, we have $(f+g)^{*}=\left(f^{*} \square g^{*}\right)$.
Using item (a) and the facts mentioned above, show that if \mathcal{K} is amenable then it is nice.

