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1 Euler characteristic method for a bivariate Gaussian process

Let (z(s),y(t)) € R?, (s,t) € Sx T, be a bivariate Gaussian process with a smooth sample
path, where S,7 C R! are intervals. In this paper, we study the the Euler characteristic
method for such a bivariate Gaussian process. The Euler characteristic method is based on

the approximation
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when a and b are large. Here S, and T} are the excursion sets defined by
Se={s€S|x(s)>a}, T,={teT]|y(t) > b},

and x(S,) and x(7}) are the Euler characteristics (numbers of connected components) of S,
and Ty, respectively. If we admits this approximation, we would have
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We will evaluate E[x(S,)x(Ty)] when a and b are large.
(1-dimensional) Morse’s theorem states that

X(Sq) = Z 1{z(s) > a}sgn(—i(s)) + Z 1{z(s) > a},

s€S*Nint(.S) s€5*NoS
XT@) =Y L{yt) = bysgn(—ij(t) + > L{y(t) > b},
teT*Nint(T) teT*NOT

where S* and T™* are sets of augmented critical points of z(s) and y(t).



Lemma 1. Let S = [80,81], T = [to,tl].

S

X(Sq) =lim 1 1{z(s) > a}(—i(s))

e—0 s0

1i(s) € (—e.2)} |
2¢e

+ 1{xz(s0) > a, ©(sg) < 0} + 1{z(s1) > a, &(s1) > 0},

) =t [yt > 0y (-g0) LS =y

+1{y(to) = b, (to) < 0} + 1{y(t1) = b, y(t) > 0}.

Proof. For a critical point s* € int(S),

g(s*) = lim g s)]l{:t(s) 66(_8’8)} |i(s)|ds

¢=0 Jsmall region (ss*) 2

holds, because by changing a variable #(s) = y, we have |Z(s)|ds = dy. For &(s*) > 0,

RS =i - [ g(() " 0)dy = o(s").

For #(s*) < 0, B
RS = lim o= [ 9(() @)d(=) = ol

Therefore, for any function g,

2 o=t [ e SR

Substituting g(s) = 1{z(s) > a}sgn(—i(s)), we have

Ist term of x(S,) = Z 1{z(s) > a}sgn(—i(s))

s€S*Nint(.S)

= lim /Sl 1{xz(s) > a}sgn(—i(s)) 1{i(s) ig(_g’ e)} |i(s)|ds

e—0 50

Cim [ 1 {a(s) > a} (—i(s)) 1{i(s) 3;_5’5)}(13,

e—0 s

0

i.e., sgn and the absolute value symbol are canceled.

By multiplying x(S,) and x(7}), and taking expectation, we have four terms

Ex(Sa)x(Ty)] = Fi(a,b) + F»(a,b) + F3(a,b) + Fi(a,b),



where

F1<CL b)
_hm/ / [n{x > AV {y(t) > bhi(s)i(t) L) 25( £.) ) 626(_6’5)} dsdt
" E[1{x(s) > a, y(t) > b}i(s)§(t) 1{i(s), y(t) € (—¢,e)}]
i),

E[L{i(s).4(0) € (—2,2)}]
i(t) € (—2,))]
(2:)

/ / [1{a(s) > a, y(t) > BYE()i(E) | (@), 5(8)) = 0]Bagey oy (0)dsdt

E[1(5(0), o

E[1{i(t),5(t) € (=¢,)}] Pr(i(s), y(t) € (=¢,¢))

0399 (0) = lim 2:)2 = lim 2:)?
the density of (#(s),y(t)) evaluated at 0. Moreover, Fi(a,b) is rewritten as
Fi(a,b) / / [1{u > a, v = BE[E()j(0)] (2(5), y(t)) = (w.v), (&(5). 5(1)) = 0]
| (), 9(t)) = 0] O(as).g(ey) (0)dsdlt, (1)

where (u,v) is distributed as the conditional distribution of (z(s),y(t)) = (u,v) given

(#(s),5(t)) = 0.

F5(a,b)
=iy [ B 040060 2 bt 2 . at0) < 0} (a0 LS I g

S1

tlim [ B {]l{x(s) > al{y(h) = b, g(t) > 0} (—i(s)) LEELE (_6’5)}] ds

=0 Jo 2e
i E[1{x(s) > a, y(to) > b, y(to) < 0} (—i(s)) 1{i(s) € (—¢,¢)}]
5, E[1{(s) € (~<,9))]
y E[1{i(s) € (—¢,2)}] s
2e
+ lim E[1{x(s) > a, y(t1) > b, y(t1) > 0} (=i(s)) 1{i(s) € (—¢,¢)}]
), E[1{#(s) € (~,9))]
y E[1{i(s) € (—¢,2)}] s
2e

S1

= / E[1{x(s) > a, y(to) = b, §(to) < 0}(—i(s)) | (s) = 0]0:(5)(0)ds

S0

= [ Ba) 2 a0 y(0) 2 b () > 0H(=E(5) [(5) = 0] 0)ds. 2)



where 6;(5)(0) is the density of @(s) evaluated at 0.
F3(a,b) is Fy(a,b) with the replacement z <> y, a <> b.
The last term is

2 Unit-variance bivariate (Gaussian process

In the following, we assume that (z(s),y(t)) € R? (s,t) € S x T, is a zero-mean, unit-
variance Gaussian process with a smooth sample path, where S,7 € R! are intervals. By
taking derivatives for E[z(s)] = E[y(t)] = 0, E[z(s)?] = E[y(t)*] = 1, we have

The cross correlation function is denoted by

Ela(s)y(t)] = c(s,1).
We call the stationary case when c¢(s,t) is a function of s — ¢, i.e., ¢(s,t) = c(u), u=s —t.

Assumption 1. The mazimum of c(s,t) is uniquely attained at (s,t) = (s*,t*) € int(S x T)
for the nonstationary case. For the stationary case, the mazimum of ¢(s,t) = c(u) (u = s—t)
is uniquely attained at u=u* € int{s —t | (s,t) € S x T}.

We first evaluate Fi(a,b). Let s and ¢ be fixed. Write Dy = d/ds, D; = d/dt. Using the

notations

BIDL() Dl )] = oo Bla(ha (G| = vis),
BID(ODIY(0)] = o Bly(ey(E]_, = wito),
and az-‘r] aH—]

E[Da(s)Diy(t)] = Seign L eyt = 55



we have the covariance matrix of (i(s),y(t),z(s),y(t), Z(s),y(t)) as

V11 C11 0 C10 V12 C12

cii Wi Cot 0 Co1 Wi2
Y11 X 212

0 col 1 c —V11 Co2
2o1 Yoo o2 | =

cio O c 1 Cop  —Wiq
2o1 Mo 292

V12 €1 —Un C20 V22 C22

Cl2 Wi2 Cp2 —Wi1 C22 Wa2

where ¢;; = ¢;;(s, 1), vij = v;(s), wi; = w;;(t). For the evaluation of Fy(a,b) in (1), we need
the following three distributions:

(i) Density of the marginal distribution of (&(s),y(t)) at (0,0).

(ii) Conditional distribution of (x(s),y(t)) given (&(s),y(t)) = (0,0).

(iii) Expectation of Z(s){j(t) under the conditional distribution given (x(s), y(t), Z(s), y(t)) =
(u,v,0,0).

We will evaluate them in turn.

(i) The distribution of (i(s),y(t)) is N(0,X11), and its density evaluated at (0,0) is

1
27T|211’% ‘

(ii) The conditional distribution of (z(s),y(t)) given (&(s),y(t)) = (0,0) is
N3 (0,%001), Zoo1 = Zoo — o1 X171 L1o-

Its density at (z(s),y(t)) = (u,v) is

1 1 1 (u
——exp < —=(u,v)Xq. .
S ]

(iii) The distribution of (Z(s), §(t)) given (x(s),y(t),z(s),y(t)) = (u,v,0,0) is Gaussian

with mean
-1
210
200

(4)

Z11

Y1, 8
( 21 20) (Eol
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E00~1

_ . (u u
=(Z90 — B 211 210) Zoos ( ) = H ( ) ;
v v
~1
210 212
200 202
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and covariance matrix

E11

Y9910 = Log — (Xa1, X20) <E
01



Hence, the expectation of Z(s)ij(t) given (z(s),y(t),x(s),y(t)) = (u,v,0,0) is
(h11u 4 hiav) (ho1u + hoov) + (X22.10)12, (5)

where
H = (hij) = (Z20 — 221511 S10) X011 -

Combining (i)—(iii), we can calculate the expectation of Fi(a,b) in (1). The expectation of
Fy(a,b) in (2) can be calculated similarly.

3 Asymptotic behavior when a,b — o

In the following, we restrict our attention to the case a = b. The results can be easily
extended to the case a = db, where d > 0 is a constant.

Lemma 2. For x = (z1,22) ~ N(0,K™), K = (kij)2xa, as a — 00,

| ‘% —2E{ ki o —4}
Elrix,1{z; > atl{xry > a}| =——==€ "1+ =0a "+ O(a ,
[rasten 2}t 2 0)] =20 22024 Ofa?)
‘}(‘% —a2k —2 —4
E[1{$1ZG}1{$22&}:| =—==¢€ a —i—O(a ) R
27'(']{71]{?2

where 7’51 = kll + ]{12, EQ = klz + k’gz, E = (k‘l + k’g)/Q, ‘K| = kllkgg — k’%Q

Proof. We follow the proof by Ruben (1964). Let

Kz .
o, 1) = BE g

be the density of No(0, K~1). Then, by making change of variables y =z —al, 1 = (1, 1),

Elzx1l{z; > a}1{zs > a}] :/ iz f(x, K)dx

z>al

:f(a]l, K) / (a + yi)(a + yj)e—allTKye_%yTKydy

y=>0
=f(aL.K) / (a® + ay; + ay; + yiy;)e Erntham)e=3v K gy
y=>0
(6)
where 1
K|z =
flal,K) = |2—|e‘“2k, |K| = ki1koy — K2,
T
Here,

1
e 2V Ky =1 §(k11yf + kagya + 2k19y192) + 4th degree in y 4 - - -,



and

~ |

ok ~m!
emhymgy, =
Yi>0 (ak;)m+t

we have

2

® ~stat. 50} (k) | apar @) O

_ CL_2( ~2!]€11~ i ~2'k2?\, i ~2k’12~ —}-O(a_(j))
(ak1)3(ak2) (CLkl)(CLkQ)?’ (CLkl)Q(akg)2
(i" and j" are s.t. {i,7'} = {4,5'} = {1,2})

7. 7272 12 712
:f(a]l,K),;{l—l- (Nl ,vi—~2,]i —klgklkz,v,lil k2)a2+0(a4)}
Jor ko ki ko ik k3

Similarly,

E[1{z, > a}l{z; > a}] = . f(z, K)dx

:f(aﬂ,K)/ e~V Kyo—ay" Kygy
y>0

—f(al, K) / - +Ean) 3 K g
y=20

i) O )}

—f(al, K)i{a—2 + O(a—4)}.

~flat. 1)

O

(ii) Next we will take the expectation of (5) x1{u > a}1{v > a} where (u,v) is distributed
as (4). We first evaluate the leading term. From Lemma 2, the result is

K %h 27,
—|27r|E2 e @ k{l + O(a2)}

where K = X501, b = (ki1 + h12)(ha1 + hao). By multiplying (3), we have

(a,a) // ‘K‘ h e~k dsdt
27'(' |211’2 l{?l 2

/ / —a"’kdsdt
27T ‘211’2‘2001|2

Case 1. Suppose that k(s,t) has a unique maximum at (s,t) = (s*,¢*). Then

(s,t) = (s",t") < cpo(s™,t") = cor(s*,t7) =0,



and at the maximum point (s*,t*),

ZJ( . 1) 1 1
s = = :
’ 14 c(s*t*) 1+ max,,c(s,t)

Denoting the Hesse matrix at (s*,¢*) by

2o\
A= (% 65§t> (s, 1)

dsot 02

(s7,t%)
the Laplace method yields

2| A2 1 h _er
e a“k

1 1~ =~

a? (27)2| X112 | o012 k1k2

_ \/(Ull — c0) (w11 — co2) (1 4¢)? s

Fi(a,a) ~

2
C20Cp2 — €11 27/ 1 — c2a?

(by Mathematica).
Similarly, we can prove that

a2
Fy(a,a) <a 2 exp {— } ,
(a.9) 1+ max(s 1esxfto,t1} c(s,t)

CL2
Fs(a,a xa‘Qexp{— },
( ) 1+ maXs,t)e{sg,s1 }xT C(S, t)

aQ
Fy(a,a) <a % exp {— } ,
) 1 + ma‘X(S,t)G{SO,Sl}X{tQ,tl} C<S7 t)

which are asymptotically smaller than F(a,a) by Assumption 1.

Theorem 1. For the nonstationary case,

Y
(s%,t*)

(v11 — e20) (w11 — co2)  (14¢)? _ a2
ENX(Sa)x(T)] ~ e
X(Sa)x(Ta)] \/ C20C02 — €1 2myV/1 — 2a?

where vy = Eli(s)?, w1 = E[y(t)?], cij = E[z9(s)yY) (t)], and (s*,*) = argmax E[z(s)y(t)].

Case I1. Suppose that c(s,t) = ¢(s — t) = c(u) (s — t = u), i.c., stationary, and k(s,t) has
the maximum at s — ¢t = u = u*. Then,

By letting




the Laplace method yields

V2mo—t 1 e

@ (2m)2|S0)2[Eo0a|? K2

1 (’UH — CH)(’U)H — C”) 1+¢ _ 1 2
— S ﬂ T \/ e c+1a
l ) (27)3 —c V1-—-c2a

Fi(a,a) ~p(SNT)

Theorem 2. For the stationary case,

1 \/(vu —M(wyp =" 1+e¢ _ g2
e
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4 Comparisons to the existing results

Anshin (2006) derived the corresponding results when ¢4 (s*,t*) = 0:

vpwy (1+c¢)? _1a+2
e c
Co0Co2 2T\ 1 — c2a?
In the numerator, cyp and cpp are missing.

On the other hand, from Zhou and Xiao (2017) noting that Hy = 1/y/7 (page 31 of
Piterberg (1996)), by substituting N = 1, a; = 2, ¢; = 1/2, the corresponding formula is

(8)

(s%5t%)

1 1
M(SHT) . V11W11 +c 7%(12

e ot
(27)>2 —c" /1= c2a

Two ¢ are missing again.
Here is a counter example to Anshin (2006): Using a Gaussian vector £ = (£, &, &3)T ~
N3(0,1), define z(s) = £Tp1(s), y(t) = X py(t) with

ve(s) = (s, d+ Rs?, \/1 —s2—(d+ RSQ)Q)T, oy (t) = (1, —d— Rt?, \/1 — 12— (d+ RtQ)Q)T,

where T' = S = [—¢,¢], a small interval including the origin. Then z(s), y(f) are nonsta-
tionary Gaussian processes with zero-mean, unit-variance, and c(s,t) = ¢.(s)T¢,(s) has
its maximum 1 — 2d* at (s*,t*) = (0,0). By simple calculations, we have v;; = wy; = 1,
Co0 = oo = —4dR — 1, ¢11 = 1. As R — o0, the multipliers in (7) and (8) are

V11 — C20) (W11 — Co2 V11W11
( )( 3 ) — 1, —_— — 0,
C20C02 — €11 C20Co2 — €11

respectively. Noting that the resulting probability should be bounded below by

(14¢)? _a2
P(Su x(s) > a, su tZa)ZP:UO >a, y(0) > a) ~ —————=—¢ Ttc,
pa(s) > a, supy(t) (@(0) 2 0, y0) 2 0) ~ -

the former formula (7) is consistent, and the latter formula (8) is a contradiction.
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