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I. Introduction.

1. Multivariate variance components model.

When effects of factors are random, the analysis of variance model is called
random effects model or variance components model. There is long history of
studying the statistical inference based on the variance components model, see Rao
and Kleffe (1988), Searle, et al. (1992) and their references therein. Among them,
however, neither the maximum likelihood nor the likelihood ratio test in the the
multivariate variance components models is discussed well. Exact derivation of the
maximum likelihood estimators and the likelihood ratio criteria are current topics,
and discussions of their statistical properties such as distribution or optimality can
be hardly found. The aim of the thesis is to derive the limiting null distributions of
the likelihood ratio test statistics to determine the significance points, and to prove
some optimalities of the likelihood ratio tests in multivariate variance components
models.

One of the most typical multivariate variance components model is the follow-
ing one-way classification model with random effects discussed by Anderson, et al.
(1986):

Xij = µ + V i + U ij , i = 1, . . . , n, j = 1, . . . , k, (1.1)

where Xij is a p×1 observed vector, µ an unknown mean vector, V i an unobserved
random effect vector of group i, and U ij an unobserved measurement error. V i

and U ij are assumed to be independently distributed according to the normal
distributions Np(0, Θ) and Np(0, Ψ), respectively. The covariance matrix Θ of the
effect vector V i is said to be effect matrix or multivariate components of variance.
Here we discuss the two cases: the case where Ψ is fully unknow positive definite
matrix, and the case where Ψ = σ2Ip with σ2 > 0 unknown. µ and Θ are assumed
to be fully unknown. Note that the model (1.1) with Ψ = σ2Ip is Scheffé’s mixed
model with replications (Scheffé, 1959).

Concerning the model (1.1) we shall be interested in estimating Θ. The uni-
formly minimum variance unbiased estimator Θ̂UMVU is

Θ̂UMVU =
1
k

{
1

n − 1
H − 1

n(k − 1)
G

}
if Ψ is fully unknown,

=
1
k

{
1

n − 1
H − 1

n(k − 1)
trG
p

Ip

}
if Ψ = σ2Ip,

where H and G are between and within sum of squares matrices, distributed in-
dependently according to the Wishart distributions Wp(M, Φ) and Wp(N, Ψ) with
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Φ = Ψ + kΘ, M = n− 1 and N = n(k − 1), respectively. Since H and G are inde-
pendent, Θ̂UMVU has negative latent roots with positive probability. This seems to
mean that Θ̂UMVU is not suitable for the estimator of the covariance matrix Θ. The
maximum likelihood estimation is one method to avoid this difficulty. The maxi-
mum likelihood estimator (MLE) of Θ was given by Klotz and Putter (1969) if Ψ is
fully unknown; Anderson, et al. (1986) if Ψ = σ2Ip with σ2 unknown. Calvin and
Dykstra (1991) obtained an algorithm to get the MLE concerning the two-factor
random effects model. The MLE of the effect matrix is the point maximizing the
likelihood function under Löwner order restriction (i.e. Θ ≥ O), and as a result
both the algorithm to maximize the likelihood function and the distribution of the
obtained estimator are complex generally. (A ≥ B denotes Löwner order meaning
that A − B is nonnegative definite.)

A similar difficulty appears in the testing problem concerning Θ. Consider
testing the homogeneity hypothesis Θ = O. The hypothesis Θ = O is equivalent
to the equality of two covariance matrices Φ = Ψ , however, the usual methods of
testing the equality of two covariance matrices based on the sample covariance ma-
trices Φ̂ = (1/M)H and Ψ̂ = (1/N)G (e.g. Anderson, 1984b, Section 10.6; Nagao,
1973) are ineffective for our purpose, because the alternative Θ ≥ O (Φ ≥ Ψ) is not
taken into account. The likelihood ratio test (LRT) is one useful method of testing
when the alternative is restricted. Anderson, et al. (1986) obtained the likelihood
ratio criterion for testing the hypothesis rankΘ ≤ r, which reduces to a one-sided
test for the equality of two covariance matrices when r = 0. As the case of the
maximum likelihood estimation, both the algorithm to obtain the likelihood ratio
criterion and its (non)null distribution are complex. In particular, as Anderson, et
al. (1986) mentioned, the null distributions of (−2) times the logarithm of the like-
lihood ratio criteria are not chi-squared distribution even though asymptotically.
They are shown to be mixtures of chi-squared distributions by means of the general
theory of Chernoff (1954) described in the following section.

2. Asymptotic theory of the likelihood ratio test under restricted alter-
natives.

Chernoff (1954) discussed the limiting null distribution of the likelihood ratio
criterion when the null hypothesis lies on the boundary of the alternative hypothesis
in the parameter space. Following theorem is based on Chernoff (1954, Theorem
1), and its rearrangement by Self and Liang (1987, Theorem 3).

Definition 2.1 The set ω ⊂ Rp is said to be approximated at θ0 ∈ Rp by a cone
C ⊂ Rp if

inf
x∈C

‖x − y‖ = o(‖y‖) for y ∈ ω − θ0,
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and
inf

y∈ω−θ0
‖x − y‖ = o(‖x‖) for x ∈ C

holds. Here o( · ) means o(t)/t → 0 as t → 0, and y ∈ ω − θ0 means y + θ0 ∈ ω.

Theorem 2.1 Let Xi ∈ Rk, i = 1, . . . , n, be n independent observation with
common density f(x, θ), θ ∈ Ω ⊂ Rp. Assume that the true value θ0 of the
parameter θ is an interior point of Ω. Moreover, we assume the regularity conditions
of Lehmann (1983, (A0)-(A2) of Section 6.2, and (A)-(D) of Section 6.4) for the
density function f . The Fisher information matrix is denoted by I(θ). Consider
the problem of testing the null hypothesis H0 : θ ∈ ω0 ⊂ Ω against the alternative
H1 : θ ∈ ω1 ⊂ Ω, and suppose that the sets ω0 and ω1 are approximated at θ0 by
the closed cones C0 and C1, respectively. Then, as n → ∞, −2 log Λn with

Λn =
supθ∈ω1

∏n
i=1 f(Xi, θ)

supθ∈ω0

∏n
i=1 f(Xi, θ)

converges to

χ2 = min
θ∈C0

(Z − θ)′I(θ0)(Z − θ) − min
θ∈C1

(Z − θ)′I(θ0)(Z − θ) (2.1)

in distribution, where Z is a p × 1 random vector distributed as Np(0, I(θ0)−1).

We summarize what is known about the distribution of (2.1) as a following
theorem. (e.g. Shapiro, 1988; Shapiro, 1985, Theorem 3.1.)

Theorem 2.2 Suppose that C0 and C1 are closed convex cone such that C0 ⊂ C1,
and that either of them is a linear subspace. Then the distribution of χ2 in (2.1) is
a mixture of chi-squared distributions

Pr(χ2 ≤ c) =
dimC1−dimC0∑

i=0

wi Pr(χ2
i ≤ c) with wi ≥ 0,

∑
i

wi = 1,

where χ2
i is a chi-squared random variable with i degrees of freedom, χ2

0 = 0, and
dim C denotes the dimension of the smallest linear subspace containing the cone C.

Remark 2.1 For the mixing probability {wi} the relation∑
i

(−1)iwi = 0 (2.2)

holds. One proof of (2.2) is found in McMullen (1975, Theorems 2, 3) in terms of
the internal and external angles. For the geometrical interpretation of {wi}, see
also Wynn (1975) and Shapiro (1987).
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Now we apply the general theory of the likelihood ratio test to the problem of
testing

H0 : rankΘ ≤ r (2.3)

for a specified r (0 ≤ r < p) under the model (1.1) with Ψ fully unknown. We
regard

Y i = (Xi1
′, . . . ,Xik

′)′kp×1, i = 1, . . . , n,

as the i.i.d. n samples from the normal population Nkp(ξ, Σ) with a mean vector
ξ = (µ′, . . . ,µ′)′kp×1 and a covariance matrix

Σ =


Ψ + Θ Θ · · · Θ

Θ
. . . . . .

...
...

. . . . . . Θ
Θ · · · Θ Ψ + Θ


kp×kp

.

Noting that Σ is positive definite (p.d.) if and only if both Φ = Ψ + kΘ and Ψ are
positive definite, we put

Ω = {(µ, Φ, Ψ ) ∈ Rp ×Rp(p+1)/2 ×Rp(p+1)/2 | Φ, Ψ : p.d.}.

Here Rp(p+1)/2 denotes the set of p × p symmetric matrices. Testing H0 in (2.3)
under the model (1.1) reduces to testing the null hypothesis H0 : (µ, Φ,Ψ ) ∈ ω0 ⊂ Ω
with

ω0 = {(µ, Φ, Ψ) ∈ Rp ×Rp(p+1)/2 ×Rp(p+1)/2 | Φ ≥ Ψ , rank (Φ−Ψ) ≤ r,Ψ : p.d.}

against the alternative hypothesis H1 : (µ,Φ, Ψ) ∈ ω1 ⊂ Ω with

ω1 = {(µ,Φ, Ψ) ∈ Rp ×Rp(p+1)/2 ×Rp(p+1)/2 | Φ ≥ Ψ ,Ψ : p.d.}.

Suppose that the true value of the parameters (µ0, Φ0,Ψ0) are in ω0 (i.e. H0

holds) and satisfy

rankΘ0 = r with Θ0 = (1/k)(Φ0 − Ψ0).

Since H0 and H1 remain invariant under a transformation Xij 7→ GXij with G

p× p nonsingular matrix, by virtue of the invariance of likelihood ratio (Lehmann,
1986, p.341, Problem 17), we can put Ψ0 = Ip and

Θ0 =
(

∆ O
O O

)
p×p

with ∆ = diag(δi)r×r, δi > 0,



5

without loss of generality. The cones approximating ω0 and ω1 are given as follows.

Lemma 2.1 The set ω0 is approximated at (µ0, Φ0, Ψ0) by the linear subspace

C0 = {(µ, Φ, Ψ) ∈ Rp ×Rp(p+1)/2 ×Rp(p+1)/2 | Φ22 = Ψ22},

where Φ22 and Ψ22 denote the (p − r) × (p − r) lower right matrices of Φ and Ψ ,
respectively. The set ω1 is approximated at (µ0,Φ0, Ψ0) by the closed convex cone

C1 = {(µ, Φ, Ψ) ∈ Rp ×Rp(p+1)/2 ×Rp(p+1)/2 | Φ22 ≥ Ψ22}.

Here we define that ‖A‖ =
√

trAA′ =
√∑

ij aij
2 for a matrix A = (aij).

(Proof) Proof is given in Appendix A.

Let Λn be the likelihood ratio criterion for testing H0 against H1. By virtue of The-
orem 2.1 and Lemma 2.1, evaluating the Fisher information matrix at (µ0, Φ0, Ψ0),
we immediately obtain the limiting distribution of −2 log Λn as

χ2 = min
Φ22=Ψ22

{(Z − Φ22)(Z − Φ22)′ + (k − 1)(W − Ψ22)(W − Ψ22)′}

− min
Φ22≥Ψ22

{(Z − Φ22)(Z − Φ22)′ + (k − 1)(W − Ψ22)(W − Ψ22)′}, (2.4)

where Z = (zij) is a (p − r) × (p − r) symmetric random matrix whose diagonal
element zii and off-diagonal element zij (i < j) are independently distributed as
N(0, 1) and N(0, 1/2), respectively; W is a (p−r)×(p−r) symmetric random matrix
distributed according to the same distribution as (1/

√
k − 1)Z, independently of

Z. Putting

A =

√
k − 1

k
(Z − W ) and M =

√
k − 1

k
(Φ22 − Ψ22),

we have

R.H.S. of (2.4) = trAA′ − min
M≥O

tr(A − M)(A − M)′

=
∑
bi>0

bi
2, (2.5)

where b1 > · · · > bp−r are the latent roots of A. Note that A has the same distribu-
tion as Z. Anderson (1989), Anderson and Amemiya (1991) showed that −2 log Λn

converges to R.H.S. of (2.5) in distribution by more straightforward calculations.
Theorem 2.2 states that the distribution of χ2 in (2.4) is a mixture of chi-squared
distributions with ν (0 ≤ ν ≤ (p − r)(p − r + 1)/2) degrees of freedom.
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3. Scope of the thesis.

As shown in the previous section, the limiting null distribution of (−2) times the
logarithm of the likelihood ratio criterion for testing the rank of the effect matrix is a
mixture of chi-squared distributions. But its mixing probability can not be derived
by Chernoff’s general theory. In this thesis, in three typical multivariate variance
components models, the mixing probabilities of the limiting null distributions of the
likelihood ratio test statistics for effect matrices are derived, and some properties
of their power functions are proved.

In Chapter II, concerning the model (1.1) with Ψ fully unknown, we discuss the
one-sided likelihood ratio test based on the two sample covariances Φ̂ = (1/M)H
and Ψ̂ = (1/N)G for testing

(i) the hypothesis Θ = O, i.e. the hypothesis Φ = Ψ ,

(ii) the hypothesis rankΘ ≤ r, i.e. the hypothesis that Φ ≥ Ψ and rank (Φ −
Ψ ) ≤ r, for a specified r (0 < r < p) and

(iii) the goodness of fit of the covariance structure that Φ = Ψ + kΘ, i.e. the
hypothesis Φ ≥ Ψ .

The LRT’s for testing (i) and (ii) are one-sided tests for two covariance matrices
Φ and Ψ because the alternative is Φ ≥ Ψ . The hypothesis that Φ and Ψ are
unrestricted is settled as the alternative of the LRT for testing (iii). Some prop-
erties of the power functions such as unbiasedness, monotonicity and consistency
of the LRT’s are proved. We derive the limiting null distributions as mixtures
of chi-squared distributions, and give the table of quantiles based on the limiting
distribution. In addition, the asymptotic expansions of the null distributions are
given. The amounts of the bias of the LRT’s for testing (ii) and (iii), which are
shown to be biased, are evaluated. A Monte Carlo study to compare the power of
several tests for (i) including the LRT is given.

In Chapter III we discuss the one-sided likelihood ratio tests for testing (i)-(iii)
of Chapter II in the model (1.1) with the unobserved random variables U i and
V ij distributed according to the complex normal distributions. This multivariate
variance components model concerning the complex normal population is shown
to appear in the frequency representation of the stationary Gaussian multiple time
series model with replications.

In Chapter IV we discuss two likelihood ratio tests for covariance structure
in the random coefficient model introduced by Rao (1965). This model includes
the model (1.1) with Ψ = σ2Ip as a special case. In terms of the model (1.1)
with Ψ = σ2Ip, two LRT’s treated in this chapter are based on the statistics
Φ̂ = (1/M)H and σ̂2 = (1/Np)trG for testing

(i) the hypothesis Θ = O, i.e. the hypothesis Φ = σ2Ip, and
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(ii) the goodness of fit of the covariance structure that Φ = σ2Ip + kΘ, i.e.
the hypothesis Φ ≥ σ2Ip.

As in Chapter II, the LRT for testing (i) is one-sided test because the alternative is
Φ ≥ σ2Ip, and the the hypothesis that Φ and σ2 are unrestricted is settled as the
alternative of the LRT for testing (ii). The unbiasedness of the LRT for (i) and the
monotonicity of power function of the LRT for (ii) are proved. The limiting null
distribution of these LRT statistics are also obtained. For a general class of tests
for (i) including the LRT, the local unbiasedness is proved using FKG inequality.
Here a new sufficient condition for the FKG condition is posed. A Monte Carlo
study to compare the power of several tests for (i) including the LRT is also given.

Appendix A. A proof of Lemma 2.1.

Noting that Ψ is positive definite when Ψ is in a neighborhood in Rp(p+1)/2

with center at the true value Ψ0 = Ip, we see it sufficient to show the following (a)
and (b).
(a) The set

Ω0 = {Θ ∈ Rp(p+1)/2 | Θ ≥ O, rankΘ ≤ r}

is approximated at

Θ0 =
(

∆ O
O O

)
p×p

with ∆ = diag(δi)r×r, δi > 0,

by the linear subspace

CΩ0 = {Θ ∈ Rp(p+1)/2 | Θ22 = O},

where Θ22 denotes the (p − r) × (p − r) lower right matrix of Θ.
(b) The set

Ω1 = {Θ ∈ Rp(p+1)/2 | Θ ≥ O}

is approximated at Θ0 by the closed convex cone

CΩ1 = {Θ ∈ Rp(p+1)/2 | Θ22 ≥ O}.

Proof of (a): Fix

Y =
(

Y 11 Y 12

Y 12
′ Y 22

)
∈ Ω0 − Θ0

such that ‖Y ‖ ≤
√

rδ/2 with δ = min δi > 0. Noting that Y 11 + ∆ ≥ (δ/2)Ir and
hence Y 22 = Y 12

′(Y 11 + ∆)−1Y 12, we have

inf
X∈CΩ0

‖X − Y ‖ = ‖Y 22‖ ≤ 2
δ
‖Y 12‖2 = o(‖Y ‖).
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Next, fix

X =
(

X11 X12

X12
′ O

)
∈ CΩ0

such that ‖X‖ ≤
√

rδ/2. Noting that X11 + ∆ ≥ (δ/2)Ir and(
X11 X12

X12
′ X12

′(X11 + ∆)−1X12

)
∈ Ω0 − Θ0,

we have

inf
Y ∈Ω0−Θ

‖X − Y ‖ ≤ ‖X12
′(X11 + ∆)−1X12‖ ≤ 2

δ
‖X12‖2 = o(‖X‖).

Proof of (b): We see first that

inf
X∈CΩ1

‖X − Y ‖ = 0 for any Y ∈ Ω1 − Θ0,

because Ω1 − Θ0 ⊂ CΩ1 .
Next, fix

X =
(

X11 X12

X12
′ X22

)
∈ CΩ1

such that ‖X‖ ≤
√

rδ/2. Noting that X11 + ∆ ≥ (δ/2)Ir, X22 ≥ O and(
X11 X12

X12
′ X22 + X12

′(X11 + ∆)−1X12

)
∈ Ω1 − Θ0,

we have

inf
Y ∈Ω1−Θ

‖X − Y ‖ ≤ ‖X12
′(X11 + ∆)−1X12‖ ≤ 2

δ
‖X12‖2 = o(‖X‖).
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II. One-sided test for the equality of two covariance
matrices.

1. Introduction.

Let H and G be p × p random matrices which are independently distributed
according to the Wishart distributions Wp(M, Φ) and Wp(N, Ψ), respectively, where
Φ and Ψ are assumed to be positive definite and M ≥ p, N ≥ p. Consider the
hierarchical hypotheses H0 ⊂ H

(r)
0 ⊂ H1 ⊂ H2 with

H0 : Φ = Ψ , H
(r)
0 : Φ ≥ Ψ , rank (Φ − Ψ ) ≤ r (0 < r < p),

H1 : Φ ≥ Ψ , H2 : Φ, Ψ are unrestricted.

Here A ≥ B denotes Löwner order meaning that A−B is nonnegative definite. In
this chapter the likelihood ratio tests (LRT’s) for the following hypotheses:

(i) T01 : LRT for testing H0 against H1 − H0,

(ii) T
(r)
01 : LRT for testing H

(r)
0 against H1 − H

(r)
0 , and

(iii) T12 : LRT for testing H1 against H2 − H1

are discussed. The main purpose is to derive the limiting null distributions of test
statistics of these LRT’s.

These testing problems appear in the multivariate variance components model:

Xij = µ + V i + U ij , i = 1, . . . , n, j = 1, . . . , k, (1.1)

where Xij is a p×1 observed vector, µ an unknown mean vector, V i an unobserved
random effect vector of group i, and U ij an unobserved measurement error. V i

and U ij are assumed to be independently distributed according to the normal
distributions Np(0, Θ) and Np(0, Ψ), respectively. The complete sufficient statistics
of the model (1.1) are X =

∑n
i=1 Xi/n with Xi =

∑k
j=1 Xij/k,

H = k
n∑

i=1

(Xi − X)(Xi − X)′, (1.2)

and

G =
n∑

i=1

k∑
j=1

(Xij − Xi)(Xij − Xi)′. (1.3)

H and G are distributed according to Wp(M,Φ) and Wp(N, Ψ ), respectively, where
Φ = Ψ + kΘ, M = n − 1 and N = n(k − 1). Then testing the null hypothesis of
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no effect: Θ = O reduces to testing H0 based on H (1.2) and G (1.3) against the
one-sided alternative hypothesis H1−H0. We are also interested in testing the null
hypothesis that the effect vectors are linear combinations of r or less factors, which
reduces to H

(r)
0 , and the alternative should be H1 − H

(r)
0 . Testing the goodness of

fit of the model (1.1) gives another type of restricted inference, which amounts to
testing H1 against the alternative H2 − H1.

Anderson (1984b, Section 10.6.2) and Anderson, et al. (1986) discussed the
LRT’s T01 and T

(r)
01 , and pointed out that the null distributions of (−2) times

the logarithm of the likelihood ratio criteria are not chi-squared distribution even
though asymptotically. Anderson (1984a) discussed the same tests in the context
of structural relationship models. We shall derive the limiting null distributions of
the test statistics of T01, T

(r)
01 and T12 which was obtained by Sakata (1987) and

Anderson (1989) only for p = 2 (p − r = 2); and give the table of quantiles of the
distributions, which is the exact version of the table by Amemiya, et al. (1990) who
estimated the quantiles by Monte Carlo simulations.

Outline of this chapter is as follows. In Section 2, the likelihood ratio test
statistics and some of their properties are listed. In Section 3, we derive the limiting
null distributions of the likelihood ratio test statistics by two different methods.
Moreover the asymptotic expansions of the null distributions of the likelihood ratio
test statistics are derived in Section 4. In Section 5, limiting significance points and
biases of the tests are tabulated. Appendix A illustrates several examples of the
asymptotic null distributions. Appendix B gives the formulae of the distribution
function of the maximum latent root of a random matrix that appears as the limit
of a Wishart matrix.

2. LRT statistics and their least favorable distributions.

We give the test statistics and their least favorable distributions to calculate
the significance points here. Let Λ01, Λ(r)

01 and Λ12 be the likelihood ratio criteria
for T01, T

(r)
01 and T12, respectively. Anderson (1984a, 1984b) and Anderson, et al.

(1986) showed that

Λ(r)
01 =

R∏
i=r+1

{ li
ρ

ρli + 1 − ρ
}(M+N)/2 if R ≥ r + 1,

= 1 if R ≤ r,

Λ01 = Λ(0)
01

with ρ = M/(M + N), l1 > · · · > lp the latent roots of (N/M)HG−1, and R the
number of li > 1. Obviously the likelihood ratio criterion for testing H0 against
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H2 − H0 is

Λ02 =
p∏

i=1

{ li
ρ

ρli + 1 − ρ
}(M+N)/2,

and hence we have

Λ12 =
Λ02

Λ01
=

p∏
i=R+1

{ li
ρ

ρli + 1 − ρ
}(M+N)/2 if R ≤ p − 1,

= 1 if R = p.

Since these statistics are functions of li’s, their distributions depend only on the
latent roots δ1 ≥ · · · ≥ δp of ΦΨ−1. The hypothesis H0 reduces to the simple
hypothesis δ1 = · · · = δp = 1. The hypotheses H

(r)
0 and H1 reduce to the composite

hypotheses δ1 ≥ · · · ≥ δr ≥ δr+1 = · · · = δp = 1 and δ1 ≥ · · · ≥ δp ≥ 1, respectively.
To calculate the significance points for T

(r)
01 and T12, we need the least favorable

distributions, which are obtained by the straightforward application of Anderson
and Das Gupta (1964).

Define an increasing function f+
MN ( · ) and a decreasing function f−

MN ( · ) on
(0,∞) by

f+
MN (x) = (M + N){log(ρx + 1 − ρ) − ρ log x}I(x > 1),

f−
MN (x) = (M + N){log(ρx + 1 − ρ) − ρ log x}I(x < 1),

where I( · ) denotes the indicator function. Then we have

− 2 log Λ01 =
p∑

i=1

f+
MN (li), −2 log Λ(r)

01 =
p∑

i=r+1

f+
MN (li),

and − 2 log Λ12 =
p∑

i=1

f−
MN (li).

Then by Theorem 2 of Anderson and Das Gupta (1964) we have that the power
function of T01 and T

(r)
01 , namely β01(δ) = Pδ(−2 log Λ01 > c) and β

(r)
01 (δ) =

Pδ(−2 log Λ(r)
01 > c) with c > 0, are monotonically increasing in each component of

δ = (δ1, . . . , δp). And the power function of the test T12, namely
β12(δ) = Pδ(−2 log Λ12 > c) with c > 0, is monotonically decreasing in each
of the component of δ. Since β01(δ) is increasing, T01 is unbiased. Because
of the increasing property, sup

H
(r)
0

β
(r)
01 (δ) is attained when δ1, . . . , δr ↑ +∞ and

δr+1 = · · · = δp = 1; inf
H1−H

(r)
0

β
(r)
01 (δ) is attained when δ1, . . . , δr+1 ↓ 1 and

δr+2 = · · · = δp = 1. Because of the decreasing property, supH1
β12(δ) is at-

tained at δ1 = · · · = δp = 1; infH2−H1 β12(δ) is attained when δ1, . . . , δp−1 ↑ +∞
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and δp ↑ 1. Theorem 2.1 below determines the distribution when some δi’s go to
infinity.

Theorem 2.1 (Schott and Saw, 1984) Let d1 > · · · > dp be the latent roots of
W 1W 2

−1 where W 1 and W 2 are independently distributed according to
Wp(ν1, Σ1) and Wp(ν2, Σ2), respectively, with the latent roots of Σ1Σ2

−1 being
δ1 ≥ · · · ≥ δr ≥ δr+1 = · · · = δp = 1. Let d∗

1 > · · · > d∗
p−r be the latent

roots of W ∗
1W

∗
2
−1 where W ∗

1 and W ∗
2 are independently distributed according to

Wp−r(ν1 − r, Ip−r) and Wp−r(ν2, Ip−r) respectively. Then (dr+1, . . . , dp) converges
to (d∗

1, . . . , d
∗
p−r) in distribution as δ1, . . . , δr ↑ +∞.

We can summarize the properties of the likelihood ratio tests as follows.

Theorem 2.2
(i) The power function of T01 is monotonically increasing in the components of δ.
T01 is unbiased.
(ii) The power function of T

(r)
01 (0 < r < p) is monotonically increasing in the

components of δ. The α-significance point c
(r)
01 (α; p,M, N) is determined by

sup
H

(r)
0

β
(r)
01 (δ) = P(

p−r∑
i=1

f+
MN (l∗i ) > c

(r)
01 (α; p,M, N)) = α,

where l∗1 > · · · > l∗p−r are the latent roots of (N/M)W ∗
1W

∗
2
−1 with W ∗

1 and W ∗
2 be-

ing independently distributed according to Wp−r(M −r, Ip−r) and Wp−r(N, Ip−r),
respectively. T

(r)
01 is biased since

inf
H1−H

(r)
0

β
(r)
01 (δ) = PH0(−2 log Λ(r)

01 > c
(r)
01 (α; p,M, N)) < α.

(iii) The power function of T12 is monotonically decreasing in the components of
δ. The α-significance point c12(α; p, M, N) is determined by

sup
H1

β12(δ) = PH0(−2 log Λ12 > c12(α; p,M, N)) = α.

T12 is biased since

inf
H2−H1

β12(δ) = P(f−
MN (l∗∗) > c12(α; p,M,N)) < α,

where l∗∗ is a random variable such that {M/(M − p + 1)}l∗∗ is distributed as the
F-distribution FM−p+1

N .

The following statements on the consistency can be established easily.
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Theorem 2.3 T01, T
(r)
01 and T12 are consistent in the following sense.

lim
δ1→+∞

β01(δ) = 1 uniformly in δ2, . . . , δp.(i)

lim
δr+1→+∞

β
(r)
01 (δ) = 1 uniformly in δr+2, . . . , δp.(ii)

lim
δp→+0

β12(δ) = 1 uniformly in δ1, . . . , δp−1.(iii)

3. Limiting null distribution of LRT.

3.1. Derivation of the limiting null distribution.

Theorem 2.2 (i), (iii) shows that to get the significance points of T01 and T12,
we only need the distributions of Λ01 and Λ12 under H0 : δ1 = · · · = δp = 1. We
shall derive the limiting joint distribution of Λ01 and Λ12 under H0.

We give a lemma which is used in proving Theorems 3.1 and 3.2.

Lemma 3.1 Let {fn( · )} be a sequence of densities on Rp with limn→∞ fn(x) =
f(x) for each x ∈ Rp. And let {T j

n( · ), 1 ≤ j ≤ k} be a sequence of measurable
functions on Rp with limn→∞ T j

n(x) = T j(x) for each x ∈ Rp. If f( · ) is a density,
then

lim
n→∞

∫
exp{i

k∑
j=1

tjT
j
n(x)}fn(x)dx =

∫
exp{i

k∑
j=1

tjT
j(x)}f(x)dx.

(Proof) Note that∣∣∣∣∫ exp{i
k∑

j=1

tjT
j
n(x)}fn(x)dx −

∫
exp{i

k∑
j=1

tjT
j(x)}f(x)dx

∣∣∣∣
≤

∫
|fn(x) − f(x)|dx +

∫
hn(x)f(x)dx

with

hn(x) =
∣∣∣∣exp{i

k∑
j=1

tjT
j
n(x)} − exp{i

k∑
j=1

tjT
j(x)}

∣∣∣∣ (≤ 2).

As n → ∞, the first term converges to zero by Scheffé’s theorem. The second term
converges to zero by the bounded convergence theorem.

Let φ(s, t) denote the joint characteristic function of −2 log Λ01 and −2 log Λ12 under
H0, i.e. φ(s, t) = EH0Λ01

−2isΛ12
−2it. The joint density function of l1 > · · · > lp > 0

is given by

c(p;M, N)
p∏

i=1

li
(M−p−1)/2(

M

M + N
li +

N

M + N
)−(M+N)/2

∏
i<j

(li − lj), (3.1)
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where

c(p; M,N) =
πp2/2Γp(M+N

2 )
Γp(M

2 )Γp(N
2 )Γp(p

2 )
· MpM/2NpN/2

(M + N)p(M+N)/2
(3.2)

with Γp(a) = πp(p−1)/4
∏p

i=1 Γ(a − 1
2 (i − 1)). Define

bi =

√
MN

2(M + N)
(li − 1), 1 ≤ i ≤ p. (3.3)

By letting M, N → ∞ with ρ = M/(M + N) → ρ0 (0 ≤ ρ0 ≤ 1) and bi fixed (i.e.
li → 1), the limit of the joint density of b = (b1, . . . , bp)′, b1 > · · · > bp, is

ϕ0(b) = d(p) exp{−1
2

p∑
i=1

bi
2}

∏
i<j

(bi − bj) (3.4)

with

d(p) =
πp(p−1)/4

2p/2Γp(p
2 )

=
1

2p/2
∏p

i=1 Γ( i
2 )

.

ϕ0(b) in (3.4) turns out to be the density of the latent roots of a p × p symmetric
random matrix A with normal density

1
2p/2πp(p+1)/4

exp{−1
2
trA2}. (3.5)

(Anderson, 1984b, Theorem 13.3.5.)
On the other hand it is easy to show that

lim
M,N→∞

−2 log Λ01 = lim
M,N→∞

p∑
i=1

f+
MN (li) =

p∑
i=1

(bi ∨ 0)2,

lim
M,N→∞

−2 log Λ12 = lim
M,N→∞

p∑
i=1

f−
MN (li) =

p∑
i=1

(bi ∧ 0)2,

where x∨ y and x∧ y are the maximum and the minimum of x and y, respectively.
Therefore by Lemma 3.1 we get the characteristic function of the limiting null
distribution as

φ0(s, t) = lim
M,N→∞

φ(s, t)

=
∫

b1>···>bp

exp{is
p∑

i=1

(bi ∨ 0)2 + it

p∑
i=1

(bi ∧ 0)2}ϕ0(b)db

=
p∑

r=0

∫
Br×Bp−r

exp{is
r∑

i=1

bi
2 + it

p∑
i=r+1

bi
2}ϕ0(b)db (3.6)
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with db =
∏p

i=1 dbi,

Br = {(b1, . . . , br) | b1 > · · · > br > 0},

Bp−r = {(br+1, . . . , bp) | 0 > br+1 > · · · > bp}.

By the Laplace expansion of the linkage factor
∏

i<j(bi − bj), which is the Vander-
monde determinant det(bi

p−j)1≤i,j≤p, (3.6) is

d(p)
p∑

r=0

∑
λ

(−1)
∑r

i=1
(i+λi)

∫
Br

exp{− 1
2θ2

r∑
i=1

bi
2}det(bi

p−λj )1≤i,j≤rdb1 . . . dbr

×
∫

Bp−r

exp{− 1
2ϕ2

p−r∑
i=1

bi+r
2}det(bi+r

p−λj )1≤i,j≤p−rdbr+1 . . . dbp (3.7)

where θ = (1−2is)−
1
2 and ϕ = (1−2it)−

1
2 ,

∑
λ is summation over all combinations

of λ1 < · · · < λr, λ1 < · · · < λp−r such that

{λ1, . . . , λr, λ1, . . . , λp−r} = {1, . . . , p}.

Putting

Uk(q1, . . . , qk) =
∫

Bk

exp{−1
2

k∑
i=1

bi
2}det(bi

qj )1≤i,j≤kdb1 . . . dbk (3.8)

(k ≥ 1) and U0 = 1, we have that (3.7) is

d(p)
p∑

r=0

∑
λ

Ur(p − λ1, . . . , p − λr)Up−r(p − λ1, . . . , p − λp−r)θQϕQ (3.9)

with Q =
∑r

i=1(p−λi)+r and Q = p(p+1)/2−Q. (3.9) is a characteristic function
of a mixture of the bivariate chi-squared distributions with Q and Q (0 ≤ Q,Q ≤
p(p + 1)/2) degrees of freedom. By inverting the limiting characteristic function
(3.9), we get the theorem:

Theorem 3.1 As M, N → ∞ with M/(M + N) → ρ0 (0 ≤ ρ0 ≤ 1), the limiting
joint distribution function of −2 log Λ01 and −2 log Λ12 under H0 is given by

lim
M,N→∞

PH0(−2 log Λ01 ≤ y,−2 log Λ12 ≤ z)

= d(p)
p∑

r=0

∑
p−1≥q1>···>qr≥0

Ur(q1, . . . , qr)Up−r(q1, . . . , qp−r)GQ(y)GQ(z)

(3.10)
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where q1 > · · · > qp−r are the members of {0, . . . , p − 1} − {q1, . . . , qr}, Q =∑r
k=1 qk + r, Q = p(p + 1)/2 − Q, Gν( · ) with ν 6= 0 is the distribution function of

the chi-squared distribution with ν degrees of freedom and G0( · ) = I(0 ≤ · ).

Since (3.9) is symmetric in y and z, the limiting marginal distributions of −2 log Λ01

and −2 log Λ12 under H0 are equivalent, which is a mixture of chi-squared distribu-
tions.

On the null (least favorable) distribution of Λ(r)
01 , Theorem 3.2 below is ob-

tained.

Theorem 3.2 As M,N → ∞ with M/(M + N) → ρ0 (0 ≤ ρ0 ≤ 1),

lim
M,N→∞

sup
H

(r)
0

P(−2 log Λ(r)
01 ≤ y)

= d(p1)
p1∑

r′=0

∑
p1−1≥q1>···>qr′≥0

Ur′(q1, . . . , qr′)Up1−r′(q1, . . . , qp1−r′)GQ′(y)

(3.11)

with p1 = p − r and Q′ =
∑r′

k=1 qk + r′.

(Proof) Note that

sup
H

(r)
0

P(−2 log Λ(r)
01 ≤ y) = P(

p1∑
i=1

f+
MN (l∗i ) ≤ y),

where l∗i is defined in Theorem 2.2 (ii). The limiting joint density of

b∗i =

√
MN

2(M + N)
(l∗i − 1), 1 ≤ i ≤ p1,

is

d(p1) exp{−1
2

p1∑
i=1

b∗2i }
∏
i<j

(b∗i − b∗j ).

On the other hand

lim
M,N→∞

p1∑
i=1

f+
MN (l∗i ) =

p1∑
i=1

(b∗i ∨ 0)2.

The rest of the proof is similar to that of Theorem 3.1.

Remark 3.1 In Section 2 of Chapter I we have already proved that when δ1 ≥
· · · ≥ δr > δr+1 = · · · = δp = 1 the limiting null distribution of Λ(r)

01 is (2.5) of
Chapter I. This means that

lim
M,N→∞

P(−2 log Λ(r)
01 ≤ y) = R.H.S. of (3.11)
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holds when rank (Φ − Ψ) = r.

3.2. Calculation of Uk’s.

In the previous subsection our problem has been reduced to calculation of
integral Uk(q1, . . . , qk) of (3.8). The method used by Pillai (1956) is exploited here.

Theorem 3.3 Uk(q1, . . . , qk) can be evaluated by the following recurrence for-
mula:

Uk(q1, . . . , qk)

=(−1)k−1Uk−1(q2, . . . , qk)I(q1 = 1)

+ (q1 − 1)Uk(q1 − 2, q2, . . . , qk)

+ 2
k∑

j=2

(−1)j 1
2

1
2 (q1+qj)

U1(q1 + qj − 1)Uk−2(q2, . . . , qj−1, qj+1, . . . , qk)(3.12)

(k ≥ 2, q1 ≥ 1) and

U1(q) =I(q = 1) + (q − 1)U1(q − 2) (q ≥ 1),

U1(0) =
√

π/2.

(Proof) By expanding the first column of

Dk(b1, . . . , bk; q1, . . . , qk) = det

 b1
q1 · · · b1

qk

...
...

bk
q1 · · · bk

qk


k×k

,

we get

Uk(q1, . . . , qk) =
k∑

i=1

(−1)i−1

∫ ∞

0

e−
1
2 bi

2
bi

q1dbiFi(bi) (3.13)

with

Fi(bi) =
∫ ∞

bi

dbi−1 · · ·
∫ ∞

b2

db1

∫ bi

0

dbi+1 · · ·
∫ bk−1

0

dbk

× exp{−1
2

∑
j 6=i

bi
2}Dk−1(b1, . . . , bi−1, bi+1, . . . , bk; q2, . . . , qk).

By integration by parts, we have∫ ∞

0

e−
1
2 bi

2
bi

q1dbiFi(bi) = −
∫ ∞

0

(e−
1
2 bi

2
)′bi

q1−1Fi(bi)dbi

= −e−
1
2 bi

2
bi

q1−1Fi(bi)
∣∣∣∣∞
0

+(q1 − 1)
∫ ∞

0

e−
1
2 bi

2
bi

q1−2Fi(bi)dbi

+
∫ ∞

0

e−
1
2 bi

2
bi

q1−1F ′
i (bi)dbi

= Ai + Bi + Ci, say. (3.14)
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Noting that Fi(0) = Uk−1(q2, . . . , qk)I(i = k), we have

k∑
i=1

(−1)i−1Ai = (−1)k−1Uk−1(q2, . . . , qk)I(q1 = 1), (3.15)

and
k∑

i=1

(−1)i−1Bi = (q1 − 1)Uk(q1 − 2, q2, . . . , qk). (3.16)

Next we have

Ci = −
∫ ∞

0

e−
1
2 bi

2
bi

q1−1dbi

∫ ∞

bi

dbi−2 · · ·
∫ ∞

b2

db1

∫ bi

0

dbi+1 · · ·
∫ bk−1

0

dbk

× exp{−1
2

∑
j 6=i−1

bj
2}Dk−1(b1, . . . , bi−2, bi, . . . , bk; q2, . . . , qk) (i 6= 1)

+
∫ ∞

0

e−
1
2 bi

2
bi

q1−1dbi

∫ ∞

bi

dbi−1 · · ·
∫ ∞

b2

db1

∫ bi

0

dbi+2 · · ·
∫ bk−1

0

dbk

× exp{−1
2

∑
j 6=i+1

bj
2}Dk−1(b1, . . . , bi, bi+2, . . . , bk; q2, . . . , qk) (i 6= k).

Note that the first term vanishes when i = 1 and the second term vanishes when
i = k. By expanding Dk−1(b1, . . . , bi−2, bi, . . . , bk; q2, . . . , qk) and
Dk−1(b1, . . . , bi, bi+2, . . . , bk; q2, . . . , qk) in the row which contains bi, we get

Ci = −
k∑

j=2

(−1)i+j

∫ ∞

0

e−bi
2
bi

q1+qj−1dbi

×
∫

· · ·
∫

b1>···>bi−2>bi
bi>bi+1>···>bk>0

db1 . . . dbi−2dbi+1 . . . dbk exp{−1
2

∑
j 6=i−1,i

bj
2}

× Dk−2(b1, . . . , bi−2, bi+1, . . . , bk; q2, . . . , qj−1, qj+1, . . . , qk)

+
k∑

j=2

(−1)i+j+1

∫ ∞

0

e−bi
2
bi

q1+qj−1dbi

×
∫

· · ·
∫

b1>···>bi−1>bi
bi>bi+2>···>bk>0

db1 . . . dbi−1dbi+2 . . . dbk exp{−1
2

∑
j 6=i,i+1

bj
2}

× Dk−2(b1, . . . , bi−1, bi+2, . . . , bk; q2, . . . , qj−1, qj+1, . . . , qk).

Noting that, for fixed b,

k∑
i=2

∫
· · ·

∫
b1>···>bi−2>b

b>bi−1>···>bk−2>0

=
k−1∑
i=1

∫
· · ·

∫
b1>···>bi−1>b

b>bi>···>bk−2>0

=
∫

· · ·
∫

b1>···>bk−2>0

,
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we see that

k∑
i=1

(−1)i−1Ci = 2
k∑

j=2

(−1)j

∫ ∞

0

e−bi
2
bi

q1+qj−1dbi Uk−2(q2, . . . , qj−1, qj+1, . . . , qk).

(3.17)
From (3.13)-(3.17), we derive (3.12). The case of k = 1 is easy.

We give the explicit expressions of (3.9) for 1 ≤ p ≤ 5 in Appendix A.

Remark 3.2 Since Uk(q1, . . . , qk) is obviously a skew-symmetric function of
q1, . . . , qk, we can restrict ourselves to q1 > · · · > qk, and the second term of
the R.H.S. of (3.12) can be replaced by:

(q1 − 1)Uk(q1 − 2, q2, . . . , qk) if q1 − 2 > q2,
−(q1 − 1)Uk(q2, q1 − 2, q3, . . . , qk) if q2 > q1 − 2 > q3,

0 otherwise.

3.3. An expression in terms of Pfaffian.

In the previous subsection we derive a recurrence formula for Uk’s which enable
us to obtain (3.9) and R.H.S. of (3.10) numerically. We shall give an expression of
the limiting characteristic function (3.9) in terms of Pfaffian defined below.

Definition 3.1 (Pfaffian) Let A = (aij) be a p × p (p:even) skew-symmetric
matrix. The Pfaffian of A is defined by

pfA =
∑
P

±ai1i2ai3i4 · · · aip−1ip ,

where the summation is taken over all permutations

P =
(

1 · · · p
i1 · · · ip

)
with the restrictions

i1 < i2, i3 < i4, . . . , ip−1 < ip, i1 < i3 < · · · < ip−1,

and the sign is that of P .

It is well known that detA = (pfA)2, and that for p × p matrix B,

pf(BAB′) = pfA · detB. (3.18)
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See, for example, Mehta (1989). We give another identity which does not appear in
the literature. The proof can be easily obtained by Definition 2.1, and is omitted.

Lemma 3.2 For two p × p (p:even) skew-symmetric matrices A = (aij) and
B = (bij),

pf(A + B) =
p∑

r=0
r:even

∑
λ

(−1)
∑r

i=1
(i+λi)pf (A[λ, λ] ) pf (B[λ,λ] ) (3.19)

holds, where A[λ, λ] = (aλiλj )1≤i,j≤r a r × r matrix, B[λ, λ] = (bλiλj
)1≤i,j≤p−r a

(p − r) × (p − r) matrix, the summation
∑

λ is taken over the same combinations
as that in (3.7).

The following lemma gives another method of evaluating Uk’s. The proof is an
application of Mehta (1960, Eq.(10)) or Krishnaiah and Chang (1971, Lemma 2.1).

Lemma 3.3

Uk(q1, . . . , qk) = pf (U2(qi, qj) )1≤i,j≤k if k is even,

= pf
(

(U2(qi, qj))1≤i,j≤k (U1(qi))1≤i≤k

−(U1(qj))1≤j≤k 0

)
if k is odd.

(Proof)
Proof for k even: By integrations with respects to b1, b3, . . . , bk−1, we have

Uk(q1, . . . , qk) =
∫

· · ·
∫

b2>b4>···>bk>0

exp{−1
2

∑
i:even

bi
2}db2 . . . dbk

× det



∫ ∞
b2

e−
1
2 b1

2
b1

q1db1 · · ·
∫ ∞

b2
e−

1
2 b1

2
b1

qkdb1

b2
q1 · · · b2

qk∫ b2
b4

e−
1
2 b3

2
b3

q1db3 · · ·
∫ b2

b4
e−

1
2 b3

2
b3

qkdb3

...
...

bk
q1 · · · bk

qk


k×k

=
∫

· · ·
∫

b2>b4>···>bk>0

exp{−1
2

∑
i:even

bi
2}db2 . . . dbk

× det



∫ ∞
b2

e−
1
2 b1

2
b1

q1db1 · · ·
∫ ∞

b2
e−

1
2 b1

2
b1

qkdb1

b2
q1 · · · b2

qk∫ ∞
b4

e−
1
2 b3

2
b3

q1db3 · · ·
∫ ∞

b4
e−

1
2 b3

2
b3

qkdb3

...
...

bk
q1 · · · bk

qk


k×k

(3.20)
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Since the determinant in the R.H.S. of (3.20) is a symmetric function of b2, b4, . . . , bk,
the integral

∫
· · ·

∫
b2>b4>···>bk>0

can be replaced by (1/t!)
∫ ∞

b2=0

∫ ∞
b4=0

· · ·
∫ ∞

bk=0
with

t = k/2. Dividing k rows into t pairs of 2 rows, and applying (generalized) Laplace
expansion, the determinant in the R.H.S. of (3.20) is written as∑

P

′
±

∫ ∞

b2

e−
1
2 b1

2
db1{b1

qi1 b2
qi2 − b1

qi2 b2
qi1} × · · ·

×
∫ ∞

bk

e−
1
2 bk−1

2
dbk−1{bk−1

qik−1 bk
qik − bk−1

qik bk
qik−1},

where the summation
∑′

P is taken over all permutations

P =
(

1 · · · k
i1 · · · ik

)
(3.21)

with the restrictions
i1 < i2, i3 < i4, . . . , ik−1 < ik

and the sign is that of P . Then we have that

Uk(q1, . . . , qk) =
1
t!

∑
P

′
± U2(qi1 , qi2)U2(qi3 , qi4) · · ·U2(qik−1 , qik

)

=
∑
P

±U2(qi1 , qi2)U2(qi3 , qi4) · · ·U2(qik−1 , qik
)

where the summation
∑

P is taken over all permutations P of (3.21) with the
restrictions

i1 < i2, i3 < i4, . . . , ik−1 < ik, i1 < i3 < · · · < ik−1.

This completes the proof (for k even).

Proof for k odd: As in the even case, it holds that

Uk(q1, . . . , qk) =
∫

· · ·
∫

b2>b4>···>bk−1>0

exp{−1
2

∑
i:even

bi
2}db2 . . . dbk−1

× det



∫ ∞
b2

e−
1
2 b1

2
b1

q1db1 · · ·
∫ ∞

b2
e−

1
2 b1

2
b1

qkdb1

b2
q1 · · · b2

qk∫ ∞
b4

e−
1
2 b3

2
b3

q1db3 · · ·
∫ ∞

b4
e−

1
2 b3

2
b3

qkdb3

...
...

bk−1
q1 · · · bk−1

qk∫ ∞
0

e−
1
2 bk

2
bk

q1dbk · · ·
∫ ∞
0

e−
1
2 bk

2
bk

qkdbk


k×k

(3.22)

The integral
∫
· · ·

∫
b2>b4>···>bk−1>0

can be also replaced by (1/t!)
∫ ∞

b2=0
· · ·

∫ ∞
bk−1=0

with t = (k − 1)/2, since the determinant in the R.H.S. of (3.22) is a symmetric
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function of b2, b4, . . . , bk−1. Dividing k rows of this determinant into t pairs of 2
rows and 1 row, and applying (generalized) Laplace expansion, we see that

Uk(q1, . . . , qk) =
1
t!

∑
P

′
± U2(qi1 , qi2)U2(qi3 , qi4) · · ·U2(qik−2 , qik−1)U1(qik

)

=
∑
P

±U2(qi1 , qi2)U2(qi3 , qi4) · · ·U2(qik−2 , qik−1)U1(qik
),

where the summations
∑′

P and
∑

P are taken over all permutations P of (3.21)
with the restrictions

i1 < i2, i3 < i4, . . . , ik−2 < ik−1, ik : free

and
i1 < i2, i3 < i4, . . . , ik−2 < ik−1, i1 < i3 < · · · < ik−2, ik : free,

respectively. This completes the proof (for k odd).

Remark 3.3 Note that

U1(q) = 2(q−1)/2Γ(
q + 1

2
),

and that U2(q1, q2) (q1 > q2 ≥ 0) is evaluated with the recurrence formula of
Theorem 3.3 as

U2(q1, q2) =Γ(
q1 + q2

2
)

+


(q1 − 1)U2(q1 − 2, q2) if q1 > q2 + 2

0 if q1 = q2 + 2
−(q1 − 1)U2(q2, q1 − 2) if q1 = q2 + 1 ≥ 2

−
√

π/2 if q1 = q2 + 1 = 1.

Using the lemmas provided above we get the result.

Theorem 3.4 The characteristic function φ0(s, t) of (3.9) is expressed as

d(p) pf

 θ2D(θ)ED(θ) − ϕ2D(−ϕ)ED(−ϕ) ϕD(−ϕ)f θD(θ)f
−ϕf ′D(−ϕ) 0 1
−θf ′D(θ) −1 0


(p+2)×(p+2)

= d(p) pf

 {θ2p−i−j+2 − (−ϕ)2p−i−j+2}eij −(−ϕ)p−i+1fi θp−i+1fi

(−ϕ)p−j+1fj 0 1
−θp−j+1fj −1 0

 (3.23)
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if p is even,

d(p) pf
(

θ2D(θ)ED(θ) − ϕ2D(−ϕ)ED(−ϕ) {θD(θ) + ϕD(−ϕ)}f
−f ′{θD(θ) + ϕD(−ϕ)} 0

)
(p+1)×(p+1)

= d(p) pf
(
{θ2p−i−j+2 − (−ϕ)2p−i−j+2}eij {θp−i+1 − (−ϕ)p−i+1}fi

−{θp−j+1 − (−ϕ)p−j+1}fj 0

)
(3.24)

if p is odd, where E is a p× p matrix with (i, j)th element eij = U2(p− i, p− j), f

is a p × 1 vector with ith element fi = U1(p − i), and D(ξ) = diag(ξp−i)1≤i≤p is a
p × p diagonal matrix.

(Proof)
Proof for p even: By the definition of the Pfaffian in Definition 3.1 as well as (3.18)
and (3.19), the Pfaffian in (3.23) is expanded as

pf{θ2D(θ)ED(θ) − ϕ2D(−ϕ)ED(−ϕ)}

+ pf
{ θ2D(θ)ED(θ) 0p θD(θ)f

0p
′ 0 0

−θf ′D(θ) 0 0


−

 ϕ2D(−ϕ)ED(−ϕ) −ϕD(−ϕ)f 0p

ϕf ′D(−ϕ) 0 0
0p

′ 0 0

}
=

∑
r:even

∑
λ

pf (E[λ, λ] ) pf (E[λ, λ] ) θQϕQ

+
∑

r:odd

∑
λ

pf
(

E[λ, λ] f [λ]
−f [λ]′ 0

)
pf

(
E[λ, λ] f [λ]
−f [λ]′ 0

)
θQϕQ, (3.25)

with 0p = (0, . . . , 0)′ p× 1 zero vector, Q =
∑r

i=1(p− λi) + r, Q = p(p + 1)/2−Q,
f [λ] = (fλi)1≤i≤r an r × 1 vector, f [λ] = (fλi

)1≤i≤p−r a (p − r) × 1 vector.
Combining (3.25) and Lemma 3.3 we see that (3.23) is equal to (3.9).

Proof for p odd: As in the even case the Pfaffian in (3.24) is expanded as

pf
{(

θ2D(θ)ED(θ) θD(θ)f
−θf ′D(θ) 0

)
−

(
ϕ2D(−ϕ)ED(−ϕ) −ϕD(−ϕ)f

ϕf ′D(−ϕ) 0

)}
=

∑
r:odd

∑
λ

pf
(

E[λ, λ] f [λ]
−f [λ]′ 0

)
pf (E[λ, λ] ) θQϕQ

+
∑

r:even

∑
λ

pf (E[λ, λ] ) pf
(

E[λ, λ] f [λ]
−f [λ]′ 0

)
θQϕQ. (3.26)

Combining (3.26) and Lemma 3.3 we see that (3.24) is equal to (3.9). The proof is
completed.
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4. Asymptotic expansion of the null distribution of LRT.

The formal asymptotic expansions of the null distributions of the likelihood
ratio statistics shall be derived here. The linkage factor

∏
i<j(li − lj) can be rep-

resented as Dp(l1 − 1, . . . , lp − 1; p − 1, . . . , 0). By the Laplace expansion of the
linkage factor in (3.1), the joint characteristic function φ(s, t) = EH0Λ01

−2isΛ12
−2it

is given by

φ(s, t) = c(p; M,N)
p∑

r=0

∑
p−1≥q1>···>rr≥0

Vr(θ; q1, . . . , qr)Ṽp−r(ϕ; qr+1, . . . , qp) (4.1)

where θ = (1 − 2is)−
1
2 , ϕ = (1 − 2it)−

1
2 ,

Vr(θ; q1, . . . , qr) =
∫

· · ·
∫

l1>···>lr>1

r∏
i=1

{ li
ρ

ρli + 1 − ρ
} 1

2 (M+N)θ−2
li
− 1

2 (p+1)

× Dr(l1 − 1, . . . , lr − 1; q1, . . . , qr)dl1 . . . dlr

and

Ṽp−r(θ; qr+1, . . . , qp) =(−1)r(r+1)/2+
∑r

i=1
(p−qi)

×
∫

· · ·
∫

1>lr+1>···>lp>0

p∏
i=r+1

{ li
ρ

ρli + 1 − ρ
} 1

2 (M+N)ϕ−2
li
− 1

2 (p+1)

× Dp−r(lr+1 − 1, . . . , lp − 1; qr+1, . . . , qp)dlr+1 . . . dlp.

Define bi, 1 ≤ i ≤ p, by (3.3). Assume that

ρ =
M

M + N
= ρ0 + O{( MN

M + N
)−1} = ρ0 + O(

1
ρN

).

By expanding around bi = 0 we have
r∏

i=1

{ li
ρ

ρli + 1 − ρ
} 1

2 (M+N)θ−2
li
− 1

2 (p+1)

= exp{−θ−2

2

∑
i

bi
2}

×
[
1 +

1√
ρN

{
√

2(1 + ρ0)
3

θ−2
∑

i

bi
3 − p + 1√

2

∑
i

bi}

+
1

ρN
{−1 + ρ0 + ρ0

2

2
θ−2

∑
i

bi
4 +

p + 1
2

∑
i

bi
2 +

(1 + ρ0)2

9
θ−4(

∑
i

bi
3)2

− (1 + ρ0)(p + 1)
3

θ−2(
∑

i

bi
3)(

∑
i

bi) +
(p + 1)2

4
(
∑

i

bi)2}

+ O{ 1
(ρN)3/2

}
]
.
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Using the relation

(
k∑

i=1

bi
m)Dk(b1, . . . , bk; q1, . . . , qk)

=
k∑

i=1

Dk(b1, . . . , bk; q1, . . . , qi−1, qi + m, qi+1, . . . , qk),

Vr is evaluated as

{ MN

2(M + N)
}Q/2

Vr(θ; q1, . . . , qr)

= Urθ
Q +

1√
ρN

Urθ
Q+1 +

1
ρN

Urθ
Q+2 + O{ 1

(ρN)3/2
}, (4.2)

where Q =
∑r

i=1 qi + r,

Uk =
√

2(1 + ρ0)
3

U
(3)
k − p + 1√

2
U

(1)
k , (4.3)

Uk = − 1 + ρ0 + ρ0
2

2
U

(4)
k +

p + 1
2

U
(2)
k

+
(1 + ρ0)2

9
U

(3,3)
k − (1 + ρ0)(p + 1)

3
U

(3,1)
k +

(p + 1)2

4
U

(1,1)
k (4.4)

with

U
(m)
k =

k∑
i=1

Uk(q1, . . . , qi−1, qi + m, qi+1, . . . , qk),

U
(m,n)
k =

k∑
i=1

Uk(q1, . . . , qi−1, qi + m + n, qi+1, . . . , qk)

+
∑
i 6=j

Uk(q1, . . . , qi + m, . . . , qj + n, . . . , qk).

Because the contribution of the integral over the region

{0 > br+1 > · · · > bp > −∞} − {0 > br+1 > · · · > bp > −
√

MN/2(M + N)}

is o{(ρN)−m} for any m, Ṽp−r is also evaluated as

{ MN

2(M + N)
}Q/2

Ṽp−r(ϕ; qr+1, . . . , qp)

= Up−rϕ
Q − 1√

ρN
Up−rϕ

Q+1 +
1

ρN
Up−rϕ

Q+2 + O{ 1
(ρN)3/2

}, (4.5)
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where Q = p(p + 1)/2 − Q. Applying Stirling’s formula to the constant factor
c(p; M,N) of (3.2), we have

{2(M + N)
MN

}p(p+1)/4
c(p; M, N)

= d(p)
{
1 − 1

24ρN
p(2p2 + 3p − 1)(1 − ρ0 + ρ0

2) + O{ 1
(ρN)2

}
}
. (4.6)

By inverting the asymptotic expansion of φ(s, t) derived from (4.1)-(4.6), we have
the following theorem.

Theorem 4.1 The asymptotic expansion of joint distribution function of
−2 log Λ01 and −2 log Λ12 under H0 is given by

PH0(−2 log Λ01 ≤ y,−2 log Λ12 ≤ z)

=d(p)
[∑

UrUp−rGQ(y)GQ(z)

+
1√
ρN

∑
{UrUp−rGQ+1(y)GQ(z) − UrUp−rGQ(y)GQ+1(z)}

+
1

ρN

∑
{UrUp−rGQ+2(y)GQ(z) − UrUp−rGQ+1(y)GQ+1(z)

+ UrUp−rGQ(y)GQ+2(z) − 1
24

p(2p2 + 3p − 1)(1 − ρ0 + ρ0
2)GQ(y)GQ(z)}

]
+ O{ 1

(ρN)3/2
}.

Here the arguments of Ur, Ur, Ur (i.e. q1, . . . , qr) and Up−r, Up−r, Up−r (i.e.
q1, . . . , qp−r) are omitted for simplicity; put U0 = 1, U0 = 0 and U0 = 0 formally;
the summation is over 0 ≤ r ≤ p and p − 1 ≥ q1 > · · · > qr ≥ 0.

The example for p = 2 is given in Appendix A. The asymptotic expansion of
sup

H
(r)
0

P(−2 log Λ(r)
01 ≤ y) can be derived similarly.

5. Significance points and biases.

By Theorem 2.2 and the results of Section 3, we can give the limiting signifi-
cance points and biases as M, N → ∞ with M/(M + N) → ρ0.

Table 5.1 shows the limiting α-significance points c01(α; p,M, N) and
c12(α; p,M, N), that is d(α; p) satisfying

lim
M,N→∞

PH0(−2 log Λ01 > d(α; p)) = P(
p∑

i=1

(bi ∨ 0)2 > d(α; p)) = α,
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Table 5.1
Limiting significance points of T01 and T12

1 − α \ p 2 3 4 5 6 7 8 9 10

0.010 0.0000 0.0000 0.0986 0.6832 1.7747 3.3713 5.4720 8.0757 11.1817

0.025 0.0000 9.1e-7 0.3178 1.1788 2.5559 4.4424 6.8352 9.7322 13.1324

0.050 0.0000 0.0508 0.6207 1.7319 3.3617 5.5021 8.1492 11.3010 14.9559

0.100 0.0000 0.2423 1.1146 2.5241 4.4511 6.8881 9.8313 13.2787 17.2291

0.250 0.0957 0.9190 2.3181 4.2400 6.6723 9.6108 13.0531 16.9980 21.4446

0.500 0.7717 2.2605 4.2581 6.7572 9.7567 13.2563 17.2561 21.7559 26.7557

0.750 2.1535 4.2858 6.8788 9.9539 13.5198 17.5803 22.1373 27.1920 32.7450

0.900 4.0457 6.7324 9.8503 13.4372 17.5088 22.0709 27.1272 32.6794 38.7288

0.950 5.4845 8.4904 11.9156 15.8047 20.1758 25.0360 30.3894 36.2381 42.5835

0.975 6.9229 10.1978 13.8848 18.0330 22.6618 27.7789 33.3888 39.4936 46.0949

0.990 8.8211 12.3994 16.3852 20.8310 25.7566 31.1703 37.0766 43.4779 50.3756
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Table 5.2
Limiting biases of T

(p−1)
01 and T12

(α = 5 × 10−2)

p T
(p−1)
01 T12

2 8.64 × 10−4 9.59 × 10−3

3 5.72 × 10−6 1.79 × 10−3

4 1.54 × 10−8 2.78 × 10−4

5 1.75 × 10−11 3.51 × 10−5
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where b1 > · · · > bp are distributed with density (3.4). Put d(α; p) = 0 when

P(
p∑

i=1

(bi ∨ 0)2 > 0) < α.

Table 5.2 shows the limiting biases of the tests T
(p−1)
01 and T12 when α = 0.05.

The first column of Table 5.2 gives

lim
M,N→∞

inf
H1−H

(p−1)
0

β
(p−1)
01 (δ) = P((bp ∨ 0)2 > d(α; 1)).

The method of calculating the distribution function of bp is given in Appendix B.
The second column of Table 5.2 is

lim
M,N→∞

inf
H2−H1

β12(δ) = P((b∗∗ ∧ 0)2 > d(α; p)),

where b∗∗ is distributed according to N(0, 1). Table 5.2 shows that the degree of
biases of two tests are very high.

6. Power comparisons.

In this section we study a Monte Carlo simulation to compare the powers of
several tests including the LRT. The null hypothesis is the equality of two covariance
matrices Φ = Ψ , and the alternative is the local hypothesis that

Φ = Ψ1/2

(
Ip +

√
2(M + N)

MN
∆

)
Ψ1/2

with ∆ = diag(δi)p×p, δi ≥ 0. We compare the limiting powers (M, N → ∞ with
M/(M + N) → ρ0) of four test criteria:

· One-sided likelihood ratio test based on the statistic Λ01 [ONE];
· Two-sided likelihood ratio test based on the statistic Λ02 [TWO];
· Roy’s test based on the largest root of HG−1 [ROY]; and
· Locally most powerful test of Giri (1968) based on the statistic trH(H +

G)−1 [LMP].
The limiting power functions of the four tests are

Pr(
p∑

i=0

(bi ∨ 0)2 > c), Pr(
p∑

i=0

bi
2 > c′), Pr(b1 > c′′), and Pr(

p∑
i=0

bi > c′′′),

respectively, where b1 > · · · > bp are the latent roots of p × p symmetric random
matrix A with normal density

1
2p/2πp2/2

tr(A − ∆)2.
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The average powers of the four tests over 100000 replications are given in Table
6.1 (for p = 4, size= 5%) and Table 6.2 (for p = 8, size= 5%). The results indicate
that: ONE has high power when rank∆ is small; LMP has high power when rank∆

is large; the character of ROY is similar to ONE, however, ONE is more powerful
than ROY even when rank∆ = 1; TWO is inferior to the one-sided tests ONE,
ROY and LMP.
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Table 6.1
Power (%, p = 4, size=5%)

δ1 δ2 δ3 δ4 ONE TWO ROY LMP

0.0 0.0 0.0 0.0 5 5 5 5

1.0 0.0 0.0 0.0 13 8 12 13

2.0 0.0 0.0 0.0 34 22 32 26

4.0 0.0 0.0 0.0 90 79 91 64

1.0 1.0 0.0 0.0 24 12 20 26

2.0 2.0 0.0 0.0 66 43 56 64

4.0 4.0 0.0 0.0 100 99 99 99

1.0 1.0 1.0 0.0 36 17 28 45

2.0 2.0 2.0 0.0 87 64 73 91

1.0 1.0 1.0 1.0 49 22 37 64

1.0 0.5 0.0 0.0 17 9 15 19

2.0 1.0 0.0 0.0 46 27 40 45

4.0 2.0 0.0 0.0 97 89 94 91

1.5 1.0 0.5 0.0 39 19 31 45

3.0 2.0 1.0 0.0 91 72 82 91

Underline denotes largest value in each row.
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Table 6.2
Power (%, p = 8, size=5%)

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 ONE TWO ROY LMP

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 5 5 5

2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21 12 19 17

4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 71 51 74 41

2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 46 23 35 41

4.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 98 89 95 88

1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 24 10 17 28

2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 69 37 50 68

4.0 4.0 4.0 0.0 0.0 0.0 0.0 0.0 100 99 99 99

1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 44 15 27 55

2.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 94 64 73 97

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 71 24 43 88

4.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 86 64 81 68

4.0 3.0 2.0 1.0 0.0 0.0 0.0 0.0 98 86 92 97

Underline denotes largest value in each row.
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Appendix A. Examples of the limiting distributions.

The limiting characteristic functions φ0(s, t) for 1 ≤ p ≤ 5 are presented as
follows. (θ = (1 − 2is)−

1
2 , ϕ = (1 − 2it)−

1
2 )

p =1 :
1
2
(θ + ϕ)

p =2 :

(− 1
2
√

2
+

1
2
)(θ3 + ϕ3) +

1
2
√

2
(θ2ϕ + θϕ2)

p =3 :

(− 1√
2π

+
1
4
)(θ6 + ϕ6) + (

1
2
√

2
− 1

4
)(θ5ϕ + θϕ5) +

1√
2π

(θ4ϕ2 + θ2ϕ4)

+ (− 1√
2

+ 1)θ3ϕ3

p =4 :

(− 1
2π

− 1
8
√

2
+

1
4
)(θ10 + ϕ10) + (

3
8
√

2
− 1

4
)(θ9ϕ + θϕ9)

+ (
1
π
− 3

8
√

2
)(θ8ϕ2 + θ2ϕ8) + (− 17

8
√

2
+

13
8

)(θ7ϕ3 + θ3ϕ7)

+ (− 1
2π

+
1

2
√

2
)(θ6ϕ4 + θ4ϕ6) + (

7
2
√

2
− 9

4
)θ5ϕ5

p =5 :

(− 1
12
√

2π
− 1

3π
+

1
8
)(θ15 + ϕ15) + (− 2

3π
+

1
8
√

2
+

1
8
)(θ14ϕ + θϕ14)

+ (− 11
12

√
2π

+
2
3π

)(θ13ϕ2 + θ2ϕ13)

+ (− 8
3
√

2π
+

8
3π

− 1
2
√

2
+

1
8
)(θ12ϕ3 + θ3ϕ12)

+ (− 1
4
√

2π
+

1
3π

)(θ11ϕ4 + θ4ϕ11) + (
6√
2π

− 5
π

+
13

8
√

2
− 13

16
)(θ10ϕ5 + θ5ϕ10)

+ (
17

4
√

2π
− 3

π
+

1√
2
− 9

16
)(θ9ϕ6 + θ6ϕ9)

+ (− 19
3
√

2π
+

16
3π

− 9
4
√

2
+

3
2
)(θ8ϕ7 + θ7ϕ8)
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In particular the asymptotic expansion of characteristic function φ(s, t) up to
O(1/ρN) for p = 2 is given by:

(− 1
2
√

2
+

1
2
)(θ3 + ϕ3) +

1
2
√

2
(θ2ϕ + θϕ2)

+
2ρ0 − 1√

ρN
{ 1
2
√

2π
(θ4 − ϕ4) +

√
π

4
√

2
(θ3ϕ − θϕ3)}

+
ρ0(1 − ρ0)

ρN
{( 1

12
√

2
− 13

24
)(θ5 + ϕ5) − 2

3
√

2
(θ4ϕ + θϕ4)

+
7

12
√

2
(θ3ϕ2 + θ2ϕ3) + (− 13

24
√

2
+

13
24

)(θ3 + ϕ3) +
13

24
√

2
(θ2ϕ + θϕ2)}

+
1

ρN
{(− 11

24
√

2
+

13
24

)(θ5 + ϕ5) +
5

12
√

2
(θ4ϕ + θϕ4) +

1
24

√
2
(θ3ϕ2 + θ2ϕ3)

+ (
13

24
√

2
− 13

24
)(θ3 + ϕ3) − 13

24
√

2
(θ2ϕ + θϕ2)}

+ O{ 1
(ρN)3/2

}

Appendix B. Distributions of the maximum and minimum roots.

Theorem B.1 Let b1 and bp be the maximum and minimum roots of the p × p

symmetric random matrix A with density (3.5). Then the distributions of b1 and
bp are given by

P(b1 ≤ x) = 1 − P(bp ≤ −x) = d(p)Vp(x; p − 1, . . . , 0),

where d(p) is defined in (3.4), and Vp(x; q1, . . . , qp) can be evaluated by the following
recurrence formula:

Vk(x; q1, . . . , qk)

= − e−
1
2 x2

xq1−1Vk−1(x; q2, . . . , qk)

+ (q1 − 1)Vk(x; q1 − 2, q2, . . . , qk)

+ 2
k∑

j=2

(−1)j 1
2

1
2 (q1+qj)

V1(
√

2x; q1 + qj − 1)Vk−2(x; q2, . . . , qj−1, qj+1, . . . , qk)

(k ≥ 2, q1 ≥ 1) and

V1(x; q) = −e−
1
2 x2

xq−1 + (q − 1)V1(x; q − 2) (q ≥ 1),

V1(x; 0) =
√

2πΦ(x).
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(Φ( · ) is the distribution function of N(0, 1))

(Proof) Note that

P(b1 ≤ x) = d(p)
∫

· · ·
∫

x>b1>···>bp

exp{−1
2

p∑
i=1

bi
2}

∏
i<j

(bi − bj)db1 . . . dbp.

By the method parallel to the proof of Theorem 3.3, these relations can be derived.

The distribution function P(b1 ≤ x) for 1 ≤ p ≤ 5 are provided as follows.
(Φ( · ), φ( · ) are the distribution function and the density function of N(0, 1))

p =1 :

Φ(x)

p =2 :

Φ(
√

2x) −
√

πφ(x)Φ(x)

p =3 :

Φ(x)Φ(
√

2x) − 2xφ(x)Φ(
√

2x) − 1√
π

φ(
√

3x)

p =4 :

Φ(
√

2x)2 −
√

π

2
(2x2 + 1)φ(x)Φ(x)Φ(

√
2x)

−
√

2xφ(
√

2x)Φ(
√

2x) − 1
2
xφ(

√
3x)Φ(x) − 1√

2π
φ(2x)

p =5 :

Φ(x)Φ(
√

2x)2 − 4
3
x3φ(x)Φ(

√
2x)2

− 1
3
√

2
(2x3 + 9x)φ(

√
2x)Φ(x)Φ(

√
2x)

− 1
6
√

π
(10x2 + 1)φ(

√
3x)Φ(

√
2x)

− 1
3
√

2π
(x2 + 4)φ(2x)Φ(x) − 1

2π
xφ(

√
5x)

The formulae of p ≤ 3 can be found in Muirhead (1982, p.424).
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III. One-sided test for the equality of two covariance
matrices concerning the complex multivariate nor-
mal population.

1. Introduction.

Let H and G be p × p random matrices which are independently distributed
according to the complex Wishart distributions CWp(M,Φ) and CWp(N, Ψ ), re-
spectively, where Φ and Ψ are assumed to be positive definite and M ≥ p, N ≥ p.
Consider the hierarchical hypotheses H0 ⊂ H

(r)
0 ⊂ H1 ⊂ H2 with

H0 : Φ = Ψ , H
(r)
0 : Φ ≥ Ψ , rank (Φ − Ψ ) ≤ r (0 < r < p),

H1 : Φ ≥ Ψ , H2 : Φ, Ψ are unrestricted.

Here A ≥ B denotes Löwner order meaning that A−B is nonnegative definite. In
this chapter the likelihood ratio tests (LRT’s) for the following hypotheses:

(i) T01 : LRT for testing H0 against H1 − H0,

(ii) T
(r)
01 : LRT for testing H

(r)
0 against H1 − H

(r)
0 , and

(iii) T12 : LRT for testing H1 against H2 − H1

are discussed. The main purpose is to derive the limiting null distributions of test
statistics of these LRT’s.

These testing problems appear in the multiple time series model with replica-
tions:

xj(t) = v(t) + uj(t), t = 1, . . . , T, j = 1, . . . , k, (1.1)

where xj(t) is a p×1 observed vector, v(t) is a p×1 unobserved stationary Gaussian
signal with zero mean and continuous spectral density matrix fv(ω), and uj(t) is a
p×1 unobserved stationary Gaussian noise with zero mean and continuous spectral
density matrix fu(ω) distributed independently of v(t) and ul(t) (l 6= j). Assume
that fu(ω) is positive definite for each ω. Let h = h(T ) be an integer such that
ωh = 2π(h − 1)/T → ω0 6= 0 (mod π) as T → ∞. Define

H = k
n∑

l=−n

X(ωh+l)X(ωh+l)∗ (1.2)

and

G =
n∑

l=−n

k∑
j=1

{Xj(ωh+l) − X(ωh+l)}{Xj(ωh+l) − X(ωh+l)}∗ (1.3)
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with

Xj(ω) =
1√
T

T∑
t=1

eitωxj(t), X(ω) =
1
k

k∑
j=1

Xj(ω),

where ‘∗’ denotes conjugate transpose. It is easy to see that H (1.2) and G (1.3)
are distributed independently. Moreover, using the usual chi-squared approxima-
tion of the smoothed periodogram (e.g. Brillinger, 1981, Section 5.4; Brockwell
and Davis, 1991, Section 10.5), we see that H (1.2) and G (1.3) are approxi-
mately distributed according to the complex Wishart distributions CWm(M,Φ) and
CWm(N, Ψ ), respectively, where Φ = fv(ω0) + kfu(ω0), M = 2n + 1, Ψ = fu(ω0)
and N = (2n + 1)(k − 1). Then, under this approximation, testing the null hy-
pothesis of no signal at the frequency ω0: fu(ω0) = O reduces to testing H0 based
on H (1.2) and G (1.3) against the one-sided alternative hypothesis H1 − H0. We
are also interested in testing the null hypothesis that the signal vectors are linear
combinations of r or less factors, which reduces to H

(r)
0 , and the alternative should

be H1 − H
(r)
0 . Testing the goodness of fit of the model (1.1) gives another type of

restricted inference, testing H1 against the alternative H2 − H1.

In the previous chapter we treated the similar testing problems for the multi-
variate variance components model, where H and G are distributed according to
the real Wishart distributions. The likelihood ratio test statistics and some of their
properties given in Section 2 closely parallel the results of the real case, however, the
limiting null characteristic function of the likelihood ratio criterion given in Section
3 can be represented in terms of determinant (not Pfaffian). Significance points
of these test statistics are tabulated in the same section. Appendix A illustrates
examples of the limiting null distributions.

2. LRT statistics and their properties.

We give the test statistics and their least favorable distributions to calculate
the significance points here. Let Λ01, Λ(r)

01 and Λ12 be the likelihood ratio criteria for
T01, T

(r)
01 and T12, respectively. The similar discussion to the real case of Anderson,

et al. (1986) yields that

Λ(r)
01 =

R∏
i=r+1

{ lρi
ρli + 1 − ρ

}M+N if R ≥ r + 1,

= 1 if R ≤ r,

Λ01 = Λ(0)
01 ,
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and

Λ12 =
p∏

i=R+1

{ lρi
ρli + 1 − ρ

}M+N if R ≤ p − 1,

= 1 if R = p,

with ρ = M/(M + N), l1 > · · · > lp the latent roots of (N/M)HG−1, and R the
number of li > 1. Since these statistics are functions of li’s, their distributions
depend only on the latent roots δ = (δ1, . . . , δp)′, δ1 ≥ · · · ≥ δp, of ΦΨ−1.

We can summarize the properties of the likelihood ratio tests as follows. The
proofs are the same as that of the real case of Chapter II.

Theorem 2.1
(i) The power function of T01, β01(δ) = Pδ(−2 log Λ01 > c) with c > 0, is mono-
tonically increasing in the components of δ. T01 is unbiased.
(ii) The power function of T

(r)
01 (0 < r < p), β

(r)
01 (δ) = Pδ(−2 log Λ(r)

01 > c) with
c > 0, is monotonically increasing in the components of δ. The least favorable
distribution of T

(r)
01 is given at δ1, . . . , δr ↑ +∞ and δr+1 = · · · = δp = 1. T

(r)
01 is

biased.
(iii) The power function of T12, β12(δ) = Pδ(−2 log Λ12 > c) with c > 0, is
monotonically decreasing in the components of δ. The least favorable distribution
of T12 is given at δ1 = · · · = δp = 1, i.e. when H0 holds. T12 is biased.

3. Limiting null distribution of LRT.

Firstly we treat T01 and T12. To obtain the significance points of T01 and
T12, we have to derive the distribution of Λ01 and Λ12 under H0 because the least
favorable distribution of T12 is given under H0. This section gives the limiting joint
distribution of Λ01 and Λ12 under H0.

Let φ(s, t) denote the joint characteristic function of −2 log Λ01 and −2 log Λ12

under H0, i.e. φ(s, t) = EH0Λ01
−2isΛ12

−2it. The joint density function of l1 > · · · >

lp > 0 is given by

c̃(p; M,N)
p∏

i=1

lM−p−1
i (

M

M + N
li +

N

M + N
)−(M+N)

∏
i<j

(li − lj)2,

where

c̃(p; M, N) =
πp(p−1)Γ̃p(M + N)
Γ̃p(M)Γ̃p(N)Γ̃p(p)

· MpMNpN

(M + N)p(M+N)

with Γ̃p(a) = πp(p−1)/2
∏p

i=1 Γ(a − i + 1). Define

bi =
1
2

√
MN

M + N
(li − 1), 1 ≤ i ≤ p.
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By letting M,N → ∞ with M/(M + N) → ρ0 (0 ≤ ρ0 ≤ 1) and bi fixed (i.e.
li → 1), the limiting joint density of b = (b1, . . . , bp), b1 > · · · > bp, is

ϕ0(b) = d̃(p) exp{−1
2

p∑
i=1

bi
2}

∏
i<j

(bi − bj)2 (3.1)

with

d̃(p) =
πp(p−2)/2

2p/2Γ̃p(p)
=

1
2p/2πp/2

∏p
i=1 Γ(i)

.

ϕ0(b) in (3.1) turns out to be the density of the latent roots of a p × p Hermitian
random matrix A with complex normal density

1
2p/2πp2/2

exp{−1
2
trAA∗}.

On the other hand it is easy to show that

lim
M,N→∞

−2 log Λ01 =
p∑

i=1

(bi ∨ 0)2, lim
M,N→∞

−2 log Λ12 =
p∑

i=1

(bi ∧ 0)2,

where x∨ y and x∧ y are the maximum and the minimum of x and y, respectively.
Therefore by Lemma 3.1 of Chapter II we get the characteristic function of the
limiting null distribution as

φ0(s, t) = lim
M,N→∞

φ(s, t)

=
∫

b1>···>bp

exp{is
p∑

i=1

(bi ∨ 0)2 + it

p∑
i=1

(bi ∧ 0)2}ϕ0(b)db

=
p∑

r=0

∫
Br×Bp−r

exp{is
r∑

i=1

bi
2 + it

p∑
i=r+1

bi
2}ϕ0(b)db (3.2)

with db =
∏p

i=1 dbi,

Br = {(b1, . . . , br) | b1 > · · · > br > 0},

Bp−r = {(br+1, . . . , bp) | 0 > br+1 > · · · > bp}.

By the Laplace expansion of the linkage factor
∏

i<j(bi − bj)2, which is the Van-
dermonde determinant squared {det(bi

p−j)1≤i,j≤p}2, (3.2) is

d̃(p)
p∑

r=0

∑
λ,µ

(−1)
∑r

i=1
(λi+µi)

×
∫

Br

exp{− 1
2θ2

r∑
i=1

bi
2}det(bi

p−λj )1≤i,j≤rdet(bi
p−µj )1≤i,j≤rdb1 . . . dbr

×
∫

Bp−r

exp{− 1
2ϕ2

p∑
i=r+1

bi
2}det(bi+r

p−λj )1≤i,j≤p−rdet(bi+r
p−µj )1≤i,j≤p−rdbr+1 . . . dbp

(3.3)
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where θ = (1−2is)−
1
2 and ϕ = (1−2it)−

1
2 ,

∑
λ,µ is summation over all combinations

of λ1 < · · · < λr, λ1 < · · · < λp−r, µ1 < · · · < µr, µ1 < · · · < µp−r such that

{λ1, . . . , λr, λ1, . . . , λp−r} = {µ1, . . . , µr, µ1, . . . , µp−r} = {1, . . . , p}.

Using the determinental Cauchy-Binet formula ((2.1) of Krishnaiah (1976), (2.12)
of Karlin and Rinott (1988)), (3.3) reduces to

d̃(p)
p∑

r=0

∑
λ,µ

(−1)
∑r

i=1
(λi+µi)det(G[λ,µ])det(G[λ, µ])θQϕQ (3.4)

with Q =
∑r

i=1(λi +µi)− r, Q = p2 −Q, G[λ, µ] = (gλiµj )1≤i,j≤r an r× r matrix,
G[λ,µ] = (gλiµj

)1≤i,j≤p−r a (p − r) × (p − r) matrix with

gij =
∫ ∞

0

e−
1
2 b2b2p−i−jdb = 2(2p−i−j−1)/2Γ

(
2p − i − j + 1

2

)
.

Here (3.4) is a characteristic function of a mixture of the bivariate chi-squared
distributions with Q and Q (0 ≤ Q,Q ≤ p2) degrees of freedom. Noting the
identity that, for two p × p matrices A and B,

det(A + B) =
p∑

r=0

∑
λ,µ

(−1)
∑r

i=1
(λi+µi)det(A[λ, µ])det(B[λ, µ]),

which corresponds to Lemma 3.2 of Chapter II, (3.4) is represented as

d̃(p) det(θD(θ)GD(θ) + ϕD(−ϕ)GD(−ϕ))

= d̃(p)det({θi+j−1 − (−ϕ)i+j−1}gij)1≤i,j≤p (3.5)

with G = (gij)1≤i,j≤p and D(ξ) = diag(ξi−1)1≤i≤p. By inverting the characteristic
function (3.5), we get the following formula.

Theorem 3.1 As M, N → ∞ with M/(M + N) → ρ0 (0 ≤ ρ0 ≤ 1), the limiting
joint distribution function of −2 log Λ01 and −2 log Λ12 under H0 is given by

lim
M,N→∞

PH0(−2 log Λ01 ≤ y,−2 log Λ12 ≤ z) =
p2∑

Q=0

w(Q; p2)GQ(y)GQ(z),

where w(Q; p2) is the coefficient of the term of θQϕQ in (3.4) or (3.5), Gν( · ) with
ν 6= 0 is the distribution function of the chi-squared distribution with ν degrees of
freedom and G0( · ) = I(0 ≤ · ).
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Appendix A gives the characteristic functions of the limiting null distribution
(3.5) for 1 ≤ p ≤ 5 obtained with REDUCE3, a software for algebraic computa-
tion. Table 3.1 shows the limiting α-significance points of T01 and T12, i.e., d(α; p)
satisfying

lim
M,N→∞

PH0(−2 log Λ01 > d(α; p)) = P(
p∑

i=1

(bi ∨ 0)2 > d(α; p)) = α,

where b1 > · · · > bp are distributed with density (3.1). Put d(α; p) = 0 when

P(
p∑

i=1

(bi ∨ 0)2 > 0) < α.

Next we can obtain the limiting null (least favorable) distribution of Λ(r)
01 . The

proof is given in the same manner as Theorem 3.2 of Chapter II.

Theorem 3.2 As M,N → ∞ with M/(M + N) → ρ0 (0 ≤ ρ0 ≤ 1),

lim
M,N→∞

sup
H

(r)
0

P(−2 log Λ(r)
01 ≤ y) =

p1
2∑

Q=0

w(Q; p1
2)GQ(y)

with p1 = p − r.
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Table 3.1
Limiting significance points of T01 and T12

1 − α \ p 2 3 4 5 6 7 8 9 10

0.010 0.0000 0.0220 0.8116 2.6165 5.4321 9.2526 14.0770 19.9041 26.7328

0.025 0.0000 0.1707 1.3574 3.5714 6.7989 11.0354 16.2759 22.5207 29.7670

0.050 0.0000 0.4166 1.9565 4.5305 8.1168 12.7141 18.3146 24.9203 32.5271

0.100 0.0000 0.8455 2.8049 5.7998 9.8042 14.8198 20.8376 27.8606 35.8841

0.250 0.2996 1.9389 4.6204 8.3267 13.0369 18.7548 25.4734 33.1955 41.9176

0.500 1.2526 3.7558 7.2540 11.7547 17.2543 23.7545 31.2543 39.7544 49.2543

0.750 2.9080 6.2558 10.5696 15.8628 22.1515 29.4335 37.7145 46.9923 57.2700

0.900 5.0344 9.1224 14.1599 20.1616 27.1565 35.1399 44.1219 54.0985 65.0748

0.950 6.6066 11.1271 16.5909 23.0134 30.4280 38.8297 48.2295 58.6233 70.0168

0.975 8.1564 13.0450 18.8739 25.6589 33.4355 42.1986 51.9597 62.7148 74.4692

0.990 10.1791 15.4872 21.7347 28.9381 37.1329 46.3148 56.4943 67.6683 79.8415
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Appendix A. Examples of the limiting distributions.

The limiting characteristic functions φ0(s, t) for 1 ≤ p ≤ 5 are presented as
follows. (θ = (1 − 2is)−

1
2 , ϕ = (1 − 2it)−

1
2 )

p = 1 :
1
2
(θ + ϕ)

p = 2 :

(
1
4
− 1

2π
)(θ4 + ϕ4) +

1
4
(θ3ϕ + θϕ3) +

1
π

θ2ϕ2

p = 3 :

(
1
8
− 3

8π
)(θ9 + ϕ9) + (

3
16

− 1
2π

)(θ8ϕ + θϕ8) +
1
4π

(θ7ϕ2 + θ2ϕ7)

+
1
2π

(θ6ϕ3 + θ3ϕ6) + (
3
16

+
1
8π

)(θ5ϕ4 + θ4ϕ5)

p = 4 :

(
1
16

− 29
96π

+
1

3π2
)(θ16 + ϕ16) + (

3
32

− 7
24π

)(θ15ϕ + θϕ15)

+ (
7

16π
− 4

3π2
)(θ14ϕ2 + θ2ϕ14) + (

3
32

− 1
4π

)(θ13ϕ3 + θ3ϕ13)

+ (
15
64

− 47
32π

+
8

3π2
)(θ12ϕ4 + θ4ϕ12) + (− 3

32
+

17
32π

)(θ11ϕ5 + θ5ϕ11)

+ (−3
8

+
17
6π

− 4
π2

)(θ10ϕ6 + θ6ϕ10) + (
5
32

+
1

96π
)(θ9ϕ7 + θ7ϕ9)

+ (
21
32

− 3
π

+
14
3π2

)θ8ϕ8

p = 5 :

(
1
32

− 145
768π

+
41

144π2
)(θ25 + ϕ25) + (

15
256

− 125
384π

+
4

9π2
)(θ24ϕ + θϕ24)

+ (
17

128π
− 5

12π2
)(θ23ϕ2 + θ2ϕ23) + (

109
384π

− 8
9π2

)(θ22ϕ3 + θ3ϕ22)

+ (
75
512

− 135
256π

+
2

9π2
)(θ21ϕ4 + θ4ϕ21) + (

15
128

− 237
512π

+
1

3π2
)(θ20ϕ5 + θ5ϕ20)

+ (−15
64

+
271
192π

− 73
36π2

)(θ19ϕ6 + θ6ϕ19)

+ (− 5
32

+
563
768π

− 5
9π2

)(θ18ϕ7 + θ7ϕ18) + (
345
512

− 271
64π

+
169
24π2

)(θ17ϕ8 + θ8ϕ17)

+ (
245
512

− 1949
768π

+
187
48π2

)(θ16ϕ9 + θ9ϕ16)

+ (−75
64

+
259
32π

− 155
12π2

)(θ15ϕ10 + θ10ϕ15)

+ (−15
16

+
1675
256π

− 121
12π2

)(θ14ϕ11 + θ11ϕ14)

+ (
765
512

− 13703
1536π

+
44
3π2

)(θ13ϕ12 + θ12ϕ13)
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IV. Tests for covariance structure in random coeffi-
cient regression model.

1. Introduction.

Let W be a p × p random matrix distributed according to the Wishart distri-
bution Wp(n, Φ) with Φ positive definite and n ≥ p. Let (νn/σ2)g be a random
variable distributed according to the chi-squared distribution χ2(νn), ν > 0. Define
hierarchical hypotheses H0 ⊂ H1 ⊂ H2 as

H0 : Φ = σ2Ip, H1 : Φ ≥ σ2Ip, and H2 : Φ, σ2 unrestricted,

where A ≥ B means that A − B is nonnegative definite. We treat two likelihood
ratio tests (LRT’s) based on the observed values W and g denoted by

T01 : LRT for testing H0 against H1 − H0,

and
T12 : LRT for testing H1 against H2 − H1.

Here the notations are due to Robertson, et al. (1988, Chapter 2) who discussed the
testing problems for the hierarchical hypotheses of the multivariate normal means.
In this chapter two basic properties, the unbiasedness of the LRT T01, and the
monotonicity of power function of the LRT T12 are proved. As n goes to infinity,
limiting null distributions of these two LRT statistics are derived as mixtures of chi-
squared distributions. Moreover for a general class of tests for testing H0 against
H1 − H0 including the LRT T01 the local unbiasedness is proved.

The hypothesis H1 is equivalent to

Φ = Θ + σ2Ip (1.1)

for some p×p nonnegative matrix Θ. This covariance structure (1.1) was introduced
by Rao (1965) who discuss multivariate regression models with random coefficients
(random effects model). When a Wishart matrix with a parameter Φ in (1.1) and
an unbiased estimate of σ2 are observed independently, testing the hypothesis that
Θ = O reduces to T01, and T12 is a test of goodness of fit of the covariance structure
(1.1). There are a lot of studies on testing problems for random effects models,
however, few paper treated the likelihood ratio test for the covariance structure
(1.1) exactly. One exception is Anderson, et al. (1986, Section 3) who derived the
likelihood ratio criterion of T01 in terms of Scheffé’s mixed model. Our discussions
are based on the result of Anderson, et al. (1986).
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Outline of this chapter is as follows. In Section 2 the unbiasedness of T01 and
the monotonicity of power function of T12 are proved. Section 3 gives the limiting
null distributions of the test statistics of T01 and T12 as mixtures of chi-squared
distributions. In Section 4 a general class of the tests for H0 against H1 − H0

including the LRT T01 are proved to be locally unbiased using FKG inequality
technique. Applications of T01 and T12 to random effects models are stated in
Section 5. Appendix A illustrates examples of the limiting null distributions for
p = 2, 3. In Appendix B we summarize the FKG inequality which is used in the
proof in Section 4. Here a new sufficient condition for the FKG condition is proved.

2. Properties of power functions of LRT.

2.1 LRT statistics.

In this section we shall prove the unbiasedness of the LRT T01 and the mono-
tonicity of power function of the LRT T12.

To begin with, we display the LRT statistics Λ01 and Λ12 of T01 and T12,
respectively. The LRT statistic Λ01 was basically given by Anderson, et al. (1986)
as

Λ01 =
m∗∏
i=1

ti
n/2 sm∗n(ν+p−m∗)/2

s0
n(ν+p)/2

if m∗ ≥ 1,

= 1 if m∗ = 0, (2.1)

where t1 > · · · > tp are the latent roots of (1/n)W ,

si =
νg +

∑p
j=i+1tj

ν + p − i
, 0 ≤ i ≤ p,

and m∗ a random integer such that

tm∗ ≥ sm∗ and tm∗+1 < sm∗+1. (2.2)

The random integer m∗ can be determined uniquely, because

ti+1 ≥ si+1 ⇒ ti ≥ si

or equivalently
ti+1 < si+1 ⇐ ti < si (2.3)

hold from the relation

ti − si = (ti − ti+1) +
ν + p − i − 1

ν + p − i
(ti+1 − si+1).
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Note that our definition of m∗ in (2.2) is equivalent to (3.13) of Anderson, et al.
(1986). Since the likelihood ratio criterion Λ02 for testing H0 against H2 − H0 is

Λ02 =
p∏

i=1

ti
n/2 sp

nν/2

s0
n(ν+p)/2

,

we have

Λ12 =
Λ02

Λ01
=

p∏
i=m∗+1

ti
n/2 sp

nν/2

sm∗n(ν+p−m∗)/2
if m∗ ≤ p − 1,

= 1 if m∗ = p. (2.4)

Figure 2.1 shows the acceptance regions in R2 of T01 and T12 defined by
{(t1, t2) |Λ01 ≤ c} and {(t1, t2) |Λ12 ≤ c}, respectively, for fixed g. Note that Λ01

is not monotone in t1.

2.2 Monotonicity of power function of the LRT T 12.

We prove that the power function of the LRT T12 is strictly monotone in the
latent roots of (1/σ2)Φ, and show that the least favorable distribution of Λ12 is
given when H0 holds. The following lemma is used in proving Theorems 2.1 and
2.2.

Lemma 2.1 The LRT statistic Λ12 is an increasing function of ti = ti/g, 1 ≤
i ≤ p. In particular Λ12 is strictly increasing in each argument of ti, 1 ≤ i ≤ p, on
the set {m∗ = 0}.
(Proof) Put

si =
si

g
=

ν +
∑p

j=i+1tj

ν + p − i
. (2.5)

On the set {m∗ = m} we have

−2 log Λ12 = n{−
p∑

i=m+1

log ti − ν log sp + (ν + p − m) log sm},

which depends only on tm+1, . . . , tp. And for j ≥ m + 1 it holds

1
n

∂

∂tj
(−2 log Λ12) = − 1

tj
+

1
sm

=
(ν + p − j)(tj − sj) −

∑j
i=m+1(ti − tj)

tj(ν +
∑p

i=m+1ti)
, (2.6)

which is not positive since tj−sj ≤ 0 and ti−tj ≥ 0 for m+1 ≤ i ≤ j. In particular
(2.6) is negative on the set {m∗ = 0} = {t1 < s1} since tj − sj < 0, 1 ≤ j ≤ p,
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Figure 2.1
Acceptance regions of T01 and T12
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holds from (2.3). Because Λ12 is a continuous function of t1, . . . , tp, the proof is
completed.

Theorem 2.1 The power function β12 of the LRT T12, P(Λ12 < c), 0 < c ≤ 1, is
a function of the latent roots δ = (δ1, . . . , δp), δ1 ≥ · · · ≥ δp, of (1/σ2)Φ. β12(δ) is
strictly decreasing in each component of δ. The least favorable distribution of T12

is given at δ = (1, . . . , 1) (= e, say), i.e. H0 is true. T12 is biased.

(Proof) We follow the same argument of Theorem 2 of Anderson and Das Gupta
(1964).

We can regard Λ12 in (2.4) as a function of W = (1/g)W and put f−(W ) =
Λ12. It is easy to see that the distribution of the latent roots of W depends only
on the latent roots of (1/σ2)Φ. The probability measure is denoted by P( · ; δ).
For two p × 1 positive vectors d1 and d2 such that d2 ≥ d1, i.e. all components of
d2 − d1 are nonnegative, we have that

f−(W ) ≤ f−(D1/2WD1/2) (2.7)

with D = diag(d1)
−1diag(d2) ≥ Ip because of Lemma 2.1 and the fact that

λi(W ) ≤ λi(D1/2WD1/2), 1 ≤ i ≤ p, (2.8)

where λi( · ) means the ith largest latent root. Therefore

P(f−(W ) < c ;d1) − P(f−(W ) < c ; d2)

= P(f−(W ) < c ; d1) − P(f−(D1/2WD1/2) < c ; d1)

= P(f−(W ) < c ≤ f−(D1/2WD1/2) ; d1) ≥ 0. (2.9)

If d1 6= d2 (i.e. D 6= Ip), the inequality of (2.9) holds strictly, because at least one
inequality of (2.8) holds strictly for positive definite W and hence

L.H.S. of (2.9) ≥ P(f−(W ) < c ≤ f−(D1/2WD1/2), m∗ = 0 ;d1) > 0

for 0 < c ≤ 1. This means the power function β12(δ) = P(f−(W ) < c ; δ) is strictly
decreasing in each component of δ.

supH1
β12(δ) is attained when δ = e, which means that the least favorable

distribution of T12 is given when H0 is true.
T12 is biased because infH2−H1 β12(δ), which attains when δ1, . . . , δp−1 ↑ +∞

and δp ↑ 1, is strictly less than α = supH1
β12(δ) = β12(e). The proof is completed.
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2.3 Unbiasedness of the LRT T 01.

From Lemma 2.1 we prove the unbiasedness of the LRT T01 with the aid of
the arguments by Sugiura and Nagao (1968) or Perlman (1980).

Theorem 2.2 The power function β01 of the LRT T01, P(Λ01 < c), 0 < c ≤ 1, is
a function of the latent roots δ of (1/σ2)Φ. T01 is strictly unbiased, i.e. β01(δ) ≥
β01(e) for δ ≥ e, and inequality holds strictly if δ 6= e.

(Proof) Similar to Λ12 we put f+(W ) = Λ01 in (2.1) as a function of W . Let
f(W ; δ) be the density function of W . By making the change of variables from
(W , g) to (W , g), and integrating the joint density of (W , g) with respect to g, we
can write

f(W ; δ) =K ′|D|−n/2|W |(n−p−1)/2(1 +
1
nν

trD−1W )−n(ν+p)/2 (2.10)

=K ′′f+(D−1/2WD−1/2)f−(D−1/2WD−1/2)|W |−(p+1)/2,

where D = diag(δ), K ′ and K ′′ are normalizing constants. The power function is
written as

β01(δ) = 1 − P(f+(W ) ≥ c ; δ) = 1 − P(f+(D1/2WD1/2) ≥ c ;e).

Put
ω0 ={W | f+(W ) ≥ c,W ≥ O},

ω1 ={W | f+(D1/2WD1/2) ≥ c,W ≥ O}

and

dµ(W ) =
(dW )

|W | 12 (p+1)

the invariant measure. Then for δ ≥ e (i.e. D ≥ Ip) we have

β01(δ) − β01(e)

= K ′′{
∫

ω0

−
∫

ω1

}f+(W )f−(W )dµ(W )

= K ′′{
∫

ω0−ω0∩ω1

−
∫

ω1−ω0∩ω1

}f+(W )f−(W )dµ(W )

≥ cK ′′{
∫

ω0−ω0∩ω1

−
∫

ω1−ω0∩ω1

}f−(W )dµ(W )

= cK ′′{
∫

ω0

−
∫

ω1

}f−(W )dµ(W )

= cK ′′
∫

ω0

{f−(W ) − f−(D−1/2WD−1/2)}dµ(W ), (2.11)
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since ∫
ω0∩ω1

f−(W )dµ(W ) ≤ 1
c

∫
f+(W )f−(W )dµ(W ) < ∞.

The R.H.S. of (2.11) is nonnegative because (2.7) yields

f−(W ) − f−(D−1/2WD−1/2) ≥ 0 (2.12)

for D ≥ Ip. Furthermore R.H.S. of (2.11) is positive when δ 6= e, because the
inequality of (2.12) holds strictly on the set {m∗ = 0} and the measure µ(ω0∩{m∗ =
0}) is not zero.

3. Limiting null distribution of the test statistics of LRT.

To obtain the significance points of the LRT’s T01 and T12, we have to derive
the distribution of Λ01 and Λ12 under H0 because the least favorable distribution of
Λ12 is given under H0. This section gives the limiting joint distribution of −2 log Λ01

and −2 log Λ12 under H0 as n goes to infinity. We use Lemma 3.1 of Chapter II to
obtain it.

Before deriving the distributions, we rewrite Λ01 (2.1) and Λ12 (2.4) in terms
of

ui =
ti
si

=
ti
si

, 1 ≤ i ≤ p.

Since (2.5) yields

si =
ti+1

ν + p − i
+

ν + p − i − 1
ν + p − i

si+1,

we have
si

si+1
= 1 +

ui+1 − 1
ν + p − i

. (3.1)

Then we get

−2 log Λ01 =n

m∗∑
i=1

{− log
ti
si

+ (ν + p − i + 1) log
si−1

si
}

=
p∑

i=1

I(ui > 1)gi(ui)

where
gi(u) = n{− log u + (ν + p − i + 1) log(1 +

u − 1
ν + p − i + 1

)}

and I( · ) indicator function. Similarly we get

−2 log Λ12 =
p∑

i=1

I(ui < 1)gi(ui).
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The function gi(u) is decreasing when u < 1, and increasing when u > 1, and hence
the LRT statistics −2 log Λ01 and −2 log Λ12 are nondecreasing and nonincreasing
functions of ui, 1 ≤ i ≤ p, respectively.

Since t1 > · · · > tp are (1/n) times the latent roots of W = (1/g)W whose
density is of the form of (2.10), joint null density of t1 > · · · > tp is given by

K(n, p, ν)
p∏

i=1

ti
(n−p−1)/2(1 +

∑p
i=1ti
ν

)−n(ν+p)/2
∏
i<j

(ti − tj)+, (3.2)

where

K(n, p, ν) =
πp2/2Γ(n(ν+p)

2 )
Γp(p

2 )Γp(n
2 )Γ(nν

2 )νnp/2
(3.3)

the normalizing constant, and (x)+ = x if x > 0, 0 otherwise. Here from (3.1) and
the fact sp = 1 it holds

si =
p∏

j=i+1

(1 +
uj − 1

ν + p − j + 1
)

and

ti = ui

p∏
j=i+1

(1 +
uj − 1

ν + p − j + 1
),

then the Jacobian of the transformation is given by∣∣∣∣ ∂(t1, . . . , tp)
∂(u1, . . . , up)

∣∣∣∣ =
p∏

i=1

si. (3.4)

From (3.2) and (3.4) the joint null density ϕ0 of u = (u1, . . . , up) is written as

ϕ0(u) = K(n, p, ν)
p∏

i=1

ti
(n−p−1)/2(1 +

∑p
i=1ti
ν

)−n(ν+p)/2
∏
i<j

(ti − tj)+
p∏

i=1

si. (3.5)

Define

bi = (n/2)1/2γi
−1(ui − 1), γi =

(
ν + p − i + 1

ν + p − i

)1/2

, 1 ≤ i ≤ p.

Then the joint null density of b = (b1, . . . , bp) is

ϕ0(u(b)) · (n/2)−p/2(
ν

ν + p
)
−1/2

. (3.6)
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As n → ∞ with bi fixed (i.e. ui → 1), one can see that ti → 1, si → 1, gi(ui) → bi
2,

(
ν

ν + p
)
−n(ν+p)/2

p∏
i=1

ti
n/2(1 +

∑p
i=1ti
ν

)−n(ν+p)/2 = exp{−1
2

p∑
i=1

gi(ui)}

→ exp{−1
2

p∑
i=1

bi
2}

and
(n/2)1/2(ti − ti+1) → γibi − γi+1

−1bi+1.

By Stirling’s formula it holds

K(n, p, ν)(n/2)−p(p+1)/4(
ν

ν + p
)
n(ν+p)/2−1/2

→ d(p) as n → ∞

with

d(p) =
πp(p−1)/4

2p/2Γp(p
2 )

=
1

2p/2
∏p

i=1 Γ( i
2 )

.

As a result the joint density function of b of (3.6) is shown to converge to

d(p) exp{−1
2

p∑
i=1

bi
2}

∏
i<j

{
j−1∑
k=i

(γkbk − γk+1
−1bk+1)}+ (3.7)

for each b ∈ Rp. On the other hand we can see that

−2 log Λ01 =
p∑

i=1

I(ui > 1)gi(ui) →
p∑

i=1

(bi ∨ 0)2

and

−2 log Λ12 =
p∑

i=1

I(ui < 1)gi(ui) →
p∑

i=1

(bi ∧ 0)2

for each b ∈ Rp, where x ∨ y and x ∧ y are the maximum and the minimum of x

and y, respectively. Following lemma shows that (3.7) is also a density function.

Lemma 3.1 (3.7) is a joint density of

bi = γi
−1{(ai − h) − 1

ν + p − i

p∑
j=i+1

(aj − h)}, 1 ≤ i ≤ p, (3.8)

where a1 > · · · > ap are the latent roots of p× p symmetric random matrix A with
the normal density

1
2p/2πp(p+1)/4

exp{−1
2
trA2}
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and h is a random variable distributed independently according to N(0, 1/ν).

(Proof) The joint density of a1 > · · · > ap is

d(p) exp{−1
2

p∑
i=1

ai
2}

∏
i<j

(ai − aj)+.

(Anderson, 1984b, Theorem 13.3.5.) Making the change of variables from
(a1, . . . , ap, h) to (f1, . . . , fp, h) by fi = ai − h, and integrating the joint density
with respect to h, we get the marginal density of f1 > · · · > fp as

d(p)(
ν

ν + p
)
1/2

exp
{
−1

2

( p∑
i=1

fi
2 −

(
∑p

i=1 fi)2

ν + p

)} ∏
i<j

(fi − fj)+. (3.9)

Put ei =
∑p

j=i+1 fj/(ν + p − i), 0 ≤ i ≤ p − 1, and ep = 0. Noting that bi =
γi

−1(fi − ei) and
fi − ei = (ν + p − i + 1)(ei−1 − ei), (3.10)

we can see that

bi
2 = fi

2 − (ν + p − i + 1)ei−1
2 + (ν + p − i)ei

2,

and hence
p∑

i=1

bi
2 =

p∑
i=1

fi
2 − (ν + p)e0

2 =
p∑

i=1

fi
2 −

(
∑p

i=1 fi)2

ν + p
. (3.11)

From (3.10) it holds

ei =
p∑

j=i+1

(ej−1 − ej) =
p∑

j=i+1

γj

ν + p − j + 1
bj

and

fi = γibi + ei = γibi +
p∑

j=i+1

γj

ν + p − j + 1
bj .

Then we have
fi − fi+1 = γibi − γi+1

−1bi+1. (3.12)

From (3.9), (3.11), (3.12) and the fact
∏

i dbi = {ν/(ν + p)}1/2
∏

i dfi, we see that
(3.7) is the joint density of (b1, . . . , bp) defined in (3.8). The proof is completed.

By applying Lemma 3.1 of Chapter II, we obtain the following theorem:

Theorem 3.1 As n goes to infinity, (−2 log Λ01,−2 log Λ12) converges to
(
∑p

i=1(bi ∨ 0)2,
∑p

i=1(bi ∧ 0)2) in distribution under H0, where (b1, . . . , bp) are dis-
tributed with density (3.7).
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The joint characteristic function of the limiting distribution is given by

φ(s, t) =E[exp{is
p∑

i=1

(bi ∨ 0)2 + it

p∑
i=1

(bi ∧ 0)2}]

=
p∑

m=0

E[I(m∗ = m) exp{is
m∑

i=1

bi
2 + it

p∑
i=m+1

bi
2}]

=d(p)
p∑

m=0

∫
Bm×Bp−m

exp{−1
2
(1 − 2is)

m∑
i=1

bi
2 − 1

2
(1 − 2it)

p∑
i=m+1

bi
2}

× ∆(b1, . . . , bp)db1 · · · dbp, (3.13)

where m∗ is a random integer such that bm∗ ≥ 0 > bm∗+1,

∆(b1, . . . , bp) =
∏
i<j

{
j−1∑
k=i

(γkbk − γk+1
−1bk+1)} (3.14)

and

Bm = {(b1, . . . , bm) | γkbk − γk+1
−1bk+1 > 0, 1 ≤ k ≤ m − 1, bm > 0},

Bp−m = {(bm+1, . . . , bp) | γkbk − γk+1
−1bk+1 > 0, m + 1 ≤ k ≤ p− 1, bm+1 < 0}.

Putting

ci = ci
(m)(bi, . . . , bm) =

m−1∑
k=i

(γkbk − γk+1
−1bk+1) + γmbm, 1 ≤ i ≤ m,

dj = dj
(m)(bm+1, . . . , bp−j+1) = γm+1

−1(−bm+1) +
p−j∑

k=m+1

(γkbk − γk+1
−1bk+1),

1 ≤ j ≤ p − m,

we have that (3.14) is

∏
1≤i<j≤m

(ci − cj) ×
∏

1≤i<j≤p−m

(di − dj) ×
m∏

i=1

p−m∏
j=1

(ci + dj). (3.15)

By Macdonald (1979, p.37, Example 5) (3.15) can be expressed as∑
q

det(ci
qj )1≤i,j≤m det(di

qj )1≤i,j≤p−m, (3.16)

where the summation
∑

q is over all combinations p − 1 ≥ q1 > · · · > qm ≥ 0,
p − 1 ≥ q1 > · · · > qp−m ≥ 0 such that

{q1, . . . , qm, q1, . . . , qp−m} = {0, 1, . . . , p − 1}.
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Using (3.16), (3.13) reduces to

φ(s, t) = d(p)
p∑

m=0

∑
q

UmUp−m(1 − 2is)−Q/2(1 − 2it)−Q/2, (3.17)

where Q =
∑m

i=1 qi + m, Q =
∑p−m

i=1 qi + p − m = p(p + 1)/2 − Q,

Um = Um(q1, . . . , qm) =
∫

Bm

exp{−1
2

m∑
i=1

bi
2}det(ci

qj )1≤i,j≤mdb1 · · · dbm (3.18)

for m ≥ 1 and

Up−m =Up−m(q1, . . . , qm)

=
∫

Bp−m

exp{−1
2

p−m∑
i=1

bi+m
2}det(di

qj )1≤i,j≤p−mdbm+1 · · · dbp (3.19)

for p−m ≥ 1, U0 = U0 = 1. By inverting the characteristic function (3.17), we get
the following formula.

Theorem 3.2 As n goes to infinity, the limiting joint distribution function of
−2 log Λ01 and −2 log Λ12 under H0 is given by

lim
n→∞

PH0(−2 log Λ01 ≤ y,−2 log Λ12 ≤ z)

= d(p)
p∑

m=0

∑
q

UmUp−mGQ(y)GQ(z)

where Gν( · ), ν > 0, is the distribution function of the chi-squared distribution
with ν degrees of freedom and G0( · ) = I(0 ≤ · ).

Differently from the model discussed in Chapter II it is not easy to evaluate the
integrals (3.18) and (3.19) when p is not small. Appendix A gives the limiting
characteristic functions (3.17) for p = 2, 3.

4. Local unbiasedness of a general class of tests for H0 against H1 −H0.

In Section 3 the LRT statistic Λ01 was shown to be a nondecreasing function
of ui, 1 ≤ i ≤ p. Here we consider a a more general class C of the critical function
φ : (0,∞)p → [0, 1] which is nondecreasing in each argument of u ∈ {ϕ0 > 0} , and
not constant on {ϕ0 > 0} . The tests based on the statistics u1,

∑p
i=1 ti (F-test)

are also in the class C. In this section we prove that the test in the class C is locally
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unbiased as the test for H0 against H1 − H0 using the FKG inequality which is
summarized in Appendix B.

Before proving the theorem we provide a following lemma.

Lemma 4.1 The density ϕ0 in (3.5) on (0,∞)p satisfies (B.1) (FKG condition).

(Proof) It is sufficient to prove (a) and (b) of Lemma B.1.
Proof of (a) : Note that ϕ0 > 0 ⇔ ti−ti+1 > 0, 1 ≤ i ≤ p−1 ⇔ ui−gi+1(ui+1) > 0,
1 ≤ i ≤ p − 1 with

gi+1(u) = u

(
1 +

u − 1
ν + p − i

)−1

.

Because the function gi+1(u) is an increasing function on u > 0, {ϕ0 > 0} is of the
form of (B.4).
Proof of (b) : On the set {ϕ0 > 0} , log ϕ0 can be expressed as

∑p
i=1 ηi(ui)+L(u)

for some functions ηi and L(u) =
∑

i<j log(ti− tj). Therefore we only have to show
that ∂2L/∂ul∂um ≥ 0, l < m, on {ϕ0 > 0} . Note first that

∂ti
∂uj

=
ti

uj + ν + p − j
if i < j,

=
ti
ui

if i = j,

= 0 otherwise.

Using the above relations some straightforward calculations yield

∂2L

∂ul∂um
=

∑
i<l

ti
ul + ν + p − l

Eim +
tl
ul

Elm, l < m,

with

Eim =
(

tm
um

− tm
um + ν + p − m

)
1

(ti − tm)2
− 1

um + ν + p − m

∑
j>m

tj
(ti − tj)2

for i ≤ l. Noting that for i < m,

∑
j>m

tj
(ti − tj)2

<
1

(ti − tm)2
∑
j>m

tj =
1

(ti − tm)2
{(ν + p − m)

tm
um

− ν},

then
Eim >

ν

(ti − tm)2(um + ν + p − m)
> 0,

which implies ∂2L/∂ul∂um > 0. The proof is completed.
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Remark 4.1 The limiting joint density of (3.7) is also proved to satisfy (B.1) by
the same way.

Using Lemma 4.1 we can prove the following result.

Theorem 4.1 Let φ be a critical function in the class C, and let β(δ) be the
power function with δ = (δ1, . . . , δp) the latent roots of (1/σ2)Φ. Then

∂

∂λ
β(e + λc)

∣∣∣∣
λ=0

> 0 if
p∑

i=1

ci > 0,

with e = (1, . . . , 1) and c = (c1, . . . , cp). This means that the test φ is locally
unbiased as a test for H0 (δi ≡ 1) against the alternative

∑p
i=1 δi > p (which

includes H1 − H0).

(Proof) The non-null joint density ϕ of u = (u1, . . . , up) is given by

ϕ(u; δ) =K(n, p, ν)|D|−n/2

p∏
i=1

ti
(n−p−1)/2

∏
i<j

(ti − tj)+
p∏

i=1

si

×
∫

O(p)

(dH)(1 +
1
ν

trD−1HTH ′)−n(ν+p)/2

where T = diag(t1, . . . , tp) p×p diagonal matrix, D = diag(δ1, . . . , δp) p×p diagonal
matrix, (dH) the normalized invariant measure over O(p) such that

∫
O(p)

(dH) = 1,
K(n, p, ν) the normalizing constant given in (3.3). Then

∂

∂δi
ϕ(u; δ)

∣∣∣∣
δ=e

=
{

n(ν + p)
2ν

(1 +
1
ν

∑
j

tj)−1

∫
O(p)

(dH)
∑

j

hij
2tj −

n

2

}
ϕ0(u)

=h(u)ϕ0(u),

where hij is (i, j)-th element of H and

h(u) =
n

2

(
ν + p

p

∑
tj

ν +
∑

tj
− 1

)
.

Here h(u) is strictly increasing in each argument of u ∈ {ϕ0 > 0} and∫
h(u)ϕ0(u)du = 0.

By virtue of Lemma 4.1, we apply Theorem B.1 (FKG inequality) as

∂

∂λ
β(e + λc)

∣∣∣∣
λ=0

= (
∑

ci)
∫

φ(u)h(u)ϕ0(u)du

> (
∑

ci)
∫

φ(u)ϕ0(u)du ·
∫

h(u)ϕ0(u)du.

= 0.
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The proof is completed.

5. Applications to testing problems in random coefficient regression
model.

In this section we state applications of the LRT’s T01 and T12 to the following
random coefficient regression model proposed by Rao (1965):

yi = Fui + ei, i = 1, . . . , N, (5.1)

where yi is a k × 1 observed vector, F a k × p (k > p) design matrix with rank
p, ui a p × 1 unobserved random effect vector, and ei a k × 1 unobserved random
effect measurement error. ui and ei are independently distributed according to the
normal distributions Np(ζ,Λ) and Nk(0, σ2Ik), respectively. This is the balanced
case because the design matrix F does not depend on i. If F ′ = (Ip . . . Ip)p×pr

(k = pr), (5.1) reduces to

yij = ui + eij , i = 1, . . . , N, j = 1, . . . , r,

where yij and eij are p×1 vector such that yi
′ = (yi1

′ . . . yir
′), ei

′ = (ei1
′ . . .eir

′).
This is Scheffé’s mixed model with replications (Scheffé, 1959, Chapter 8) discussed
in Section 3 of Anderson, et al. (1986). For other applications of the model (5.1),
see Johansen (1984, Chapter 4), Lange and Laird (1989), Crowder and Hand (1990,
Chapter 6), etc.

We start with transforming (5.1) into the canonical form. Let H = (H1 H2)
be a k×k orthogonal matrix such that H1 is k×p, H2 is k×(k−p), and H2

′F = O.
Putting zi = H ′yi, i = 1, . . . , N , ξ1 = Gζ, Θ = GΛG′ with G = H1

′F , we have
the canonical model

M1 : zi ∼ Nk

((
ξ1

0

)
,

(
Θ + σ2Ip O

O σ2Ik−p

))
, i = 1, . . . , N, i.i.d.

Then, as a test for the hypothesis that the coefficients ui are constant, i.e. the
hypothesis Λ = O, we can use the LRT T01 for testing Θ = O based on the
statistic Λ01 (2.1) with

W = S11 and g =
1

N(k − p)
tr(S22 + T 22), (5.2)

where

S =
(

S11 S12

S21 S22

)
=

N∑
i=1

(zi − z)(zi − z)′,

T =
(

T 11 T 12

T 21 T 22

)
= Nz z′, z =

1
N

N∑
i=1

zi.
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Next we consider the more general model than M1 as

M3 : zi ∼ Nk

((
ξ1

ξ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
, i = 1, . . . , N, i.i.d.

and obtain a test for goodness of fit of M1 against M3 (Johansen, 1984, Section 4).
We settle an intermediate model between the models M1 and M3 as

M2 : zi ∼ Nk

((
ξ1

0

)
,

(
Σ11 O
O σ2Ik−p

))
, i = 1, . . . , N, i.i.d.

and divide this testing problem into two parts: testing goodness of fit of M1 against
M2, and testing goodness of fit of M2 against M3. For testing M1 against M2 we
can use the LRT T12 based on the statistic Λ12 with W and g in (5.2). For testing
M2 against M3 likelihood ratio criterion can be easily obtained as

Λ23 =
{

|S|
|S11||S22|

× |S22|
|S22 + T 22|

× |S22 + T 22|
{ 1

k−p tr(S22 + T 22)}k−p

}N/2

.

Note that three components of Λ23 combined by the symbols ‘×’ are familiar likeli-
hood ratio criteria for testing the hypotheses Σ12 = O, ξ2 = 0 and Σ22 = σ2Ik−p,
respectively.

Concerning the null distribution of Λ12 and Λ23, it holds that:

Lemma 5.1 Under the null model M1, Λ12 and three components of Λ23 are
mutually independent.

(Proof) Under the model M1, four matrices S11, S22·1 = S22 − S21S11
−1S12,

B = S21S11
−1S12 and T 22 are distributed independently according to Wp(N −

1, Θ + σ2Ip), Wk−p(N − p − 1, σ2Ik−p), Wk−p(p, σ2Ik−p), and Wk−p(1, σ2Ik−p),
respectively. Noting that Λ12 is a function of S11 and tr(S22·1 + B + T 22), and
that

Λ23 =
{

|S22·1|
|S22·1 + B|

× |S22·1 + B|
|S22·1 + B + T 22|

× |S22·1 + B + T 22|
{ 1

k−p tr(S22·1 + B + T 22)}k−p

}N/2

,

we can obtain the proof easily.

Then by choosing α′ and α′′ such that 1 − α = (1 − α′)(1 − α′′), we can construct
a level-α test for goodness of fit of the model M1 as a step-down testing procedure
combining: a level-α′ test based on Λ23 (or its three components); and a level-α′′

test based on Λ12. For step-down testing procedures, see Anderson (1984b, Section
9.6).
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6. Power comparisons.

In this section we study a Monte Carlo simulation to compare the powers
of several tests including the LRT. The null hypothesis is Φ = σ2Ip, and the
alternative is local hypothesis that

Φ = σ2

(
Ip +

√
2
n

∆

)
with ∆ = diag(δi)p×p, δi ≥ 0. We compare the limiting powers (n → ∞) of four
test criteria:

· One-sided likelihood ratio test based on the statistic Λ01 [ONE];
· Two-sided likelihood ratio test based on the statistic Λ02 = Λ01Λ12 [TWO];
· Test based on the statistic u1 [MAX];
· Test based on the F -statistic trH/g [F].

The limiting power functions of the four tests are

Pr(
p∑

i=0

(bi ∨ 0)2 > c), Pr(
p∑

i=0

bi
2 > c′), Pr(b1 > c′′), and Pr(

p∑
i=0

bi > c′′′),

respectively, where

bi =

√
ν + p − i

ν + p − i + 1
{(ai − h) − 1

ν + p − i

p∑
j=i+1

(aj − h)}, 1 ≤ i ≤ p;

a1 > · · · > ap are the latent roots of p×p symmetric random matrix A with normal
density

1
2p/2πp2/2

tr(A − ∆)2,

and h is a random variable independently distributed according to N(0, 1/ν).
The average powers of the four tests over 100000 replications are given in Table

6.1 (for p = 4, ν = 1, size= 5%) and Table 6.2 (for p = 8, ν = 1, size= 5%). The
results indicate that the performance of ONE, TWO, MAX and F are very similar
to ONE, TWO, ROY and LMP of Section 6 in Chapter II, respectively.
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Table 6.1
Power (%, p = 4, ν = 1, size=5%)

δ1 δ2 δ3 δ4 ONE TWO MAX F

0.0 0.0 0.0 0.0 5 5 5 5

1.0 0.0 0.0 0.0 9 7 8 8

2.0 0.0 0.0 0.0 21 18 22 11

4.0 0.0 0.0 0.0 73 67 78 23

1.0 1.0 0.0 0.0 12 9 10 11

2.0 2.0 0.0 0.0 33 25 24 23

4.0 4.0 0.0 0.0 92 87 80 55

1.0 1.0 1.0 0.0 14 9 10 16

2.0 2.0 2.0 0.0 37 26 21 38

1.0 1.0 1.0 1.0 14 7 9 23

1.0 0.5 0.0 0.0 10 8 8 9

2.0 1.0 0.0 0.0 23 17 20 16

4.0 2.0 0.0 0.0 76 67 69 38

1.5 1.0 0.5 0.0 16 11 12 16

3.0 2.0 1.0 0.0 49 37 35 38

Underline denotes largest value in each row.



62

Table 6.2
Power (%, p = 8, ν = 1, size=5%)

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 ONE TWO MAX F

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 5 5 5

2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 11 14 8

4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49 44 62 12

2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 22 18 18 12

4.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 82 76 75 24

1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 10 8 8 10

2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 29 23 19 17

4.0 4.0 4.0 0.0 0.0 0.0 0.0 0.0 93 89 75 41

1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 12 9 8 14

2.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 37 26 18 32

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 12 6 7 24

4.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 57 50 58 17

4.0 3.0 2.0 1.0 0.0 0.0 0.0 0.0 69 60 53 32

Underline denotes largest value in each row.
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Appendix A. Examples of the limiting distributions.

The limiting characteristic functions φ(s, t) in (3.17) for p = 2, 3 are presented
as follows. (θ = (1 − 2is)−

1
2 , ϕ = (1 − 2it)−

1
2 )

p =2 :

{1
2
− 1

2
√

2

√
ν

ν + 1
}θ3 +

1
2
√

2

√
ν + 2
ν + 1

θ2ϕ

+
1

2
√

2

√
ν

ν + 1
θϕ2 + {1

2
− 1

2
√

2

√
ν + 2
ν + 1

}ϕ3

p =3 :[ 1
2π

{sin−1

√
ν + 3

3(ν + 1)
+ sin−1

√
2(ν + 3)
3(ν + 2)

} − 1√
2π

√
ν(ν + 3)
ν + 1

]
θ6

+ { 1
2
√

2

√
ν + 1
ν + 2

− 1
4

ν − 1
ν + 1

}θ5ϕ +
1√
2π

√
ν(ν + 3)3

(ν + 1)(ν + 2)
θ4ϕ2

+ {− 1√
2

ν + 3/2√
(ν + 1)(ν + 2)

+
ν2 + 3ν + 3/2
(ν + 1)(ν + 2)

}θ3ϕ3

+
1√
2π

√
ν3(ν + 3)

(ν + 1)(ν + 2)
θ2ϕ4 + { 1

2
√

2

√
ν + 2
ν + 1

− 1
4

ν + 4
ν + 2

}θϕ5

+
[ 1
2π

{sin−1

√
ν

3(ν + 2)
+ sin−1

√
2ν

3(ν + 1)
} − 1√

2π

√
ν(ν + 3)
ν + 2

]
ϕ6

By letting ν → ∞ they agree with the formulae given in Appendix A of Chapter
II.

Appendix B. A sufficient condition for the FKG condition.

We summarize the FKG inequality and prove a sufficient condition for the
FKG condition. Let ϕ be a density on X ∈ Rn with respect to the measure µ,
where X =

∏n
i=1 Xi with Xi an interval of R1, and µ =

∏n
i=1 µi with µi a σ-finite

measure on Xi. For two points x = (x1, . . . , xn), y = (y1, . . . , yn) in X, write x ≤ y

iff xi ≤ yi, 1 ≤ i ≤ n, and write x ∧ y = (v1, . . . , vn), x ∨ y = (w1, . . . , wn) with
vi = xi ∧ yi, wi = xi ∨ yi. We call that the density ϕ satisfies the FKG condition
(or MTP2 property) when

ϕ(x)ϕ(y) ≤ ϕ(x ∧ y)ϕ(x ∨ y) for all x, y ∈ X. (B.1)

The density which satisfies the FKG condition is known to satisfy the following
inequality.
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Theorem B.1 Suppose that the density ϕ satisfies the FKG condition (B.1) and
that the functions g and h on X are nondecreasing in each argument on {ϕ > 0} ,
i.e. for x,y ∈ {ϕ > 0} x ≤ y implies g(x) ≤ g(y) and h(x) ≤ h(y). Then the
FKG inequality ∫

X

ghϕdµ ≥
(∫

X

gϕdµ
)(∫

X

hϕdµ
)

(B.2)

holds provided that the integrals exist. In addition, suppose that g is not constant
on {ϕ > 0} and that h is strictly increasing on {ϕ > 0} , i.e. for x, y ∈ {ϕ > 0}
x ≤ y and x 6= y implies h(x) < h(y), then the inequality in (B.2) holds strictly.

(Proof) See, for example, Perlman and Olkin (1980, Proposition 2.4 and Remark
2.5).

When we apply the FKG inequality, the FKG condition should be verified.
One useful sufficient condition for (B.1) is that ϕ on X is positive and has second
derivatives, and that

∂2

∂xi∂xj
log ϕ(x1, . . . , xn) ≥ 0 for all i < j, (B.3)

see Kemperman (1977, p. 329, Remark 1). The condition ϕ > 0 is, however, too
strict to be satisfied in many applications. We therefore present a weaker sufficient
condition for the FKG condition as follows.

Lemma B.1 The density ϕ on X satisfies the FKG condition (B.1) provided
that
(a) {x ∈ X | ϕ(x) > 0} = X ∩ D where

D =
∩

α∈A

{x | fα(xiα) − gα(xjα) > 0} (B.4)

for some nondecreasing functions fα, gα on Xiα , Xjα , iα < jα, respectively,
and the set of indices A;

and
(b) ϕ(x) has second derivatives on {ϕ > 0} and satisfies (B.3) for x ∈ {ϕ > 0} .

(Proof) If ϕ(x) = 0 or ϕ(y) = 0 then (B.1) holds trivially. Let x = (x1, . . . , xn)
and y = (y1, . . . , yn) be fixed in {ϕ > 0} . Let further vi = xi ∧ yi and wi = xi ∨ yi.
Without loss of generality we permute the coordinates such that

x = (w1, . . . , wr, vr+1, . . . , vn), y = (v1, . . . , vr, wr+1, . . . , wn)

where r = ]{xi ≥ yi}, and that

∀i < j, ∃i′, j′ s.t. vi = xi′ , vj = xj′ ⇒ i′ < j′,
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and
∀i < j, ∃i′, j′ s.t. wi = xi′ , wj = xj′ ⇒ i′ < j′.

On the other hand, this permutation of coordinates changes the expression of
(B.4) as D = D1 ∩ D2 ∩ D3 ∩ D4 with

Dk =
∩

α∈Ak

{x | fα(xiα) − gα(xjα) > 0}, 1 ≤ k ≤ 4,

where

A1 = {α ∈ A | iα < jα ≤ r}, A2 = {α ∈ A | r + 1 ≤ iα < jα},

A3 = {α ∈ A | iα ≤ r, r + 1 ≤ jα}, A4 = {α ∈ A | jα ≤ r, r + 1 ≤ iα}.

Define the sequence with double suffix {xij ∈ Rn} by

xij =(w1, . . . , wi, vi+1, . . . , vr, wr+1, . . . , wr+j , vr+j+1, . . . , vn),

i = 0, . . . , r, j = 0, . . . , s,

with s = n − r. Note that x = xr0, y = x0s, x ∧ y = x00, x ∨ y = xrs. Define the
closed rectangle Sij which has four vertices {xi−1,j−1, xi,j−1,xi,j , xi−1,j}. Suppose
the statement that

x, y ∈ D ⇒ Sij ⊂ D for all 1 ≤ i ≤ r, 1 ≤ j ≤ s, (B.5)

which shall be proved later. Then if ϕ satisfies (b), by integrating (B.3) with respect
to xi and xj over Sij , we get

0 < ϕ(xi,j−1)ϕ(xi−1,j) ≤ ϕ(xi−1,j−1)ϕ(xi,j).

Therefore from the argument of Kemperman (1977, p.329, Assertion (i)) or Karlin
and Rinott (1980, Proposition 2.1), we see that the FKG condition (B.1) holds.

Finally we prove (B.5). We only have to prove that if x,y ∈ D then x∗ ∈ D

with
x∗ = (w1, . . . , wi−1, vi + s(wi − vi), vi+1, . . . , vr,

wr+1, . . . , wr+j−1, vr+j + t(wr+j − vr+j), vr+j+1, . . . , vn),

for 0 ≤ s ≤ 1, 0 ≤ t ≤ 1.

The assumption x, y ∈ D1 means

fα(vi) − gα(vj) > 0, fα(wi) − gα(wj) > 0, i < j ≤ r,

which implies x∗ ∈ D1 because

fα(wi) − gα(vj + s(wj − vj)) ≥ fα(wi) − gα(wj) > 0,
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and
fα(vi + s(wi − vi)) − gα(vj) ≥ fα(vi) − gα(vj) > 0

for all 0 ≤ s ≤ 1. The assumption x, y ∈ D2 also implies x∗ ∈ D2. The assumption
y ∈ D3 means

fα(vi) − gα(wj) > 0, i ≤ r, r + 1 ≤ j,

which implies x∗ ∈ D3 because

fα(vi + s(wi − vi)) − gα(vj + t(wj − vj)) ≥ fα(vi) − gα(wj) > 0

for all 0 ≤ s, t ≤ 1. The assumption x ∈ D4 also implies x∗ ∈ D4. Therefore we
prove x∗ ∈ D and (B.5) is established. The proof is completed.

Remark B.1 If the density ϕ on X which satisfies (a) of Lemma B.1 is TP2

(Karlin, 1968) in each pair of the coordinates, ϕ can be proved to satisfy the FKG
condition by the same way.
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論 文 の 内 容 の 要 旨

論文題目 Likelihood Ratio Tests in Multivariate

Variance Components Models

（多変量分散成分模型に関する尤度比検定の研究）

氏 名 栗木 哲

因子（効果）を確率変数で記述する分散分析模型は変量模型，あるいは

分散成分模型と呼ばれる．このモデルは長い歴史を持ち，理論，応用の両面

にわたって莫大な数の研究がなされている．ところがこれらの分散成分模型

（特に多変量分散成分模型）における最尤推定や尤度比検定は，その推定量

や検定統計量が場合分けを含む複雑な関数となるという困難のために，現在

でもそれらの導出方法が研究対象とされている段階であり，統計的性質に関

する研究はほとんどなされていない．本論文は，３つの典型的な多変量分散

成分模型に関する尤度比検定について，有意点計算の際に必要な検定統計量

の帰無仮説の下での漸近分布を導き，また不偏性，検出力の単調性などのい

くつかの性質を調べたものである．

分散成分模型は，不等式制約で制限された空間がモデルの下で許容され

る母数空間になる，という著しい特徴を持つ．そのため効果行列（多変量分

散成分の分散行列）の最尤推定量は固有根の関数の符号による場合分けを含



んだ複雑な形で与えられる．同様の困難は効果行列の尤度比検定の際にも生

じる．Chernoff (1954) は，制約された母数空間の下での尤度比検定統計量

の漸近帰無分布に関する一般的な議論を展開した．Chernoff の理論は我々の

扱う効果行列に関する仮説検定問題に対して適用可能であることが示される

ので，Shapiro (1985, 1988) などの結果と併せて尤度比検定統計量の帰無仮

説の下での漸近分布はカイ・バー・二乗分布と呼ばれるカイ二乗分布の混合

分布であることが分かる．しかしその混合確率は，個々のモデルで個別に求

められなければならない．それらの導出が本論文の主要な目的の一つである．

本論文のもう一つの目的は，多変量分散成分の尤度比検定の検出力関数

のいくつかの性質の証明である．棄却域（あるいは同じことであるが検定関

数）が，単調性を持つ場合は Anderson & Das Gupta (1964) の議論を用い

て検出力関数の単調性，不偏性がほとんど自明に証明される．そうでない場

合は個別の議論がなされなければならない．

論文の第Ⅰ章では，多変量分散成分模型に関する簡単な説明が与えられ

る．また第Ⅱ章で扱うモデルを例題として，効果行列のランクに関する片側

尤度比検定問題に Chernoff の理論が適用可能であること，その結果我々の

求めようとする尤度比検定統計量の帰無仮説の下での漸近分布がカイ二乗分

布の混合分布であることが示される．

第Ⅱ章では，２つの分散行列の同等性などに関する片側検定を扱う．こ

のモデルは，多変量分散成分模型の典型例である多変量一元配置変量模型に

おいて，群内，群間平方和行列を考えることに相当する．尤度比検定統計量

はKlotz & Putter (1969), Anderson, et al.(1986) が与えている．最初に

いくつかの検定の検出力関数の単調性や不偏性が，その検定関数の単調性か

ら証明される．次に，尤度比検定統計量の帰無仮説の下での漸近分布がカイ

二乗分布の混合分布であることが（Chernoff の理論を用いずに）直接示され

る．さらに，混合確率が Pillai (1954) と同様の方法で計算できることを導

き，実際に分布の数表を与える．また漸近分布の特性関数を Pfaffian を用

いて陽に書き下す方法を与えるが，この方法は混合確率計算の別解法を与え

ている．これらの結果は次元が２の場合の分布を導いた Sakata (1987),



Anderson (1989) を含む一般的な結果である．以上述べた極限分布の表現の

他，分布の漸近展開公式も与えられる．

第Ⅲ章では，複素正規母集団に関する２つの分散行列の同等性などに関

する片側尤度比検定を扱う．この問題は第Ⅱ章のモデルを複素母集団の場合

に書き直した問題で，第Ⅱ章の結果の多くが同様に成立する．ただし，尤度

比検定統計量の帰無仮説の下での漸近分布の特性関数は（Pfaffian でなく）

行列式を用いて陽に書かれることが示される．

第Ⅳ章では，いわゆる Random coefficient regression model の分散

構造に関する尤度比検定問題を扱う．このモデルは Scheffe の混合モデルを

特殊な場合として含んでいる．尤度比検定統計量は基本的には Anderson,

et al.(1986) が与えている．最初に効果行列が零行列であるという仮説に関

する尤度比検定の不偏性を証明するが，検定関数が単調性を持たないので，

その証明は第Ⅱ，Ⅲ章のモデルほど自明ではない．ここでは，Sugiura &

Nagao (1968) の方法を部分的に援用して証明を得る．また同じ検定問題に対

し，尤度比検定を含むより広いクラスの検定方式に対する局所不偏性を FKG

不等式を用いて示す．そのために，FKG 不等式を適用するための新たな一つ

の十分条件を準備する．尤度比検定統計量の帰無仮説の下での漸近分布はや

はりカイ二乗分布の混合分布である．次元が２,３の混合確率が与えられてい

る．

尤度比検定の特徴付けを行うため，第Ⅱ，Ⅳ章のモデルにおいて，効果

行列が零行列である，という仮説の検定問題に対してモンテカルロシミュレ

ーションが行われる．その結果，効果行列のランクが小さい場合には，尤度

比検定が他の検定方式に比べて高い検出力を持つことが示される．


