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I[. Introduction.

1. Multivariate variance components model.

When effects of factors are random, the analysis of variance model is called
random effects model or variance components model. There is long history of
studying the statistical inference based on the variance components model, see Rao
and Kleffe (1988), Searle, et al. (1992) and their references therein. Among them,
however, neither the maximum likelihood nor the likelihood ratio test in the the
multivariate variance components models is discussed well. Exact derivation of the
maximum likelihood estimators and the likelihood ratio criteria are current topics,
and discussions of their statistical properties such as distribution or optimality can
be hardly found. The aim of the thesis is to derive the limiting null distributions of
the likelihood ratio test statistics to determine the significance points, and to prove
some optimalities of the likelihood ratio tests in multivariate variance components
models.

One of the most typical multivariate variance components model is the follow-
ing one-way classification model with random effects discussed by Anderson, et al.
(1986):

Xij=p+V,+U;y, i=1,...,n, j=1,...,k, (1.1)

where X;; is a p x 1 observed vector, g an unknown mean vector, V; an unobserved
random effect vector of group i, and U;; an unobserved measurement error. V;
and U;; are assumed to be independently distributed according to the normal
distributions N, (0, ®) and N,(0,¥), respectively. The covariance matrix @ of the
effect vector V; is said to be effect matrix or multivariate components of variance.
Here we discuss the two cases: the case where ¥ is fully unknow positive definite
matrix, and the case where ¥ = 021, with 02 > 0 unknown. p and @ are assumed
to be fully unknown. Note that the model (1.1) with ¥ = 021, is Scheffé’s mixed
model with replications (Scheffé, 1959).

Concerning the model (1.1) we shall be interested in estimating &. The uni-

formly minimum variance unbiased estimator G uyyu is

- 1 1 1
Oumvu = E{n — 1H ol 1)G} if ¥ is fully unknown,

1 1 1 trG
S H- I,% iftw =021
k{n—l nk—1) p p} : 7

where H and G are between and within sum of squares matrices, distributed in-
dependently according to the Wishart distributions W, (M, ®) and W,(N,¥) with




2

D®=U+kO, M =n—1and N =n(k— 1), respectively. Since H and G are inde-
pendent, Oyunmvu has negative latent roots with positive probability. This seems to
mean that @UMVU is not suitable for the estimator of the covariance matrix @. The
maximum likelihood estimation is one method to avoid this difficulty. The maxi-
mum likelihood estimator (MLE) of @ was given by Klotz and Putter (1969) if ¥ is
fully unknown; Anderson, et al. (1986) if ¥ = ¢2I,, with ¢? unknown. Calvin and
Dykstra (1991) obtained an algorithm to get the MLE concerning the two-factor
random effects model. The MLE of the effect matrix is the point maximizing the
likelihood function under Lowner order restriction (i.e. @ > O), and as a result
both the algorithm to maximize the likelihood function and the distribution of the
obtained estimator are complex generally. (A > B denotes Lowner order meaning
that A — B is nonnegative definite.)

A similar difficulty appears in the testing problem concerning @. Consider
testing the homogeneity hypothesis &® = O. The hypothesis ® = O is equivalent
to the equality of two covariance matrices @ = ¥, however, the usual methods of
testing the equality of two covariance matrices based on the sample covariance ma-
trices @ = (1/M)H and ¥ = (1/N)G (e.g. Anderson, 1984b, Section 10.6; Nagao,
1973) are ineffective for our purpose, because the alternative @ > O (@ > ¥) is not
taken into account. The likelihood ratio test (LRT) is one useful method of testing
when the alternative is restricted. Anderson, et al. (1986) obtained the likelihood
ratio criterion for testing the hypothesis rank & < r, which reduces to a one-sided
test for the equality of two covariance matrices when » = 0. As the case of the
maximum likelihood estimation, both the algorithm to obtain the likelihood ratio
criterion and its (non)null distribution are complex. In particular, as Anderson, et
al. (1986) mentioned, the null distributions of (—2) times the logarithm of the like-
lihood ratio criteria are not chi-squared distribution even though asymptotically.
They are shown to be mixtures of chi-squared distributions by means of the general
theory of Chernoff (1954) described in the following section.

2. Asymptotic theory of the likelihood ratio test under restricted alter-
natives.

Chernoff (1954) discussed the limiting null distribution of the likelihood ratio
criterion when the null hypothesis lies on the boundary of the alternative hypothesis
in the parameter space. Following theorem is based on Chernoff (1954, Theorem
1), and its rearrangement by Self and Liang (1987, Theorem 3).

Definition 2.1 The set w C RP is said to be approximated at 6§y € R? by a cone
C CRPif
inf [l =yl = olllyl) for y € w o,



and

inf |z —y| =o(|z|) forxeC
yew—0o

holds. Here o( -) means o(t)/t — 0 ast — 0, and y € w — 0y means y + 6y € w.

Theorem 2.1 Let X; € R¥, i = 1,...,n, be n independent observation with
common density f(z,0), 8 € Q C RP. Assume that the true value 6y of the
parameter 6 is an interior point of 2. Moreover, we assume the regularity conditions
of Lehmann (1983, (A0)-(A2) of Section 6.2, and (A)-(D) of Section 6.4) for the
density function f. The Fisher information matrix is denoted by I(6). Consider
the problem of testing the null hypothesis Hy : § € wy C (2 against the alternative
Hy: 0 € wy C Q, and suppose that the sets wy and w; are approximated at 6y by
the closed cones Cy and Cy, respectively. Then, as n — oo, —2log A,, with

Sup0€w1 H?:l f(XZ7 0)

An: n
SUDPgew, Hi:1 f(XM 0)
converges to
=2 _ Y —0) — mi —_ 0y —
X = min(Z — 0)'I(00)(Z — 0) — min(Z — 0)'I(00)(Z — 0) (2.1)

in distribution, where Z is a p x 1 random vector distributed as N,(0,1(6o)~ ).

We summarize what is known about the distribution of (2.1) as a following
theorem. (e.g. Shapiro, 1988; Shapiro, 1985, Theorem 3.1.)

Theorem 2.2 Suppose that Cy and C; are closed convex cone such that Cy C Cq,
and that either of them is a linear subspace. Then the distribution of 2 in (2.1) is
a mixture of chi-squared distributions

dimC; —dimCq
Pr(x* <c¢) = Z w; Pr(x? <¢) with w; >0, Zwi =1,
i=0 i

where x? is a chi-squared random variable with i degrees of freedom, x3 = 0, and

dim C denotes the dimension of the smallest linear subspace containing the cone C.

Remark 2.1 For the mixing probability {w;} the relation
> (1w =0 (2.2)
holds. One proof of (2.2) is found in McMullen (1975, Theorems 2, 3) in terms of

the internal and external angles. For the geometrical interpretation of {w;}, see
also Wynn (1975) and Shapiro (1987).
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Now we apply the general theory of the likelihood ratio test to the problem of
testing
Hy: rank® <r (2.3)

for a specified r (0 < r < p) under the model (1.1) with ¥ fully unknown. We
regard
Y =(X:/,... 7Xik/)/k;p>(1’ i=1,...,n,

as the i.i.d. n samples from the normal population Ng,(§, X') with a mean vector

§=(p,...,1)},« and a covariance matrix
v+ 6 .- e
2: @ . . .
: . e
] N O N C

kpxkp

Noting that X is positive definite (p.d.) if and only if both @ = ¥ 4+ k© and ¥ are
positive definite, we put

Q={(p,®,¥) € RP x RPPHV/2 5 Rr(p+D/2 1 @ ¥ - p.d.}.

Here RP(®P+1)/2 denotes the set of p x p symmetric matrices. Testing Hy in (2.3)
under the model (1.1) reduces to testing the null hypothesis Hy : (@, @, ¥) € wy C Q
with

wo = {(p, B, ¥) € RP x RPPHV/2 5 RPF/2 | ¢ > W rank (& — W) < 7, W : p.d.}
against the alternative hypothesis Hy : (u, ®,¥) € wy; C Q with
w1 = {(HH@,W) c Rp X Rp(p+1)/2 X Rp(p+1)/2 | ¢ Z W,!p . pd}

Suppose that the true value of the parameters (uy, o, ¥Wo) are in wy (i.e. Hy
holds) and satisfy

I‘al’lk@() =r with @0 = (1/k3)(¢0 — !p())

Since Hy and H; remain invariant under a transformation X;; — GX;; with G
p X p nonsingular matrix, by virtue of the invariance of likelihood ratio (Lehmann,
1986, p.341, Problem 17), we can put ¥y = I, and

G = (3 8) with A = diag(éi)rxr, 0; > 0,
pPXp
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without loss of generality. The cones approximating wy and w; are given as follows.
Lemma 2.1 The set wy is approximated at (pq, o, Po) by the linear subspace
Co = {([,l,,d;, !p) € RP x Rp(p+1)/2 X Rp(p+1)/2 | by = !ng},

where @95 and Woy denote the (p — r) X (p — r) lower right matrices of ¢ and &,
respectively. The set w; is approximated at (pq, Po, Wo) by the closed convex cone

Cr = {(p, P, W) € RP x RPPHD/2 5 RP(PHD/2 | oy > Wy

Here we define that ||A| = VtrAA’ = \/2_ij @ig? for a matrix A = (a;).

(Proof) Proof is given in Appendix A. [

Let A,, be the likelihood ratio criterion for testing Hy against Hy. By virtue of The-
orem 2.1 and Lemma 2.1, evaluating the Fisher information matrix at (p, @o, ¥o),
we immediately obtain the limiting distribution of —2log A,, as
X' = min {(Z - Pp)(Z - Pn) + (k- )W — Tp)(W — W)’}

= min {(Z = D5)(Z — Do) + (k= 1)(W — W) (W — W)}, (2.4)
where Z = (z;;) is a (p — r) X (p — r) symmetric random matrix whose diagonal
element z;; and off-diagonal element z;; (i < j) are independently distributed as
N(0,1) and N(0,1/2), respectively; W is a (p—r) X (p—r) symmetric random matrix
distributed according to the same distribution as (1/v/k — 1)Z, independently of
Z. Putting

[k —1 [k —1
A= kT(Z—W) and M = kT(SpQQ_WQQ)y

R.H.S. of (2.4) = trAA’ — min tr(A - M)(A - M)’
M>0

= b, (2.5)

b; >0

we have

where by > --- > b,_, are the latent roots of A. Note that A has the same distribu-
tion as Z. Anderson (1989), Anderson and Amemiya (1991) showed that —21log A,,
converges to R.H.S. of (2.5) in distribution by more straightforward calculations.
Theorem 2.2 states that the distribution of X2 in (2.4) is a mixture of chi-squared
distributions with v (0 <v < (p —r)(p — r + 1)/2) degrees of freedom.



3. Scope of the thesis.

As shown in the previous section, the limiting null distribution of (—2) times the
logarithm of the likelihood ratio criterion for testing the rank of the effect matrix is a
mixture of chi-squared distributions. But its mixing probability can not be derived
by Chernoft’s general theory. In this thesis, in three typical multivariate variance
components models, the mixing probabilities of the limiting null distributions of the
likelihood ratio test statistics for effect matrices are derived, and some properties
of their power functions are proved.

In Chapter II, concerning the model (1.1) with ¥ fully unknown, we discuss the
one-sided likelihood ratio test based on the two sample covariances & = (1/M)H
and ¥ = (1/N)G for testing

(i) the hypothesis @ = O, i.e. the hypothesis & = ¥,

(ii) the hypothesis rank @ < r, i.e. the hypothesis that & > ¥ and rank (® —

¥) < r, for a specified r (0 < r < p) and

(iii) the goodness of fit of the covariance structure that @ = ¥ + k@, i.e. the

hypothesis & > W.

The LRT’s for testing (i) and (ii) are one-sided tests for two covariance matrices
@ and ¥ because the alternative is @ > W. The hypothesis that @ and ¥ are
unrestricted is settled as the alternative of the LRT for testing (iii). Some prop-
erties of the power functions such as unbiasedness, monotonicity and consistency
of the LRT’s are proved. We derive the limiting null distributions as mixtures
of chi-squared distributions, and give the table of quantiles based on the limiting
distribution. In addition, the asymptotic expansions of the null distributions are
given. The amounts of the bias of the LRT’s for testing (ii) and (iii), which are
shown to be biased, are evaluated. A Monte Carlo study to compare the power of
several tests for (i) including the LRT is given.

In Chapter III we discuss the one-sided likelihood ratio tests for testing (i)-(iii)
of Chapter II in the model (1.1) with the unobserved random variables U; and
V;; distributed according to the complex normal distributions. This multivariate
variance components model concerning the complex normal population is shown
to appear in the frequency representation of the stationary Gaussian multiple time
series model with replications.

In Chapter IV we discuss two likelihood ratio tests for covariance structure
in the random coefficient model introduced by Rao (1965). This model includes
the model (1.1) with & = 021, as a special case. In terms of the model (1.1)
with ¥ = 02I,, two LRT’s treated in this chapter are based on the statistics
& = (1/M)H and 62 = (1/Np)tr G for testing

(i) the hypothesis @ = O, i.e. the hypothesis & = %I, and
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(ii) the goodness of fit of the covariance structure that & = o%I, + k@, i.e.
the hypothesis & > 021,

As in Chapter II, the LRT for testing (i) is one-sided test because the alternative is
& > 021, and the the hypothesis that & and o2 are unrestricted is settled as the
alternative of the LRT for testing (ii). The unbiasedness of the LRT for (i) and the
monotonicity of power function of the LRT for (ii) are proved. The limiting null
distribution of these LRT statistics are also obtained. For a general class of tests
for (i) including the LRT, the local unbiasedness is proved using FKG inequality.
Here a new sufficient condition for the FKG condition is posed. A Monte Carlo

study to compare the power of several tests for (i) including the LRT is also given.

Appendix A. A proof of Lemma 2.1.

Noting that ¥ is positive definite when ¥ is in a neighborhood in RP(P+1)/2
with center at the true value ¥ = I,,, we see it sufficient to show the following (a)
and (b).

(a) The set
Qo = {0 e RPPTV/2 | ©@ > O,rank © < r}

is approximated at

e = (3 8) with A = diag(di)rxr, 0; >0,
pPXp

by the linear subspace
Coy = {© € RPPT/2 | @y, = O},

where @55 denotes the (p — r) x (p — r) lower right matrix of ©.
(b) The set
Q; = {O e RPPTV/2 | @ > 0}

is approximated at @ by the closed convex cone

Ca, = {O ¢ RPPHI/2 | @y, > O}.

Proof of (a): Fix

Yii Yo
Y = €y — 6O
(Y12' Y22) 00

such that [|[Y|| < /rd/2 with § = mind; > 0. Noting that Y11 + A > (§/2)I, and
hence Yoo = Y12 (Y11 + A)~1Y 15, we have

2
inf || X — Y| =Yal < Yl?=o0(Y]).
Xle%go I | =Y a2 < < [[Y12f" =o([|[Y])



Next, fix

_ Xll X12
X—<X12/ O)GCQO

such that | X || < /rd/2. Noting that X1; + A > (6/2)I, and

X11 X12
_ GQ _@7
(X12/ X12/(X11+A) 1X12) 0 0
we have
2
inf ||IX-Y| <X (X A) 7 X o] < 21X 152
Y€1(12107@H | <[ X112 (X111 +A4) 12H_5H 12]|
]

Proof of (b): We see first that

inf | X-Y| =0 foranyY € Q; — 6Oy,
X€Cq,

because 1y — @y C Cq,.
Next, fix

X1 X
X = eC
(Xlg' X22) t

= o([|X1])-

such that | X || < /rd/2. Noting that X11 + A > (6/2)I,, X223 > O and

= o([|X1]).

X1 X12
_ € — By,
(X12/ X0+ X1/ ( X114+ Q) 1Xlz) ! 0
we have
. _ 2
vaf X Y] < 1 X 12" (X114 A) " X s < gHXuH2
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II. One-sided test for the equality of two covariance
matrices.

1. Introduction.

Let H and G be p x p random matrices which are independently distributed
according to the Wishart distributions W, (M, ®) and W,,(N, &), respectively, where
@ and ¥ are assumed to be positive definite and M > p, N > p. Consider the
hierarchical hypotheses Hy C H(()r) C Hy C Hy with

Hy:®=w, H":®>W rank(—W)<r (0<r<p),
H :d>W, Hy : @, ¥ are unrestricted.

Here A > B denotes Lowner order meaning that A — B is nonnegative definite. In
this chapter the likelihood ratio tests (LRT’s) for the following hypotheses:

(i) To1 : LRT for testing Hy against Hy — Hy,
(ii) 77 . LRT for testing H[()T) against Hy — H{" and
(iii) Tio : LRT for testing Hy against Hy, — H;

are discussed. The main purpose is to derive the limiting null distributions of test
statistics of these LRT’s.
These testing problems appear in the multivariate variance components model:

X;j=p+V;+U;, i=1,...,n, j=1,...,k, (1.1)

where X ;; is a px 1 observed vector, p an unknown mean vector, V; an unobserved
random effect vector of group 4, and U;; an unobserved measurement error. V;
and U;; are assumed to be independently distributed according to the normal
distributions N, (0, @) and N,(0,¥), respectively. The complete sufficient statistics
of the model (1.1) are X =" | X;/n with X; = 2521 Xi;/k,

H= ki(z - X)(X: - X), (1.2)
=1

and
n

k
ZZ(XU - X)) (X4 — Xa) (1.3)

i=1 j=1

G

H and G are distributed according to W, (M, @) and W, (N, ¥), respectively, where
Y =¥+kO, M =n—1and N =n(k—1). Then testing the null hypothesis of
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no effect: @ = O reduces to testing Hy based on H (1.2) and G (1.3) against the
one-sided alternative hypothesis H; — Hy. We are also interested in testing the null
hypothesis that the effect vectors are linear combinations of r or less factors, which
reduces to Hér), and the alternative should be H; — Hér). Testing the goodness of
fit of the model (1.1) gives another type of restricted inference, which amounts to
testing H; against the alternative Ho — H;.

Anderson (1984b, Section 10.6.2) and Anderson, et al. (1986) discussed the
LRT’s Tp; and TO(I)7 and pointed out that the null distributions of (—2) times
the logarithm of the likelihood ratio criteria are not chi-squared distribution even
though asymptotically. Anderson (1984a) discussed the same tests in the context
of structural relationship models. We shall derive the limiting null distributions of
the test statistics of Toq, TO(I) and T7o which was obtained by Sakata (1987) and
Anderson (1989) only for p = 2 (p — r = 2); and give the table of quantiles of the
distributions, which is the exact version of the table by Amemiya, et al. (1990) who
estimated the quantiles by Monte Carlo simulations.

Outline of this chapter is as follows. In Section 2, the likelihood ratio test
statistics and some of their properties are listed. In Section 3, we derive the limiting
null distributions of the likelihood ratio test statistics by two different methods.
Moreover the asymptotic expansions of the null distributions of the likelihood ratio
test statistics are derived in Section 4. In Section 5, limiting significance points and
biases of the tests are tabulated. Appendix A illustrates several examples of the
asymptotic null distributions. Appendix B gives the formulae of the distribution
function of the maximum latent root of a random matrix that appears as the limit
of a Wishart matrix.

2. LRT statistics and their least favorable distributions.

We give the test statistics and their least favorable distributions to calculate
the significance points here. Let Agq, A(()Tl) and Ao be the likelihood ratio criteria
for Ty, T, O(I) and T1o, respectively. Anderson (1984a, 1984b) and Anderson, et al.
(1986) showed that

R
1P
A — — VWMEN)/2 R > 41,
" i:lll{pli*l_p} B
-1 it R<r,

Ao = Ay

with p = M/(M + N), l; > --- > I, the latent roots of (N/M)HG ™', and R the
number of I; > 1. Obviously the likelihood ratio criterion for testing Hy against
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HQ — HO is
(M+N)/2
H{pl +1- }

and hence we have

Aoz (MNY/2
— fFR<p—1,
e = Ao i I;IH{PZ +1- } e

=1 if R=p.

Since these statistics are functions of /;’s, their distributions depend only on the
latent roots d; > --- > ¢, of &W . The hypothesis Hy reduces to the simple
hypothesis 6; = --- = 9, = 1. The hypotheses H(gr) and H; reduce to the composite
hypotheses 6; > -+ >0, > 41 =--- =9, =1and §; > --- > §, > 1, respectively.
To calculate the significance points for Té;) and T2, we need the least favorable
distributions, which are obtained by the straightforward application of Anderson
and Das Gupta (1964).

Define an increasing function f, 5 () and a decreasing function fy; () on
(0,00) by

fain (@) = (M + N){log(pz + 1 = p) — ploga}I(z > 1),
faun(@) = (M + N){log(pz +1 — p) — ploga}(z < 1),

where I(-) denotes the indicator function. Then we have

p
—210gA01 :ij\—t[]\](lz): _QIOgA(T) Z fMN
i=1 1=r+1
p
and —2log Ao = Z f]\_/[N(lz)

=1

Then by Theorem 2 of Anderson and Das Gupta (1964) we have that the power
function of Ty and Ty}, namely Bo(8) = Ps(—2logAg; > ¢) and 87 (8) =
Ps(—2log Agi) > ¢) with ¢ > 0, are monotonically increasing in each component of
0 = (61,...,6p). And the power function of the test 772, namely

£12(8) = Ps(—2logA12 > ¢) with ¢ > 0, is monotonically decreasing in each
of the component of §. Since (p1(d) is increasing, Ty is unbiased. Because
of the increasing property, SUP 17(r) 68?((5) is attained when d1,...,9,, T 400 and

Opy1 = -+ = 0p = 13 ianl—H(’") ﬁ((ﬂ)((s) is attained when d1,...,d,41 | 1 and
0

5r+2
tained at 61 = --- =, = 1; infy,_p, F12(d) is attained when d1,...,5,1 T 400

= .- = 0, = 1. Because of the decreasing property, supg, f12(d) is at-
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and ¢, T 1. Theorem 2.1 below determines the distribution when some 4;’s go to
infinity.

Theorem 2.1 (Schott and Saw, 1984) Let d; > --- > d,, be the latent roots of
W W5 ! where W, and W, are independently distributed according to

Wy (v1, X1) and Wy (ve, X'9), respectively, with the latent roots of X'y X5 being
0p > -+ > 0p 2 0py1 = -+ =0, = 1. Let df > --- > d;_r be the latent
roots of W W3 ™! where W and W3 are independently distributed according to
Wyp—r(v1 —r,Ip—,) and Wp_, (v, I,_,) respectively. Then (d,11,...,d,) converges

to (di,...,d;_,) in distribution as dy,...,d, T +oo.

We can summarize the properties of the likelihood ratio tests as follows.

Theorem 2.2

(i) The power function of Tp; is monotonically increasing in the components of §.
Th1 is unbiased.

(ii) The power function of TO(I) (0 < r < p) is monotonically increasing in the

components of §. The a-significance point c((ﬁ)(a; p, M, N) is determined by

p—r
sup 850(8) = PO fiin (@) > e (asp, M, N)) = a,
Hy" i=1

where 7 > --- >[5 are the latent roots of (N/MYW W35~ with W and W be-
ing independently distributed according to W,,_,.(M —r,I,_,) and W,_.(N,I,_,),
)

respectively. Té; is biased since

inf( : é?(é) = PHO(—2logA((£) > cérl)(oz;p, M,N)) < a.
Hi—H

(iii) The power function of T}s is monotonically decreasing in the components of
4. The a-significance point c12(a;p, M, N) is determined by

S;pﬂm(d) = Pp,(—2log A1z > ci2(a;p, M, N)) = a.

Ti> is biased since

Hinij B12(0) = P(f;n (") > cr2(a;p, M, N)) < «,

2— 411

where [** is a random variable such that {M /(M — p+ 1)}1** is distributed as the
F-distribution Fay P*'.

The following statements on the consistency can be established easily.
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Theorem 2.3 Tjq, Tép and T}o are consistent in the following sense.

(i) 5 liril Bo1(6) =1 uniformly in da,...,0,.
1—+o0

(ii) 5 lim+ ﬂ((ﬁ)(d) =1 uniformly in 6,49,...,0,.
r+1—7T00

(iii) 5 liHJlFO B12(6) =1 uniformly in dq,...,0,_1.

3. Limiting null distribution of LRT.
3.1. Derivation of the limiting null distribution.

Theorem 2.2 (i), (iii) shows that to get the significance points of Tp; and T2,
we only need the distributions of Ag; and A2 under Hy : 6; = --- =9, = 1. We
shall derive the limiting joint distribution of Ag; and Ao under Hy.

We give a lemma which is used in proving Theorems 3.1 and 3.2.

Lemma 3.1 Let {f,(-)} be a sequence of densities on R? with lim,, . fn(x) =
f(x) for each z € RP. And let {T7(-), 1 < j < k} be a sequence of measurable
functions on R? with lim,, .o, T7(x) = T7(x) for each € RP. If f(-) is a density,
then

n—oo

lim exp{zZt T3 ()} () da = / exp{i S 1,77 ()} (@)

(Proof) Note that

\ / exp{zzt i) fol@)da — [ exp{iéwj(a:)}ﬂw)dw
< [1t@) - f@)ide + [ hu(e)s(@)de

with
hn(x) =

k k
exp{ithTg(a:)} — exp{ithTj(a:)}’ (< 2).

As n — oo, the first term converges to zero by Scheffé’s theorem. The second term
converges to zero by the bounded convergence theorem. []

Let ¢(s,t) denote the joint characteristic function of —2log Ag; and —2log A2 under
Hy, i.e. ¢(s,t) = Eg,Aor " 2*A1o %", The joint density function of I; > --- > l, >0
is given by

p

e M N

elps M, N) [ L1702 (gt )" [T - 1), 3
=1 1<J
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where 2 N
TP /27 ( + ) MpM/2NpN/2
c(ps M,N) = =" o WESOIE (3:2)
Lp(G)Tp(3)Tn(5) (M +N)P
with I'p(a) = 7P®~D/4 TP T'(a— 1(i — 1)). Define
MN
b= ———0;—1), 1<i<np. .

By letting M, N — oo with p = M/(M + N) — po (0 < pg < 1) and b; fixed (i.e.
l; — 1), the limit of the joint density of b = (b1,...,bp)", b1 > --- > by, is

po(b) = eXp{——Zb 3 ] QR (3.4)

1<J
with
aP(p—1)/4 1

d(p) = /2T, (8) ~ 2/, T(%)

vo(b) in (3.4) turns out to be the density of the latent roots of a p X p symmetric

random matrix A with normal density

m exp{— trA2} (3.5)
(Anderson, 1984b, Theorem 13.3.5.)
On the other hand it is easy to show that
P
lm  —2logAgr = Tim Z firn ;(b Vv 0)2,
P
]\/lei\rrgc>o —2log A2 = hm Z G Zl(b A 0)?2,

where x V y and x Ay are the maximum and the minimum of x and y, respectively.
Therefore by Lemma 3.1 we get the characteristic function of the limiting null
distribution as

do(s,t) = lim (s, t)

M,N—oco

_ / expfis (b VO it 3 (b 1 0)hpo(b)db

P i=1 =1

:Z/ B exp{stb +at Z bi*}po(b (3.6)

r=0 BrXBp_r i=r+1
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with db = T]%_, db;,
= {(b1,...,by) | b1 > --- > b, >0},

Bpr ={(brg1,--,bp) | 0>byq > > by}

By the Laplace expansion of the linkage factor [];_;(b; — b;), which is the Vander-
monde determinant det(b"™)1<; j<p, (3.6) is

p)zp:Z(—l)Zzl(i+Ai)/ exp{——Zb Ydet(b;P ) 1<; j<rdby . . . db,

r=0 X\
X /_ exp{——ZbH_T Ydet (bisr? ) 1<i j<prdbyiy .. . db, (3.7)

p—r

where § = (1—2is)"2 and ¢ = (1—2it)" 2, >~ is summation over all combinations
of My < oo < Apy, A < - - <Xp,,~ such that

{)\17--~;)\7’5X17~--7xp—r} = {1,,]9}

Putting

k
1 )
Uk(ql, ceey qk) = / exp{—i Z biQ}det(biqﬂ)lgi,jSkdbl ...dbg (38)
By i=1

(k > 1) and Uy = 1, we have that (3.7) is
p — —
dp)Y Y Urlp— A1y o0 = A)Up—r(p = Ao p = Apr)0%9 (3.9)
A

withQ =" (p—\i)+rand Q = p(p+1)/2—Q. (3.9) is a characteristic function
of a mixture of the bivariate chi-squared distributions with Q and @ (0 < Q,Q <
p(p + 1)/2) degrees of freedom. By inverting the limiting characteristic function
(3.9), we get the theorem:

Theorem 3.1 As M, N — oo with M/(M + N) — po (0 < pp < 1), the limiting
joint distribution function of —2log Ag; and —2log A2 under Hy is given by

Mljbﬂ_l) Pr,(—2logApr <y, —2logAjs < 2)

i)Y Y UtV 8y ) Cals)Cg(2

r=0p—1>¢1>-->¢,>0

(3.10)
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where q; > --- > q,_, are the members of {0,...,p — 1} — {q1,...,¢.}, Q =
S oheq Qk T Q=plp+1)/2—Q, G,(-) with v # 0 is the distribution function of
the chi-squared distribution with v degrees of freedom and Go(-) =1(0 < -).

Since (3.9) is symmetric in y and z, the limiting marginal distributions of —2log Ag;
and —2log Ao under Hy are equivalent, which is a mixture of chi-squared distribu-
tions.

On the null (least favorable) distribution of A((ﬁ), Theorem 3.2 below is ob-
tained.

Theorem 3.2 As M, N — oo with M/(M + N) — po (0 < pg < 1),

: (r )
M,IJ{IIEOO Is{tg; P(—2log Ay, <)
0

P1
:d(pl) Z Z UT’(q17'";qv“’>Up1—7“/(617"'76p1—r’)GQl(y)

=0 p1—12q1>>Qr’20
(3.11)

withpy =p—r and Q' = 221:1 qr +1'.
(Proof) Note that

sup P(—2lo A
i (—2log ZfMN

where [} is defined in Theorem 2.2 (ii). The limiting joint density of

b= | MN ey <<
i 2<M_|_N)1, ) >~ 1> D1,

is

d(p exp{——Zb*2}H (b — b%).

1<J
On the other hand )
1

Mlz{ffgotoMN Z1(b v 0)%.

The rest of the proof is similar to that of Theorem 3.1. [

Remark 3.1 In Section 2 of Chapter I we have already proved that when 6; >
- > 0p > 0py1 = -+ = 0, = 1 the limiting null distribution of A((ﬁ) is (2.5) of
Chapter I. This means that

le]{]n_lwoP( 2log Ayy <y) =R.H.S. of (3.11)
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holds when rank (¢ — &) = r.

3.2. Calculation of U},’s.

In the previous subsection our problem has been reduced to calculation of
integral Uk(q1, ..., qx) of (3.8). The method used by Pillai (1956) is exploited here.

Theorem 3.3 Ug(qi,...,qr) can be evaluated by the following recurrence for-

mula:

Ui(qrs- -+, qw)
=(—D)" ' 1(q2s - ) (@1 = 1)
+ (Q1 - 1)Uk<Q1 - 27(I27 cee an)

k
: 1
F2Y (Y s Uil + 4y~ DUk, e -0 (312)

(k>2,¢q1>1) and
Ui(q) =I(g=1)+(¢—1)Ui(¢g—2) (¢g=>1),

U1(0) =/m/2.
(Proof) By expanding the first column of
b1Q1 .. blq}c
Dk<b17"'7bk;QI7"'7QI€):det )
bkql . bqu e e
we get
k 00 ,
Uk(qus---.qx) = Z(—l)l_l/ e 2" b1 db; F; (b;) (3.13)
i=1 0
with

i e bi br—1
Fi(bi):/b dbi_l.../b dbl/o de_l.../O dby,

1
X exp{—§ E bz‘Z}Dk—l(bla---7bi—17bi+la---7bk;QZ7---7Qk)'
JFi

By integration by parts, we have
/ e_%biniQ1dbiFi(bi) = —/ (e_%biz)’biqlflﬂ(bi)dbi
0 0

= —e 2 B, TR (by)

+(Q1 — 1)/ e_%biZbiql_QFi(bi)dbi
0 0

+/ e~ 20 b, LR (b,)dby
0
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Noting that F;(0) = Ux_1(q2,-..,qx)I(i = k), we have

k
D (1T A = () Uk (g @) (g = 1), (3.15)
and .
Z(—l)i_lBi = (1 — DUr(q1 — 2,92, ..., qx). (3.16)
=1

Next we have

e L oo oo b; br—1
C’i = — / e_gbi biql_ldbi / dbi_g st / dbl / dbi_|_1 s / dbk
0 b; ba 0 0

1 .
xexp{=3 ¥ b Dkca(br s bisa b i, vq) (D)
i1

oo oo oo b’L bk_l
. / 30ty a—1gp, / db; 1 / dby / dbjya - / dby,
0 i’ ” 0 0

7

1 .
X GXP{—§ Z b;*}Di—1(b1, ., biybita, ., bri Gy -, Gr) (i # k).
j#ir

Note that the first term vanishes when 7 = 1 and the second term vanishes when
i = k. By expanding Dy_1(b1,...,b;—2,bi, ..., bk;q2,...,qr) and
Dy_1(b1,...,bi,bivo,...,bk;qa,...,qx) in the row which contains b;, we get

k )
Com =3 [ e,
) =2

1
y // dby ... dbiadbiss ... dbgexp{—5 > b;*}

by >-->b; _o>b; Jj#i—1,
bi>bjp1>>bp>0

<

X Dp_o(b1,...;bi—2,big1, .- beiq2, s Qi—1, @41, - - -5 Qi)

k 0o
+ (_1)i+j+1/ e—bi2biq1+qg'*1dbi
=2 0

1
y // dby ... dbi_ydbiss ... dbgexp{—5 > b;*}

b1 >-->b; _1>b; J#ZJ—*—]-
by>b; o> >bp>0

<

X Dk—?(bla <. 7bi—17bi+27 S 7b]€;q27 e 15,9541y 7Qk)

=Z [ =[]

by>->b;_o>0b by>-->b;_1>0b b1>-->bp_o>0
b>b;_1>-->bp_o>0 b>b;>-->bp_5>0

Noting that, for fixed b,

k
1=2
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we see that

k k

d ()T =2) (-1 / e b T b Uk o(q2, -+ @51, Qt1s - -5 Q-
=1 j=2

(3.17)
From (3.13)-(3.17), we derive (3.12). The case of k =1 is easy. [

We give the explicit expressions of (3.9) for 1 < p <5 in Appendix A.

Remark 3.2  Since Ug(qi,...,qxr) is obviously a skew-symmetric function of
qi,---,qk, we can restrict ourselves to ¢ > --- > qi, and the second term of

the R.H.S. of (3.12) can be replaced by:

(ql_l)Uk<QI_27QZ7---aQIc) if q1 _2>q2,
_(Q1_]—)Uk(q2aq1 _27Q37"'7qk‘) if q2 >q1_2>Q37
0 otherwise.

3.3. An expression in terms of Pfaffian.

In the previous subsection we derive a recurrence formula for Uj’s which enable
us to obtain (3.9) and R.H.S. of (3.10) numerically. We shall give an expression of
the limiting characteristic function (3.9) in terms of Pfaffian defined below.

Definition 3.1 (Pfaffian) Let A = (a;;) be a p x p (p:even) skew-symmetric
matrix. The Pfaffian of A is defined by

pfA = E F iy i Qigig Qi iy s
P

where the summation is taken over all permutations

with the restrictions

1 < 2,03 < gy, lp1 <lp,ip <ig < - - <lp_1,
and the sign is that of P.
It is well known that detA = (pfA)?, and that for p x p matrix B,

pf(BAB’) = pfA - detB. (3.18)
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See, for example, Mehta (1989). We give another identity which does not appear in
the literature. The proof can be easily obtained by Definition 2.1, and is omitted.

Lemma 3.2 For two p x p (p:even) skew-symmetric matrices A = (a;;) and
B = (bi;),

f(A+ B) = zp: > (-1 2o GHMIpe (AN A]) pf (B[N, ) (3.19)
A

Tieven

holds, where A[X, A] = (ax,x,)1<i,j<r & 7 X 7 matrix, BX\ )] = (inXj)léi,jﬁpfr a
(p —r) x (p — r) matrix, the summation ), is taken over the same combinations
as that in (3.7).

The following lemma gives another method of evaluating Uy’s. The proof is an
application of Mehta (1960, Eq.(10)) or Krishnaiah and Chang (1971, Lemma 2.1).

Lemma 3.3

Uk(q17 e ;Qk) = Pf ( UQ(Qi; q_j) )lgz‘,jgk if k is even,
U (Qi CI'))1<1‘ i<k (U1( ))1<z<k> . .
= pf ( (P2lgn i)z f ki is odd.
b ( ~(U1(a)hr<y< 0 s o
(Proof)
Proof for k even: By integrations with respects to by, bs3,...,br_1, we have

U(qi, .- qr) = / / exp{——sz}dbg

by >by>- by >0 i:even

1 2 1 2
fo e 20 by Pdby - [ em 20 b by
b2Q1 - bqu
bo _1p,2 bo _1p,2
% det fbf e 303 b3q1 dbg ce fbf (S zbs bqu dbg
q1 qk
bi .. by bk

_ // exp{_% S b2}dbs ... dby

ba>by>-->b >0 t:even

be: eféblzblqldh szo eiéblzblqkdbl
b2€h . b2Qk
w det | Jo, e 305 by by - Lo e 2b3% ha e by (3.20)

q1 - dk
b b kxk
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Since the determinant in the R.H.S. of (3.20) is a symmetric function of bg, by, . . . , by,

the integral [ - - fb2>b4>m>bk>0 can be replaced by (1/t!) szozo szozo - fb(f:o with
t = k/2. Dividing k rows into ¢ pairs of 2 rows, and applying (generalized) Laplace

expansion, the determinant in the R.H.S. of (3.20) is written as
! e 1.2
Z :I:/ e~ 301 dbl{blqil byiz — b %2 bQQil} e
P b2
> 1 2
></ e~ 2017 dby g {b_y Pr-1by I — by _q Tk by Tin-1 ),
by

where the summation Z'P is taken over all permutations
’Ll ... Zk;

11 < 19,13 < 14, ..

(3.21)

with the restrictions

g1 < g

and the sign is that of P. Then we have that
1 I
Uk(qr,- - ar) = FZ £+ Ua(Giy > 4i,)U2(dis» €is) -+ U2(Giy, .y Qi)
P

= Z +U2(ir» 4i2)U2(4is, 4i) -+ U2(Gi s i)
P

where the summation ), is taken over all permutations P of (3.21) with the
restrictions

11 <19,03 < Uyeonrylp] < Tp,t1 <3 < -+ < Tp_1-

This completes the proof (for k even).
Proof for k odd: As in the even case, it holds that

1
Uslas, o) = / / eXp{—§ Z biz}dbz...dbk_l

bo>bg>->br_1>0 i:even

Jia €2 by ™ dby S e 30 b b,

f qu; f lbgq:

ooe_§ 3 bgqldbg 006_5 3 bqudbg
x det | " 8 (3.22)
bk_lql bk—lqk
fooo e_%kabkql dby, fooo e_%b’fzbqu dby o

The integral f--~f62>b4>_”>bk71>0 can be also replaced by (1/t!) fbozozo . --fb(jil:o
with ¢ = (k — 1)/2, since the determinant in the R.H.S. of (3.22) is a symmetric
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function of by, by, ...,brx_1. Dividing k rows of this determinant into t pairs of 2

rows and 1 row, and applying (generalized) Laplace expansion, we see that

1 I
Uk(qi, ... qr) = = + Us(Giy 4in ) U2(Qigs Giy) -+ - U2(Qiy 55 Qi )U1(€5)
t! 5

= ZiUQ(Qi17Qi2)U2(Qi3>Qi4> Ua (i Qi) U1(45, ),
P

where the summations Y and Y, are taken over all permutations P of (3.21)
with the restrictions

1 < 19,13 < l4,...,0_o <1ip_1, i : free

and

1 < 9,03 < lgy...,lp_o <ip_1,01 <iz <+ -+ <1ip_o, i} : free,

respectively. This completes the proof (for k odd). OJ

Remark 3.3 Note that

1
U(g) = 207 r(L2),

and that Us(q1,q2) (g1 > ¢2 > 0) is evaluated with the recurrence formula of
Theorem 3.3 as

Q1+CI2)
2
(n —DU2(q1 —2,q2)  ifq1>q2+2
0 if g1 = qo +2
—(q1 —DUz(q2,q1 —2) ifqu=¢+1>2
—\/7/2 ifqp=q+1=1

Ua(q1,q2) =I'(

_|_

Using the lemmas provided above we get the result.

Theorem 3.4 The characteristic function ¢g(s,t) of (3.9) is expressed as

0°D(0)ED(0) — o’ D(—¢)ED(—¢) ¢D(—¢)f 6D(0)f

d(p) pf —sOf’P(—sO) 0 1
—0f D(0) —1 0 (p+2)x (p+2)
{02P77 7742 — (—)?P T T ey ()P P
= d(p) pf (=PIt f 0 1 (3.23)

_Qp—j+1fj -1 0
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if p is even,

d(p) pt (92D<9>ED<9> — ¢?D(~¢)ED(—) {0D(6) + soD(—cp)}f)

—f/{QD(O) +oD(—p)} 0 (p+1)x (p+1)
_ d(p) pf ({eigzﬁl— _(zfg)j)i_—ajl;}f] (gr—it1 _ ((?p)p_m} f; ) 324

if p is odd, where E is a p X p matrix with (4, j)th element e,; = Us(p —i,p — j), f
is a p x 1 vector with ith element f; = Uy (p — i), and D(¢) = diag(£P~%)1<i<p is a
p X p diagonal matrix.

(Proof)

Proof for p even: By the definition of the Pfaffian in Definition 3.1 as well as (3.18)
and (3.19), the Pfaffian in (3.23) is expanded as

pf{6>D(0)ED(0) — ¢*D(~¢) ED(~p)}

0>’D(0)ED(6) 0, 60D(0)f
—l—pf{ 0, 0 0
( —0f'D(0) 0 0 )
©’D(—p)ED(—¢) —pD(—¢)f 0,
of D(—) 0 0 }
0, 0 0
bY Q

pf (E[X,A]) pf (E[A,X]) 6%
reven \
VARY EXA fINN g,
+ f Ay 020, (3.25)
Sor (TR T )er (B 7o) ece
with 0, = (0,...,0)" p x 1 zero vector, @ = ;_(p—Xi)+7r, Q@ =plp+1)/2—Q,

fIAl = (fa)i<i<r an 7 x 1 vector, f[X] = (f;i)lgigp_r a (p—r) x 1 vector.
Combining (3.25) and Lemma 3.3 we see that (3.23) is equal to (3.9).

r:odd

Proof for p odd: As in the even case the Pfaffian in (3.24) is expanded as

pf{ (QZD(G)ED(H) 9D(9)f> B (<PZD(—S0)ED(—80) —soD(—sO)f>}

—0f'D(0) 0 of D(—) 0
=¥ Y (E2 T0) ) pt(BR X090
+ Z St (E[AA]) pf( [fX{% f@)e%a. (3.26)

Combining (3.26) and Lemma 3.3 we see that (3.24) is equal to (3.9). The proof is
completed. [
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4. Asymptotic expansion of the null distribution of LRT.

The formal asymptotic expansions of the null distributions of the likelihood
ratio statistics shall be derived here. The linkage factor [],_;(l; — ;) can be rep-

resented as Dp(ly —1,...,0, — 1;p —1,...,0). By the Laplace expansion of the

linkage factor in (3.1), the joint characteristic function ¢(s,t) = Ep,Agp 2 A9~ 2"

is given by
p ~
$(s,t) = c(p; M,N) ) > Velb; g1, @) Voor (03 @ri1, -5 qp) (41)
r=0 p—1>q;>-->,>0

where 0 = (1 — 2is)~2, ¢ = (1 — 2it)" 2,

Vo(0;qu,....q) = 3 (M+N)O™2 =5 (p+1)
(aQ17 7q / /H{pl +1_ }

1> 1>1 171
><Dr(ll—1,...,l7~—1;ql,...,qr)dll...dlr

and

Vorr (03 Grs1s -+, ) :(—1)"“(’”+1)/2+2i:1(p—qi)

(M+N)<p‘2 —3(p+1)
8 / / H {pl +1 }

1>l g1 > >0, >0 =71
X Dp—r(l’r—i—l — 1, ce ,lp — 1, dr+1s--- ,qp)dlr+1 ce dlp
Define b;, 1 <i < p, by (3.3). Assume that

MN
M+ N

p= =0+ Ol ) =M+ O

M+ N

By expanding around b; = 0 we have

H{ ; lii }%(M-i-N)G’z i—%(p-i—l)
o plitLl—p

= exp{—— Zb }

X [1+m{f(13+p0)9_2;bi3—%;bz}
pLN _1+[)02+po29_2;bi4+]%1;bi2+%6_4(;@3)2
_ (1+p0;(p+1)0_2(;b23)(;bi)+ (p+1) (;bl)z}
+0{; ]\,1)3/2}}
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Using the relation

k
(me)Dk(b17 .. '7bk;q17 e 7%)

1=1
k
Z blw--abk§Q17---7Qz’—1,Qi+m:Qi+17---:QIf)a

V.. is evaluated as

MN Q/2
!

{m Vi(@;q1,. .. qr)

1 = 1
_ +1 2

where Q =Y 1_, ¢+,

V2(1 + po)

— 3y pt+1l_a
Up == Ué)—WUzg g (4.3)
Uy — +P02+ Po U,E4) p;r Uk@
(L4p0)? 33 A+p)p+1), 31, @+1)?* a1
oy U - . U+ U (4

with

Ulgm) - ZUk(QD e @i—1,qi My Qig1, - ‘7qk)7

U = ZUkz (9155 Gi—1,Gi + M+ Ny Git1,s -5 Gk)

ZUk q17'”7qi+m7"'7qj+n7"'7q1€)-
i#]

Because the contribution of the integral over the region

{0>b41 > >b,>—00}—{0>bgy > >b,>—/MN/2(M + N)}
is o{ (pN)~™} for any m, V,_, is also evaluated as

{ﬂ}§/2~ (¢:q @)
2(M+N) p—r yYr+1y -+ -5 Up

1 —

o 5 1= 35 1
Q Q+1 Q+2
p—r¥ \/p_N p—rP + pN Up—?"(p + O{ (pN)3/2 }7 (45)
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where Q = p(p +1)/2 — Q. Applying Stirling’s formula to the constant factor
c(p; M, N) of (3.2), we have

2(M + N) | p(p+1)/4
ok Sl B ‘M. N
{ MN ; o(p; M, N)

= d){1 = gt 3= (1= p+ ) +Of sl (46)

By inverting the asymptotic expansion of ¢(s,t) derived from (4.1)-(4.6), we have
the following theorem.

Theorem 4.1 The asymptotic expansion of joint distribution function of

—2log Ap; and —2log A15 under Hj is given by

Pr,(—2log Agr <y, —2log A1z < 2)
=d(p) ) UUp—+Go(y)G5(2)

+ ﬁ Z{UTUP*TGQJrl(y)Ga(Z) - UrUp*TGQ (y)G§+1(z)}

1 = -
+ p_N Z{UrUperQ+2 (y)G§<Z) - UTUP*TGQﬁLl(y)G@_Fl(Z)

+ U, Up—rGo(y)Gg,a(2) — ip(2p2 +3p—1)(1 = po + po*)Go(y)Gg(2)}]
1

Ot

Here the arguments of U,, U,, ﬁr (i.e. q1,...,¢-) and Up_,, Up_r, Up_,, (i.e.
G- - ,Gp_,r) are omitted for simplicity; put Uy = 1, Uy = 0 and Uy = 0 formally;
the summation isover 0 <r <pandp—1>¢g; > ---> ¢, > 0.

The example for p = 2 is given in Appendix A. The asymptotic expansion of
SUP () P(—2log A((ﬁ) < y) can be derived similarly.

5. Significance points and biases.

By Theorem 2.2 and the results of Section 3, we can give the limiting signifi-
cance points and biases as M, N — oo with M /(M + N) — po.

Table 5.1 shows the limiting a-significance points co1 (a; p, M, N) and
c12(a; p, M, N), that is d(«a; p) satisfying

p

Py (—2log Aoy > d(a:p)) = P@;(bi V0)2 > d(a;p)) = a,



l—al\p
0.010
0.025
0.050
0.100
0.250
0.500
0.750
0.900
0.950
0.975
0.990

2

0.0000
0.0000
0.0000
0.0000
0.0957
0.7717
2.1535
4.0457
5.4845
6.9229
8.8211

3

0.0000
9.1e-7
0.0508
0.2423
0.9190
2.2605
4.2858
6.7324
8.4904
10.1978
12.3994

4

0.0986
0.3178
0.6207
1.1146
2.3181
4.2581
6.8788
9.8503
11.9156
13.8848
16.3852

Table 5.1
Limiting significance points of Ty; and 7o

5

0.6832
1.1788
1.7319
2.5241
4.2400
6.7572
9.9539
13.4372
15.8047
18.0330
20.8310

6

1.7747
2.5559
3.3617
4.4511
6.6723
9.7567
13.5198
17.5088
20.1758
22.6618
25.7566

7

3.3713
4.4424
5.5021
6.8881
9.6108
13.2563
17.5803
22.0709
25.0360
27.7789
31.1703

8

5.4720
6.8352
8.1492
9.8313
13.0531
17.2561
22.1373
27.1272
30.3894
33.3888
37.0766

9

8.0757

9.7322
11.3010
13.2787
16.9980
21.7559
27.1920
32.6794
36.2381
39.4936
43.4779

10

11.1817
13.1324
14.9559
17.2291
21.4446
26.7557
32.7450
38.7288
42.5835
46.0949
50.3756

27



Table 5.2
Limiting biases of To(‘f D and Tio
(=5 x1072)

Ty T2
8.64x107* 959 x 1073
5.72x 1076  1.79 x 1073
1.54x107% 2.78 x 1074
1.75 x 1071 3,51 x 1077

(&1 ST U O R o

28
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where by > --- > b, are distributed with density (3.4). Put d(a;p) = 0 when

p

P} (b V0)*>0) < a.

i=1

Table 5.2 shows the limiting biases of the tests To(f_l) and 772 when o = 0.05.
The first column of Table 5.2 gives

. . (p—1) o 2 i
Mjl]{[n_lwo Hl—llggp*” 51 (0) =P((bp V0)* > d(as1)).

The method of calculating the distribution function of b, is given in Appendix B.

The second column of Table 5.2 is

: : _ *ok 2 .
it $12(8) = P((b™" A 0)" > d(e; p)),

where 0** is distributed according to N(0,1). Table 5.2 shows that the degree of

biases of two tests are very high.

6. Power comparisons.

In this section we study a Monte Carlo simulation to compare the powers of
several tests including the LRT. The null hypothesis is the equality of two covariance
matrices @ = ¥, and the alternative is the local hypothesis that

2(M + N)
_wl/2 1/2
D=0 (Ip+ N A)!P

with A = diag(d;)pxp, d; > 0. We compare the limiting powers (M, N — oo with
M/(M + N) — pg) of four test criteria:
- One-sided likelihood ratio test based on the statistic Ag; [ONE];
- Two-sided likelihood ratio test based on the statistic Ags [TWO];
- Roy’s test based on the largest root of HG™' [ROY]; and
- Locally most powerful test of Giri (1968) based on the statistic trH (H +
G)~! [LMP).

The limiting power functions of the four tests are

P p P
Pr(Z(bi vV 0)? > e), Pr(z bi> > ¢), Pr(by >¢"), and Pr(z b; > "),
i=0 i=0 i=0
respectively, where by > --- > b, are the latent roots of p X p symmetric random

matrix A with normal density

1
20/27P? /2

tr(A — A)2.
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The average powers of the four tests over 100000 replications are given in Table
6.1 (for p = 4, size= 5%) and Table 6.2 (for p = 8, size= 5%). The results indicate
that: ONE has high power when rank A is small; LMP has high power when rank A
is large; the character of ROY is similar to ONE, however, ONE is more powerful
than ROY even when rank A = 1; TWO is inferior to the one-sided tests ONE,
ROY and LMP.



01
0.0
1.0

2.0
4.0

1.0
2.0
4.0

1.0
2.0

1.0

1.0
2.0
4.0

1.5
3.0

02
0.0
0.0

0.0
0.0

1.0
2.0
4.0

1.0
2.0

1.0

0.5
1.0
2.0

1.0
2.0

Underline denotes largest value in each row.

03
0.0
0.0

0.0
0.0

0.0
0.0
0.0

1.0
2.0

1.0

0.0
0.0
0.0

0.5
1.0

Power (%, p = 4, size=5%)

04
0.0
0.0

0.0
0.0

0.0
0.0
0.0

0.0
0.0

1.0

0.0
0.0
0.0

0.0
0.0

Table 6.1

ONE TWO ROY LMP

5

13
34
90
24
66

100

5

8
22
79

12
43
99

17
64

22

9
27
89

19
72

5

12
32
91

20
56
99

28
73

37

15
40
94

31
82

5

13
26
64

26
64

31



Table 6.2
Power (%, p = 8, size=5%)

o1
0.0

2.0
4.0

2.0
4.0

1.0
2.0
4.0

1.0
2.0

1.0
4.0
4.0

02
0.0

0.0
0.0

2.0
4.0

1.0
2.0
4.0

1.0
2.0

1.0
2.0
3.0

03 dg 05 ¢ 07 08 ONE TWO ROY LMP
00 00 00 00 00 00 ) 5 5 5
00 00 0.0 00 00 0.0 21 12 19 17
00 00 0.0 00 00 00 71 51 74 41
00 00 00 00 00 00 46 23 35 41
00 00 00 00 00 00 98 89 95 88
1.0 00 00 0.0 0.0 0.0 24 10 17 28
20 00 00 00 0.0 00 69 37 50 68
40 00 00 0.0 0.0 0.0 100 99 99 99
1.0 10 1.0 0.0 0.0 0.0 44 15 27 55
20 20 20 00 0.0 0.0 94 64 73 97
1.0 1.0 10 1.0 1.0 1.0 71 24 43 88
00 00 00 00 00 00 86 64 81 68
20 1.0 00 00 0.0 0.0 98 86 92 97

Underline denotes largest value in each row.
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Appendix A. Examples of the limiting distributions.

The limiting characteristic functions ¢g(s,t) for 1 < p < 5 are presented as
follows. (0 = (1 — 2is)~2, ¢ = (1 — 2it)"2)

p:
50+ ¢)
p =2
(s 4 )0+ )+ (6 + 057)
2v2 2 2v/2
p=3:
(5 + PO+ %)+ (s = P+ 06%) + S (0457 +6%1)
1
+ (——= + 1)6%¢°
( 7 )0%¢
p=4:

1 1 1 10 10 3 1 9 9
—— = ——=+ )0+ ")+ (—= - )+ 0
N R )+ (55~ POe+0e7)

13 17 13

— = =) (0%% + 020%) + (——= + =) (07 + %7

(g + ) + (-5 + ) ")
(et )00+ 0 + (L~

2 24/2 2v/2 4
p=5:
1 1 1 1
- — e+ O+ )+ (= + =+ )0 e + 0™
a3 Tl e e R LA

— 11 3 13, .2 2 13

T uas T30 +077)
8 g8 1 1
+( _)(912903 +039012)

—— - —+
3v2r 3w 22 8

1 1 6 5 13 13
L N (pM ot Mt 9 — 22Y(910 5 4 B 10
+ ( 4\/§7r+37r)( 0"+ 0% )Jr(—\/§7T 7T+—8\/§ 16)( 0 +0°¢")
17 3 1 9
R - 996 969
RN I T UL A

19 16 9 3

- 4= 4= 98 7+978
3vV2r 3w 42 2)( v ")
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In particular the asymptotic expansion of characteristic function ¢(s,t) up to
O(1/pN) for p = 2 is given by:

s+ )+ (0 + 05

2%1{2\/1%(94 — ")+ 4_\/2(93@ —00%)}
po(l—po),, 1 13 > (" !
+ pN RStV R UGS R

13 13 13
0302 + 6203 + 0% + %) + ——(0%p + 0>
12f( ® ©”) (24\/_ )( ©”) 24\/5( o +00°)}
+L( 11 13
24\/'
+(i—§
242 24
1
Rk

(=

5}
)(95+<P )+ ——= (0% + 0p) + (0°0* + 0°¢°)

12\/5
)(0° +¢7) — —\/—(9290 +0¢%)}

1
24+/2
+ Of

Appendix B. Distributions of the maximum and minimum roots.

Theorem B.1 Let b; and b, be the maximum and minimum roots of the p x p
symmetric random matrix A with density (3.5). Then the distributions of b; and

b, are given by
P(by <2)=1-P(b, < —2) =d(p)Vp(x;p—1,...,0),

where d(p) is defined in (3.4), and V,,(z;¢1, . . ., ¢p) can be evaluated by the following

recurrence formula:

Vk(x7q177Qk)
1.2
=—e 2" 21V (2502, q1)

+ ((h — 1)Vk(x'q1 —2,q2,- -, qk)

+ 22 22(q1+qg) VilVoz; o + ¢ — DVia(wq2, - -1, G415 - - Q)

(k>2,q1>1) and

Vi(z;q) = —e 3720 4 (= WVi(z59—2) (¢ > 1),
Vi(z;0) = V21 d(x).
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(®(-) is the distribution function of N(0, 1))
(Proof) Note that

P(by < z) = d(p) // eXp{—%be}H(bi — bj)dby ... db,.

>by > >by, 1<J

By the method parallel to the proof of Theorem 3.3, these relations can be derived.
L]

The distribution function P(b; < z) for 1 < p < 5 are provided as follows.
(®(-), ¢(-) are the distribution function and the density function of N(0,1))

p=1":
®(x)
p=2:
®(v2z) — Vad(x)®(x)
p=3:
®(2)®(V2zx) — 22¢(z)D(V2z) — %M\/ﬁx}

p=4:
o(v22)? — YT (22 4 1) (x)0(a)@(v/22)

VI (VIr)R(VEr) — ro(vEr) () - %Q_ﬂqs(m)

p=>:
B(2)B(V/22)? — §x3¢(a:)<l>(\/§a:)2

1
3—\/5(21'3 + 92) (v 2) P () D (V2z)
1

1
3V 21

The formulae of p < 3 can be found in Muirhead (1982, p.424).

(a2 + 4)0(20)2(2) — 5-26(v50)
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[II. One-sided test for the equality of two covariance
matrices concerning the complex multivariate nor-
mal population.

1. Introduction.

Let H and G be p X p random matrices which are independently distributed
according to the complex Wishart distributions CW,(M,®) and CW, (NN, ¥), re-
spectively, where @ and ¥ are assumed to be positive definite and M > p, N > p.
Consider the hierarchical hypotheses Hy C Hér) C Hy C H; with

Hy:®=w, H":®&>W rank(d—¥)<r (0<r<p),
H :®d>W, Hy : @, are unrestricted.

Here A > B denotes Lowner order meaning that A — B is nonnegative definite. In
this chapter the likelihood ratio tests (LRT’s) for the following hypotheses:

(i) To1 : LRT for testing Hy against Hy — Hy,
(i) T\ :LRT for testing H{" against Hy; — H{", and
(iii) Tio : LRT for testing H, against Hy, — H;

are discussed. The main purpose is to derive the limiting null distributions of test
statistics of these LRT’s.
These testing problems appear in the multiple time series model with replica-

tions:
xzi(t) =v(t)+u;t), t=1,....,7, j=1,...,k, (1.1)

where x;(t) is a p x 1 observed vector, v(t) is a px 1 unobserved stationary Gaussian
signal with zero mean and continuous spectral density matrix f,(w), and u;(¢) is a
p x 1 unobserved stationary Gaussian noise with zero mean and continuous spectral
density matrix f,(w) distributed independently of v(t) and w;(¢) (I # j). Assume
that f,(w) is positive definite for each w. Let h = h(T") be an integer such that
wp =2m(h—1)/T — wy # 0 (mod 7) as T'— oo. Define

H=k> X(wn)X (wpe)* (1.2)

l=—n

and

n k
G=> D AX (wnr1) = X(wn) HX(wnp1) = X(wny)}" (1.3)

l=—n j=1
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with

1 < _ 1<
Xj(w) = N D emi(t), X(w)= %ZXj(w),

where ‘*’ denotes conjugate transpose. It is easy to see that H (1.2) and G (1.3)
are distributed independently. Moreover, using the usual chi-squared approxima-
tion of the smoothed periodogram (e.g. Brillinger, 1981, Section 5.4; Brockwell
and Davis, 1991, Section 10.5), we see that H (1.2) and G (1.3) are approxi-
mately distributed according to the complex Wishart distributions CW,,, (M, ®) and
CWy (N, ), respectively, where @ = f (wo) +kf,(wo), M =2n+1, ¥ = f,(wo)
and N = (2n + 1)(k — 1). Then, under this approximation, testing the null hy-
pothesis of no signal at the frequency wo: f, (wo) = O reduces to testing Hy based
on H (1.2) and G (1.3) against the one-sided alternative hypothesis H; — Hy. We
are also interested in testing the null hypothesis that the signal vectors are linear
combinations of r or less factors, which reduces to Hér), and the alternative should
be Hy — Hér). Testing the goodness of fit of the model (1.1) gives another type of
restricted inference, testing H; against the alternative Hy, — H;.

In the previous chapter we treated the similar testing problems for the multi-
variate variance components model, where H and G are distributed according to
the real Wishart distributions. The likelihood ratio test statistics and some of their
properties given in Section 2 closely parallel the results of the real case, however, the
limiting null characteristic function of the likelihood ratio criterion given in Section
3 can be represented in terms of determinant (not Pfaffian). Significance points
of these test statistics are tabulated in the same section. Appendix A illustrates
examples of the limiting null distributions.

2. LRT statistics and their properties.

We give the test statistics and their least favorable distributions to calculate
the significance points here. Let Agq, A((ﬁ) and A9 be the likelihood ratio criteria for
To1, TO(I) and T1s, respectively. The similar discussion to the real case of Anderson,
et al. (1986) yields that

R
1°
A = L WMAN R >,
01 Z:Hi_l{plz 4 1 — p}
=1 if R<r,

Aor =AY,
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and
A12: H { }M+N lngp—].,
Myl pl; +1
=1 if R =p,

with p = M/(M + N), I; > --- > I,, the latent roots of (N/M)HG ™', and R the
number of [; > 1. Since these statistics are functions of [;’s, their distributions
depend only on the latent roots § = (d1,...,d,)", 61 > -+ > 6, of PSP,

We can summarize the properties of the likelihood ratio tests as follows. The
proofs are the same as that of the real case of Chapter II.

Theorem 2.1

(i) The power function of Tp1, Bo1(d) = Ps(—2log Ag; > ¢) with ¢ > 0, is mono-
tonically increasing in the components of 4. Ty is unbiased.

(ii) The power function of Tél) (0 <r <p), (T)((S) = Ps(—2log A((ﬁ) > ¢) with
¢ > 0, is monotonically increasing in the components of §. The least favorable
distribution of TO(I) is given at d1,...,d, | +oo and &,41 = -+ = 4, = L. TO(I) is
biased.

(iii) The power function of Ti3, (12(6) = Ps(—2logA12 > ¢) with ¢ > 0, is
monotonically decreasing in the components of . The least favorable distribution
of T is given at §; = --- = d, = 1, i.e. when Hj holds. T is biased.

3. Limiting null distribution of LRT.

Firstly we treat Ty, and Ti2. To obtain the significance points of Ty and
T2, we have to derive the distribution of Ag; and Ao under Hy because the least
favorable distribution of T3 is given under Hy. This section gives the limiting joint
distribution of Ag; and A5 under Hj.

Let ¢(s,t) denote the joint characteristic function of —2log Ag; and —21log Aq5
under Hy, i.e. ¢(s,t) = EHOA01_2iSA12_2it. The joint density function of 1 > --- >
l, > 0 is given by

P
M N
CERRN | Gy v Rl vare ) R | (CRE)

=1 1<j

where -
P~V (M + N) MPM NPN

L, (M)Ey(N)Ey(p) (M + N)POIEN)
with T (a) = 7?®~D/2T[?_ T'(a — i + 1). Define

¢(p; M,N) =

MN

b._l
9V M+ N
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By letting M, N — oo with M/(M + N) — po (0 < po < 1) and b; fixed (i.e.
l; — 1), the limiting joint density of b = (by,...,bp), by > -+ > by, is

©o(b) = d(p) exp{——Zb 2] J (b — b)) (3.1)

1<J

with
~ nP(P—2)/2 1

d = - = .
O PR, T BRI TG
©o(b) in (3.1) turns out to be the density of the latent roots of a p x p Hermitian

random matrix A with complex normal density
1

20/2p?/2 expi—

On the other hand it is easy to show that

trAA*}

p p

lim —2logAg; = Z(bl Vv 0)2, Mhm —2log A1 = Z(bz A0)2,

M,N—o0 - N —o0 -
1=1 =1

where x V y and x Ay are the maximum and the minimum of x and y, respectively.
Therefore by Lemma 3.1 of Chapter II we get the characteristic function of the

limiting null distribution as

¢0(87 t) - Ml]{fn—lwo ¢(S7 t)

= [ elin YoV OR it (0 A0 po(B)ab

P i=1 i=1
p
:Z/ exp{@st + it Z b’ oo(b (3.2)
r=0 Brxgp—r 1=r+1

with db = []7_, db;,
B, ={(b1,...,b,) | by > --- > b, > 0},

By ={(brs1,---,bp) | 0> b1 > - > by}

By the Laplace expansion of the linkage factor [],_;(b; — b;)?, which is the Van-
dermonde determinant squared {det(b;")1<; j<,}?, (3.2) is

J p) i Z(—1)22:1(>"'+“i)

r=0 A\,

></ exp{— 5 Zb Fdet (b ) 1< j<rdet(b ") 1< j<,dby . . . db,
B,

8 /_ exp{—_ Z b }det z+r e )1<z J<p— Tdet(b“ﬂn 7ﬁj)1§i,jﬁp—rdbr+1---dbp

BP* i=r+1

(3.3)
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where 6 = (1—2is)"2 and p = (1—2it)" 2, >, 18 summation over all combinations
of Ay <o < Ay AL <o s < Apepy i1 < oo < iy, Fiy <o+ < T,_, such that

{)\17"‘7>\T7X17"'7Xp—7‘} = {M17'~'7/~Lraﬁ17"',ﬁp—r} = {L;p}

Using the determinental Cauchy-Binet formula ((2.1) of Krishnaiah (1976), (2.12)
of Karlin and Rinott (1988)), (3.3) reduces to

d(p) iD—nZ?l“*Wdet(G[A, p))det(G[X, 1)) 09 (3.4)

r=0 \,u

with Q@ =37 (A + i) —7, Q = p* — Q, G\, 1] = (9r,,)1<i,j<r a0 7 X T matrix,
G\ ] = (giiﬁj)léivjﬁp—r a (p—r) x (p—r) matrix with

gm:/oo —EVpinigp = o(p-izi- 1>/2r(—2p_i_j+1>.
0 2

Here (3.4) is a characteristic function of a mixture of the bivariate chi-squared
distributions with Q and Q (0 < Q,Q < p?) degrees of freedom. Noting the
identity that, for two p x p matrices A and B,

det(A + B) Z 3 (12 A det (A[A, p])det (B(X, 7)),
r=0 \,n
which corresponds to Lemma 3.2 of Chapter 11, (3.4) is represented as

d(p) det(0D(0)GD(9) + ¢ D(—¢)GD(—¢))
= d(p)det ({0771 — (=)™} gij)1<ij<p (3.5)

with G = (g:)1<i.j<p and D(§) = diag(¢"71)1<i<,. By inverting the characteristic
function (3.5), we get the following formula.

Theorem 3.1 As M, N — oo with M /(M + N) — po (0 < pg < 1), the limiting
joint distribution function of —2log Ag; and —2log A2 under Hy is given by

pQ
Mljbrg Pp,(—2logAo1 <y, —2log A1z < 2) = QZ_:O"KU(Q;]?Q)GQ(Z/)GQ(Z),
where w(Q;p?) is the coefficient of the term of 994Q in (3.4) or (3.5), G, (-) with

v # 0 is the distribution function of the chi-squared distribution with v degrees of
freedom and Go(-) =I1(0 < ).
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Appendix A gives the characteristic functions of the limiting null distribution
(3.5) for 1 < p < 5 obtained with REDUCES3, a software for algebraic computa-
tion. Table 3.1 shows the limiting a-significance points of Ty and Tis, i.e., d(a;p)
satisfying

P

: . _ . 2 . _
L Pao(=210g Aon > d(eip)) = P(3(: v 0 > d(aip) =

where b; > --- > b, are distributed with density (3.1). Put d(a;p) = 0 when

p

P> (b V0)*>0) < a.

i=1

Next we can obtain the limiting null (least favorable) distribution of qu). The

proof is given in the same manner as Theorem 3.2 of Chapter II.

Theorem 3.2 As M, N — oo with M/(M + N) — po (0 < pg < 1),

P12

lim sup P(—2log A" < ¢) = w(Q;p12)G
N b P(=2108 Ror < 9) g;<@p1>Q@>

with p1 =p — .



l—al\p
0.010
0.025
0.050
0.100
0.250
0.500
0.750
0.900
0.950
0.975
0.990

0.0000
0.0000
0.0000
0.0000
0.2996
1.2526
2.9080
5.0344
6.6066
8.1564
10.1791

3

0.0220
0.1707
0.4166
0.8455
1.9389
3.7558
6.2558
9.1224
11.1271
13.0450
15.4872

4

0.8116
1.3574
1.9565
2.8049
4.6204
7.2540
10.5696
14.1599
16.5909
18.8739
21.7347

Table 3.1

Limiting significance points of Ty; and 7o

5

2.6165
3.5714
4.5305
5.7998
8.3267
11.7547
15.8628
20.1616
23.0134
25.6589
28.9381

6

5.4321
6.7989
8.1168
9.8042
13.0369
17.2543
22.1515
27.1565
30.4280
33.4355
37.1329

7

9.2526
11.0354
12.7141
14.8198
18.7548
23.7545
29.4335
35.1399
38.8297
42.1986
46.3148

8

14.0770
16.2759
18.3146
20.8376
25.4734
31.2543
37.7145
44.1219
48.2295
51.9597
56.4943

9

19.9041
22.5207
24.9203
27.8606
33.1955
39.7544
46.9923
54.0985
58.6233
62.7148
67.6683

10

26.7328
29.7670
32.5271
35.8841
41.9176
49.2543
57.2700
65.0748
70.0168
74.4692
79.8415

42
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Appendix A. Examples of the limiting distributions.

The limiting characteristic functions ¢g(s,t) for 1 < p < 5 are presented as
follows. (0 = (1 —2is)~2, ¢ = (1 — 2it)"2)

p=1:
1
~(6
2(+90)
p=2
1 1 1 1
(7= 5200 + 9% + (0% +0¢°) + —0%p?
4 27 4 T
p=3:
1 3 3 1 1
N 9 2 (8 0,8 (0702 92,7
(8 87T)( +<p)+(16 27T)( ©+00°) + 7T( o +0%p")
1 3
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IV. Tests for covariance structure in random coeffi-
cient regression model.

1. Introduction.

Let W be a p x p random matrix distributed according to the Wishart distri-
bution W,(n,®) with @ positive definite and n > p. Let (vn/o?)g be a random
variable distributed according to the chi-squared distribution x?(vn), v > 0. Define
hierarchical hypotheses Hy C Hy C Hs as

Hy:®= O'2Ip, H:®> 02Ip, and Hs : ®,0° unrestricted,

where A > B means that A — B is nonnegative definite. We treat two likelihood
ratio tests (LRT’s) based on the observed values W and g denoted by

To1 : LRT for testing Hy against H, — Hy,

and
Ti5 @ LRT for testing Hy against Hy — H;.

Here the notations are due to Robertson, et al. (1988, Chapter 2) who discussed the
testing problems for the hierarchical hypotheses of the multivariate normal means.
In this chapter two basic properties, the unbiasedness of the LRT Tj;, and the
monotonicity of power function of the LRT T are proved. As n goes to infinity,
limiting null distributions of these two LRT statistics are derived as mixtures of chi-
squared distributions. Moreover for a general class of tests for testing Hy against
H, — Hj including the LRT T{; the local unbiasedness is proved.
The hypothesis H; is equivalent to

=0 +51, (1.1)

for some px p nonnegative matrix @. This covariance structure (1.1) was introduced
by Rao (1965) who discuss multivariate regression models with random coefficients
(random effects model). When a Wishart matrix with a parameter @ in (1.1) and
an unbiased estimate of o2 are observed independently, testing the hypothesis that
©® = O reduces to Ty1, and 175 is a test of goodness of fit of the covariance structure
(1.1). There are a lot of studies on testing problems for random effects models,
however, few paper treated the likelihood ratio test for the covariance structure
(1.1) exactly. One exception is Anderson, et al. (1986, Section 3) who derived the
likelihood ratio criterion of Tj; in terms of Scheffé’s mixed model. Our discussions
are based on the result of Anderson, et al. (1986).
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Outline of this chapter is as follows. In Section 2 the unbiasedness of Ty; and
the monotonicity of power function of 775 are proved. Section 3 gives the limiting
null distributions of the test statistics of Tp; and Tis as mixtures of chi-squared
distributions. In Section 4 a general class of the tests for Hy against H; — Hj
including the LRT Ty, are proved to be locally unbiased using FKG inequality
technique. Applications of Tp; and Tis to random effects models are stated in
Section 5. Appendix A illustrates examples of the limiting null distributions for
p = 2,3. In Appendix B we summarize the FKG inequality which is used in the
proof in Section 4. Here a new sufficient condition for the FKG condition is proved.

2. Properties of power functions of LRT.
2.1 LRT statistics.

In this section we shall prove the unbiasedness of the LRT T, and the mono-
tonicity of power function of the LRT T75.

To begin with, we display the LRT statistics Ag; and Aqs of Tp; and Tis,
respectively. The LRT statistic Ag; was basically given by Anderson, et al. (1986)

as
m* n(v+p—m™)/2
o n/2 Sm* : *
A01 == th Son(y+p)/2 if m Z 1,
1=
=1 if m* =0, (2.1)
where ¢ > --- > t,, are the latent roots of (1/n)W,
vg+ > 0t
= Tl
V+p—1
and m* a random integer such that
ts > S and tyei1 < Spprgq- (2.2)

The random integer m* can be determined uniquely, because

liv1 2 Sit1 = ti > S
or equivalently

tiv1 < Sit1 =t < s (23)
hold from the relation

v+p—i1—1

ti—si=(ti —tip1) + vt p—i

(tiv1 — Sit1)-
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Note that our definition of m* in (2.2) is equivalent to (3.13) of Anderson, et al.
(1986). Since the likelihood ratio criterion Agy for testing Hy against Ho — Hy is

nv/2
n/2—

we have

nv/2

A02 /2 Sp
1=m*+1

=1 it m* = p. (2.4)

ifm*<p-—1,

Figure 2.1 shows the acceptance regions in R? of Ty; and Ti» defined by
{(t1,t2) | Ao1 < ¢} and {(t1,t2) | A12 < ¢}, respectively, for fixed g. Note that Agy

is not monotone in t;.

2.2 Monotonicity of power function of the LRT T'5.

We prove that the power function of the LRT T, is strictly monotone in the
latent roots of (1/0?)®, and show that the least favorable distribution of Ajs is
given when Hy holds. The following lemma is used in proving Theorems 2.1 and
2.2.

Lemma 2.1 The LRT statistic A2 is an increasing function of ¢; = ¢;/g, 1 <
i < p. In particular A, is strictly increasing in each argument of ¢;, 1 < ¢ < p, on
the set {m* = 0}.
(Proof) Put
g%V Nl (2.5)
g v+p—i

On the set {m* = m} we have

P
—2log A1 = n{— Z logt; — vlogs, + (v +p—m)logs,},
i=m-+1

which depends only on t,,+1,...,t,. And for j > m + 1 it holds

10 1 1
Eﬁ(—mOgl\u) =—z+t

J i Sm

_ (v+p—3)t;—5;)— >0 m+1(%i_zj) (2.6)
t (V + Zz m—+171 ) ’
which is not positive since t; —5; < 0 and ¢; —t; > 0 for m+1 <4 < j. In particular

(2.6) is negative on the set {m* = 0} = {t; < s1} since t; —5; < 0,1 < j < p,




Figure 2.1
Acceptance regions of Ty and Tio
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holds from (2.3). Because Ajs is a continuous function of ¢i,...,%,, the proof is
completed. [

Theorem 2.1 The power function (12 of the LRT Tia, P(A12 <¢),0<c<1,is
a function of the latent roots § = (d1,...,0,), 61 > -+ > 0p, of (1/0%)®P. [12(6) is
strictly decreasing in each component of §. The least favorable distribution of 775
is given at d = (1,...,1) (= e, say), i.e. Hy is true. Ti5 is biased.

(Proof) We follow the same argument of Theorem 2 of Anderson and Das Gupta
(1964).

We can regard Ajp in (2.4) as a function of W = (1/g)W and put f~ (W) =
Aio. Tt is easy to see that the distribution of the latent roots of W depends only
on the latent roots of (1/02)®. The probability measure is denoted by P(- ;).
For two p x 1 positive vectors d; and ds such that ds > d;, i.e. all components of
ds — d; are nonnegative, we have that

f~(W) < f(D'*WD'?) (2.7)
with D = diag(d;) ™ diag(ds) > I, because of Lemma 2.1 and the fact that
A(W) < \(DY2PWDY?), 1<i<p, (2.8)

where A;(-) means the ith largest latent root. Therefore

P(f~(W) <c;di) = P(f~(W) < c;dy)
=P(f~(W) < c;di) - P(f (D*WD'?) < ¢;dy)
=P(f~ (W) <ec< f(DY*WD'?).dy) > 0. (2.9)

If dy # dy (i.e. D # I,), the inequality of (2.9) holds strictly, because at least one
inequality of (2.8) holds strictly for positive definite W and hence

L.HS. of (2.9) > P(f~(W) <c < f(DY*WDY?),m* =0;d;) >0

for 0 < ¢ < 1. This means the power function £12(8) = P(f~ (W) < c; §) is strictly
decreasing in each component of 4.

supy, 412(8) is attained when § = e, which means that the least favorable
distribution of 775 is given when Hj is true.

Tyo is biased because infg, g, B12(8), which attains when 61,...,d,-1 T +00
and d, T 1, is strictly less than o = supy, B12(d) = B12(e). The proof is completed.
L]
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2.3 Unbiasedness of the LRT T;.

From Lemma 2.1 we prove the unbiasedness of the LRT Tj; with the aid of
the arguments by Sugiura and Nagao (1968) or Perlman (1980).

Theorem 2.2 The power function (p; of the LRT Tp1, P(Ag1 <¢),0<ec<1,is
a function of the latent roots § of (1/02)®. Ty is strictly unbiased, i.e. Bo1(6) >
Bo1(e) for & > e, and inequality holds strictly if & # e.

(Proof) Similar to Ajz we put fT(W) = Ag; in (2.1) as a function of W. Let
f(W :8) be the density function of W. By making the change of variables from

(W, g) to (W, g), and integrating the joint density of (W, g) with respect to g, we

can write

FW58) =K'|D|-"2[W|(-7-D/2(1 4 D TW)—n40/2  (2.10)
nv
:K//f+(D_1/2WD_1/2)f_(D_l/QWD_l/Q)|W’_(p+1)/2,

where D = diag(d), K’ and K" are normalizing constants. The power function is

written as

Bo1(8) =1 =P(f*(W) > ¢;6) = 1 = P(fT(D'?WD'?) > ¢;e).

Put L L L
wo :{W | f+(W) >c,W > O}a
wy, ={W | fF(DY?*WD'Y?) > ¢, W > 0}
and L
v _ W)
W) = (W |2+

the invariant measure. Then for § > e (i.e. D > I,) we have

Bo1(d) — Boi(e)
([ - / 3 ) (W )W)
—xrf / W W)
ek - / W)
—er( [ [ anw)

=cK" [ {f~(W)—f(D7V*WD™'?)}du(W), (2.11)

wo
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since

[ Wau ) < ¢ [ 5 (Wdu(W) <
woNw1
The R.H.S. of (2.11) is nonnegative because (2.7) yields

f(W) - f(DY*WD 2) >0 (2.12)

for D > I,. Furthermore R.H.S. of (2.11) is positive when § # e, because the
inequality of (2.12) holds strictly on the set {m* = 0} and the measure p(woN{m* =
0}) is not zero. OJ

3. Limiting null distribution of the test statistics of LRT.

To obtain the significance points of the LRT’s Tp; and 732, we have to derive
the distribution of Ag; and A1 under Hy because the least favorable distribution of
A15 is given under Hy. This section gives the limiting joint distribution of —2log Agy
and —2log A12 under Hy as n goes to infinity. We use Lemma 3.1 of Chapter II to
obtain it.

Before deriving the distributions, we rewrite Ag; (2.1) and A1 (2.4) in terms

of B
t; t;
u=—=—, 1<i<p
S; S;
Since (2.5) yields
B vdp—i—1
1 V-'—p—Z U—l—p—l 1+1,
we have _ .
%y Yt (3.1)
Si+1 vV+p—1
Then we get
—21log Ap1 nZ{—log— (1/+p—i+1)logsl__1}
i
p
Zlul>1gz (u;)
=1
where )
u_
(u) =n{-1 —i+1)log(l+ —
gi(u) =n{—logu+ (v+p—i+1)log( +V+p_z.+1)}

and I(-) indicator function. Similarly we get

p
—2log Aip = > I(u; < 1)g;(uy).

=1
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The function g;(u) is decreasing when u < 1, and increasing when u > 1, and hence
the LRT statistics —2log Ag; and —2log A5 are nondecreasing and nonincreasing
functions of u;, 1 <7 < p, respectively.

Since #; > --- > #, are (1/n) times the latent roots of W = (1/g)W whose
density is of the form of (2.10), joint null density of ¢; > --- > ¢, is given by

&y — D/ 2oimiliy G2 TT(7. _ 7
K(n,p,v Ht 1+=7=) [1¢: =) (32)
=1 i<j
where ) (D)
" /27 (MetR))
K(n7pﬂ V) = n 7211/ (3'3)
L, (5)Tp(5)0(5 )vme/2

the normalizing constant, and (z)4 = x if z > 0, 0 otherwise. Here from (3.1) and
the fact 5, = 1 it holds

and

then the Jacobian of the transformation is given by

= H§ (3.4)

' o, ..., L)
aur, ..., up)

From (3.2) and (3.4) the joint null density ¢ of u = (uy,...,u,) is written as

(n p— 1)/2 D iili —n(v+p)/2 7 7 o
(14 ==L2) PET[E =)+ ][5 (35)

v o .
1<) =1

po(u) = K(n,p,v

i ::@

Define

v+p—i+1

1/
1 <7 <np.
v4+p—i ) ’ e

= /22y Hu — 1), 7= (

Then the joint null density of b = (b1,...,b,) is

v _—1/2

po(u(b)) - (n/2)_p/2(m) : (3.6)
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As n — oo with b; fixed (i.e. u; — 1), one can see that t; — 1,5; — 1, g;(u;) — b2,

fn<u+p)/2 /2y L Lzt G
H % 1> <+p>/2—exp{——zgz )}

=1 1=1

— eXp{—§ Z b’}
=1

(

V—l—p

and
(n/2)2(; — Eir1) — Yibi — Yig1 “bit1-
By Stirling’s formula it holds

n(v+p)/2—1/2
K(n,p,v)(nf2) P00 E )T ) as o

with
ap(p—1)/4 1

27T, (5) 2P, ()

d(p) =

As a result the joint density function of b of (3.6) is shown to converge to

eXP{—— Zb }H{Z bk = Y41 1)} (3.7)

1<j k=1
for each b € RP. On the other hand we can see that
p
—2log A1 = Y I(u; > 1)gi(u;) — > (b V 0)?
i=1 i=1

and

P
—2log Aip = > I(u; < 1)gi(u;) — > (b A0)?
i=1 i=1
for each b € RP, where z V y and x A y are the maximum and the minimum of x
and y, respectively. Following lemma shows that (3.7) is also a density function.

Lemma 3.1 (3.7) is a joint density of

_ 1 u .
j=i+1

where a; > --- > a, are the latent roots of p x p symmetric random matrix A with

the normal density
1

2
2p/2 p(p+1)/4 expi— trA }
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and h is a random variable distributed independently according to N(0,1/v).

(Proof) The joint density of a3 > --- > a, is

d(p )eXP{__ Zaz2} H

=1 1<J

(Anderson, 1984b, Theorem 13.3.5.) Making the change of variables from
(a1,...,ap,h) to (f1,..., fp,h) by fi = a; — h, and integrating the joint density
with respect to h, we get the marginal density of f; > --- > f, as

d(zo)(yip) {——(Zfz E;;;CZ))}H(fi—fm. (39)

1<j

Put e; = ?:14-1 fi/v+p—1i),0<i<p-1, and e, = 0. Noting that b; =
v~ (fi —e;) and
fi—ei = (I/ —I—p—i—l—l)(ei_l —61'), (310)

we can see that
bil=f2—(+p—i+1e_12+ (v+p—i)e?
and hence

ib,z Zf n o (2o f)?
i 2= (tpe® =) fi e (3.11)
i=1 i=1

From (3.10) it holds

p p
Vi
= (e—e)= ), o
j=it1 e vtr—itl
and
Yj
fi = vibi + e = yibi + Z — T ___p,.
Shvtr—aTt 1
Then we have
fi = fixr = vibi — yig1r bita (3.12)

From (3.9), (3.11), (3.12) and the fact [], db; = {v/(v + p)}'/? [, df:, we see that
(3.7) is the joint density of (by,...,b,) defined in (3.8). The proof is completed. [

By applying Lemma 3.1 of Chapter 11, we obtain the following theorem:

Theorem 3.1 As n goes to infinity, (—2log Ag1, —2log A12) converges to
(P (b; V0)2, 5P (b; A0)?) in distribution under Hy, where (by,...,b,) are dis-
tributed with density (3.7).
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The joint characteristic function of the limiting distribution is given by

P p
o(s,t) =El[exp{is Z(bl v 0)% + it Z(b, A 0)?}]
i=1 i=1
p
:ZE[I( exp{stb + it Z bi®}]
m=0 i=m-+1
- 2
=d(p) exp{—— (1 — 2is) b 1 — 2it) b’}
% A(by,- .. by)dbs - - db,, (3.13)

where m* is a random integer such that b, > 0 > b« 41,

A(by,...,b, H{Z (Vebk — Vi1 brs1)} (3.14)

1<j k=1

and
B’m = {(blv'- . 7bm) ’ ’kak _7k+1_1bk+1 > Oa 1< k <m — 17 bm > 0}7

Bp—m = {(bms1, - bp) | Wbk — Y1 bkp1 >0, m+1<k<p—1, bpy1 <0}

Putting
m—1
c; = Cl(m)( - Z ’ykbk — ’yk+1_1bk+1) + ")/mbm, 1<i<m,
k=1
p—J
d; = dj(m)<bm+1; ey bpji1) = Ymgr () + Z (Vebk — Ye+1 ™ brg1),
k=m+1

we have that (3.14) is

I[I @-cHx [ (i-dy HHcl—f—d (3.15)

1<i<j<m 1<i<j<p—-m

By Macdonald (1979, p.37, Example 5) (3.15) can be expressed as

Zdet 1<z j<m det(d )1§i,j§p—m7 (316)

where the summation Zq is over all combinations p —1 > ¢ > -+ > ¢, > 0,
p—1>q >--->7q,_, > 0such that

{q17“‘7qm7617"'7qp—m} = {07 ]‘7"'7p_ 1}'
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Using (3.16), (3.13) reduces to
p — p—
$(s,t) =d(p) Y > UnUpom(l — 2is)”@/?(1 = 2it) =/, (3.17)
q

where Q =331 g +m, Q =21_1"q; +p—m=pp+1)/2-Q,
1 & |
Um = Um(ql, e ,qm) = / exp{—§ Z bf}det(ciqﬂ )lgi,jgmdbl cee dbm (318)
Bm i=1

for m > 1 and

Up—m :Up—m(QD cee 7qm)

1S -
:/— exp{—5 Y biym’ }det(d;)1<; j<p-mdbmi1---db, (3.19)
Bp—m 2 i=1

for p—m > 1, Uy = Uy = 1. By inverting the characteristic function (3.17), we get
the following formula.

Theorem 3.2 As n goes to infinity, the limiting joint distribution function of
—2log Ap; and —2log A15 under Hj is given by
lim PHO(—210g A01 S Yy, —210gA12 S Z)

n—oo

- d(p) Z Z UmUp—mGQ(y)GG(z)

m=0 ¢q

where G,(-), v > 0, is the distribution function of the chi-squared distribution
with v degrees of freedom and Go(-) =1(0< -).

Differently from the model discussed in Chapter II it is not easy to evaluate the
integrals (3.18) and (3.19) when p is not small. Appendix A gives the limiting
characteristic functions (3.17) for p = 2, 3.

4. Local unbiasedness of a general class of tests for H, against H, — H.

In Section 3 the LRT statistic Ag; was shown to be a nondecreasing function
of u;, 1 < i < p. Here we consider a a more general class C of the critical function
¢ : (0,00)P — [0, 1] which is nondecreasing in each argument of u € {¢y > 0} , and
not constant on {pp > 0} . The tests based on the statistics u1, Y »_, ; (F-test)
are also in the class C. In this section we prove that the test in the class C is locally



26

unbiased as the test for Hy against H; — Hy using the FKG inequality which is
summarized in Appendix B.

Before proving the theorem we provide a following lemma.

Lemma 4.1 The density ¢ in (3.5) on (0, 00)? satisfies (B.1) (FKG condition).

(Proof) Tt is sufficient to prove (a) and (b) of Lemma B.1.
Proof of (a) : Note that pg > 0 t;—t;41 > 0,1 <i<p—1< u;—gir1(ujy1) >0,

1<i<p—1with
u—1 -1
9¢+1(U):U(1+—.) |

Because the function g;11(u) is an increasing function on u > 0, {¢g > 0} is of the
form of (B.4).

Proof of (b) :  On the set {pg > 0} , log o can be expressed as > »_, n;(u;) + L(u)
for some functions 7; and L(u) = 3=, _; log(#; —;). Therefore we only have to show
that 92L/0u;0up, > 0,1 < m, on {¢g > 0} . Note first that

ot; t;

= - if i <y,
ou; uj+v—+p—7j J
ti
= — if i = j,
Uj
=0 otherwise.

Using the above relations some straightforward calculations yield

0L
= — F
ou0u,y, ;ul+u+p—l

with

t t 1 1 t;
Eim = — — i — - —
im (um Um+V+p—m)(t¢—tm)2 um+V+p—mj>Zm(ti—tj)2

for ¢+ < [. Noting that for i < m,

tj 1 o ] -
J;n (t: — t;)? = (t; — tm)? Z ty = (t—i_—zm)z{(y‘i‘p—m)m —v},

then
v

Eim> n

— > 0,
(ti —tm)?(um +v+p—m)

which implies %L /0u;0u,, > 0. The proof is completed. [
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Remark 4.1 The limiting joint density of (3.7) is also proved to satisfy (B.1) by
the same way.

Using Lemma 4.1 we can prove the following result.

Theorem 4.1 Let ¢ be a critical function in the class C, and let 3(d) be the
power function with & = (61,...,d,) the latent roots of (1/02)®. Then

e+ A

P
>0 i ) >0,
A=0 i=1

with e = (1,...,1) and ¢ = (c1,...,¢p). This means that the test ¢ is locally
unbiased as a test for Hy (6; = 1) against the alternative > .°_, d; > p (which
includes Hy — Hy).

(Proof) The non-null joint density ¢ of w = (u1,...,up) is given by

S

P
—n - (n—p—1)/2 T i
p(u; 8) =K (n,p,v)| DI T[&" "V ] - 1)+

P
=1 1<jJ =1

v

1 _
X / (dH)(1 + ~trD~ HTH')~"+»)/?
O(p)

where T = diag(#1, . . .,t,) pxp diagonal matrix, D = diag(é1, . .., d,) pxp diagonal
matrix, (dH) the normalized invariant measure over O(p) such that |, ) (dH) =1,
K (n,p,v) the normalizing constant given in (3.3). Then

0 _[n(v+p) R 9= N
=h(u)po(u),

where h;; is (4, j)-th element of H and

Here h(u) is strictly increasing in each argument of u € {po > 0} and

(s 6)]

d=e

/h(u)gog(u)du =0.

By virtue of Lemma 4.1, we apply Theorem B.1 (FKG inequality) as

0
55(6 + Ac)

A=0
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The proof is completed. [

5. Applications to testing problems in random coefficient regression
model.

In this section we state applications of the LRT’s Ty, and T35 to the following
random coefficient regression model proposed by Rao (1965):

y,=Fu;,+e;, i=1,...,N, (5.1)

where y, is a k x 1 observed vector, F' a k x p (k > p) design matrix with rank
p, u; a p X 1 unobserved random effect vector, and e; a k x 1 unobserved random
effect measurement error. u; and e; are independently distributed according to the
normal distributions N, (¢, A) and Ni(0,02I}), respectively. This is the balanced
case because the design matrix F does not depend on i. If F/ = (Ip.. . p)pxpr
(k =pr), (5.1) reduces to

yij:ui—keij, i:l,...,N, jzl,...,’)“,

where y,; and e;; are p x 1 vector such that y," = (y,," ... y;,"), e/’ = (en’ ... ey").
This is Scheffé’s mixed model with replications (Scheffé, 1959, Chapter 8) discussed
in Section 3 of Anderson, et al. (1986). For other applications of the model (5.1),
see Johansen (1984, Chapter 4), Lange and Laird (1989), Crowder and Hand (1990,
Chapter 6), etc.

We start with transforming (5.1) into the canonical form. Let H = (H; H>)
be a k x k orthogonal matrix such that Hy is kxp, Ho is kx (k—p), and Hy'F = O.
Putting z;, = H'y,,i=1,...,N, & = G¢, ©® = GAG' with G = H'F, we have
the canonical model

) . & O + %1, 0 . .
My: z; Nk(<0 , 0 UQIk_p , t=1,...,N, iid.

Then, as a test for the hypothesis that the coefficients w; are constant, i.e. the
hypothesis A = O, we can use the LRT Ty, for testing ® = O based on the
statistic Aoy (2.1) with

W =581 and g¢g= mtr(SQQ + ng), (52)
where
S11 Si2 al

_ 11 _ —— Y

§= (521 522) B ;(Zl 2)(z: - 2),
N

(T T2\ _ nowr = 1 .

T—(T21 T22)—sz, z—NZz,.
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Next we consider the more general model than M; as

. , & Y Y2 . ..
Ms: z; Nk((€2 \ =, >, , t=1,...,N, iid.

and obtain a test for goodness of fit of M; against M3 (Johansen, 1984, Section 4).

We settle an intermediate model between the models M; and M3 as

M, : zink<(£01>,(2011 UQIOk_p», i=1,....,N, iid.

and divide this testing problem into two parts: testing goodness of fit of M7 against
Ms, and testing goodness of fit of My against Ms. For testing M; against My we
can use the LRT Tj5 based on the statistic A1 with W and g in (5.2). For testing
M, against M3 likelihood ratio criterion can be easily obtained as

Aoz = { 15 X |S22| v S92 + T'a2 }N/2
S11(|S22| S22+ Tz {3Z55tr(S2e + Tao) }r? .

Note that three components of Aoz combined by the symbols ‘x’ are familiar likeli-
hood ratio criteria for testing the hypotheses X5 = O, €, = 0 and Xay = 021},
respectively.

Concerning the null distribution of Ajo and Aoz, it holds that:

Lemma 5.1 Under the null model M;, Ais and three components of A3 are
mutually independent.

(Proof) Under the model M, four matrices S11, S22.1 = Sa3 — S21.511 1S12,
B = 55,811 'S5 and Tos are distributed independently according to W, (/N —
1,0 + 02Ip), Wk_p(N —p—1, O'ZIk_p), Wk_p(p, O'ZIk_p), and Wk_p(l, U2Ik_p),
respectively. Noting that Aj5 is a function of S1; and tr(Ss92.q1 + B + T'92), and
that

A { S2al  |Sma+Bl |S22.1 + B + T }N”
’522.1 + B| ’522.1 + B+ T22’ ﬁtr(SQQ.l + B+ ng)}kfp ’

we can obtain the proof easily. []

Then by choosing o and «” such that 1 —a = (1 —a’)(1 — '), we can construct
a level-a test for goodness of fit of the model M; as a step-down testing procedure
combining: a level-o’ test based on Ass (or its three components); and a level-o”

test based on Aj2. For step-down testing procedures, see Anderson (1984b, Section
9.6).
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6. Power comparisons.

In this section we study a Monte Carlo simulation to compare the powers
of several tests including the LRT. The null hypothesis is & = ¢%I,, and the
alternative is local hypothesis that

@:UQ(IP+\/?A)
n

with A = diag(d;)pxp, di > 0. We compare the limiting powers (n — oo) of four
test criteria:
- One-sided likelihood ratio test based on the statistic Ag; [ONE];
- Two-sided likelihood ratio test based on the statistic Agz = Ag1 A2 [TWO];
- Test based on the statistic u; [MAX];
- Test based on the F-statistic trH /g [F].
The limiting power functions of the four tests are

P

p p
Pr(Z(bi vV 0)?2 > ), Pr(z b2 > ), Pr(by > "), and Pr(z b; > "),
i—0 i=0 i=0

respectively, where

v4+p—1 1 i )
bi =\ @i —h) = i —h)}, 1<i<p;
V-I-p—i—I-l{(a ) I/-I-p—zj;rl(aj )} ‘=P

a; > --- > a, are the latent roots of p x p symmetric random matrix A with normal

density
1

Wtr(A — A)?,
and h is a random variable independently distributed according to N(0,1/v).

The average powers of the four tests over 100000 replications are given in Table
6.1 (for p = 4, v = 1, size= 5%) and Table 6.2 (for p = 8, v = 1, size= 5%). The
results indicate that the performance of ONE, TWO, MAX and F are very similar
to ONE, TWO, ROY and LMP of Section 6 in Chapter II, respectively.
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2.0
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2.0
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2.0

1.0

1.0
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1.5
3.0

02
0.0
0.0

0.0
0.0

1.0
2.0
4.0

1.0
2.0

1.0

0.5
1.0
2.0

1.0
2.0

Underline denotes largest value in each row.

Table 6.1

Power (%, p =4, v =1, size=5%)

J3
0.0
0.0

0.0
0.0

0.0
0.0
0.0

1.0
2.0

1.0

0.0
0.0
0.0

0.5
1.0

04
0.0
0.0

0.0
0.0

0.0
0.0
0.0

0.0
0.0

1.0

0.0
0.0
0.0

0.0
0.0

ONE TWO MAX

5
9
21
73
12
33
92
14
37

14

10
23
76
16
49

5

7
18
67

9
25
87

9
26

7

8
17
67

11
37

5
8

22
78

10
24
80

10
21

9

8
20
69

12
35
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Table 6.2
Power (%, p =38, v =1, size=5%)

01
0.0

2.0
4.0

2.0
4.0

1.0
2.0
4.0

1.0
2.0

1.0
4.0
4.0

02
0.0

0.0
0.0

2.0
4.0

1.0
2.0
4.0

1.0
2.0

1.0
2.0
3.0

ds 04 05 06 07  Og ONE TWO MAX
0.0 00 00 00 00 0.0 5 5 )
0.0 00 00 00 00 0.0 13 11 14
0.0 00 00 00 00 0.0 49 44 62
0.0 00 00 00 00 0.0 22 18 18
0.0 00 00 00 00 0.0 82 76 75
1.0 00 00 00 0.0 0.0 10 8 8
20 00 00 00 00 0.0 29 23 19
40 00 00 0.0 0.0 0.0 93 89 75
1.0 10 1.0 0.0 0.0 0.0 12 9 8
20 20 2.0 00 0.0 0.0 37 26 18
1.0 10 1.0 1.0 1.0 1.0 12 6 7
0.0 00 00 00 00 0.0 57 50 58
20 10 00 00 00 0.0 69 60 53

Underline denotes largest value in each row.
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Appendix A. Examples of the limiting distributions.

The limiting characteristic functions ¢(s,t) in (3.17) for p = 2,3 are presented
as follows. (0 = (1 — 2is)~2, ¢ = (1 — 2it)"2)

p=2:
1 0% 4+ V—|—2
= 9
Ty
2\/_ 2 2,2 1/+1 7
p:
/ y+ [2(v + 3) V(v +3)
{sm +1 +2}— | }9
v+1 1v-1 V(v +3
+{ 1% + S g
\/‘ v+2 4dv+1 \/—W(V—f— (v +2)
1 v+3/2 vE+3v+3/2, 5 4
+ + 0
= \/_\/I/—|— (v +2) (V+1)(1/+2)} 7
1 v3(v+3 1 v+2 1lv+4
( ) 2 4+{ }‘9@5

t vt )12 22V v+1 4v+2
(v +3)

—I—[i{sin_l SRS a——— 2 }— ! v |
o 3(v + 2) sw+1)’ Var v+2 F

By letting v — oo they agree with the formulae given in Appendix A of Chapter
IT.

6

Appendix B. A sufficient condition for the FKG condition.

We summarize the FKG inequality and prove a sufficient condition for the
FKG condition. Let ¢ be a density on X € R"™ with respect to the measure p,
where X =[]\, X; with X; an interval of R', and p = [];_, y; with p; a o-finite
measure on X;. For two points & = (z1,...,2,), Yy = (Y1,...,Yn) in X, writex < y
iff z; <wy;, 1 <i<mn,and write x Ay = (v1,...,0,), VY = (wy,...,w,) with
v; = x; Nyi, w; = x; Vy;. We call that the density ¢ satisfies the FKG condition
(or MTP, property) when

p(@)e(y) < plxAny)p(xVy) foralzyeX. (B.1)

The density which satisfies the FKG condition is known to satisfy the following
inequality.
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Theorem B.1  Suppose that the density ¢ satisfies the FKG condition (B.1) and
that the functions g and h on X are nondecreasing in each argument on {¢ > 0} ,
ie for x,y € {¢ >0} x <y implies g(x) < g(y) and h(x) < h(y). Then the
FKG inequality

/X ghedp > ( /X gedp) ( /X hedp) (B.2)

holds provided that the integrals exist. In addition, suppose that g is not constant
on {¢ > 0} and that h is strictly increasing on {¢ > 0} , i.e. for ¢,y € {¢ > 0}
x <y and x # y implies h(x) < h(y), then the inequality in (B.2) holds strictly.

(Proof) See, for example, Perlman and Olkin (1980, Proposition 2.4 and Remark
2.5). O

When we apply the FKG inequality, the FKG condition should be verified.
One useful sufficient condition for (B.1) is that ¢ on X is positive and has second

derivatives, and that
82

a$ia$j

logo(x1,...,2,) >0 forall i <j, (B.3)

see Kemperman (1977, p. 329, Remark 1). The condition ¢ > 0 is, however, too
strict to be satisfied in many applications. We therefore present a weaker sufficient
condition for the FKG condition as follows.

Lemma B.1 The density ¢ on X satisfies the FKG condition (B.1) provided
that
(a) {x € X | p(x) >0} =X ND where

D = ﬂ {w | fa(-ria) _ga(xja) > 0} (B4)

acA

for some nondecreasing functions f,, go on X; , Xj , ta < ja, respectively,
and the set of indices A;

and

(b) ¢(x) has second derivatives on {¢ > 0} and satisfies (B.3) for x € {¢ > 0} .

(Proof) If ¢(x) = 0 or ¢(y) = 0 then (B.1) holds trivially. Let © = (z1,...,2,)
and y = (y1,...,yn) be fixed in {p > 0} . Let further v; = z; Ay; and w; = z; V y;.

Without loss of generality we permute the coordinates such that
= (W1, o, Wy Upg1yeesUn)y Y= (V1yeee,Vpy Wpp1,..., W)
where r = #{x; > y;}, and that

Vi < 7, Eli/,j/ s.t. v, =xy,v; =25 = i’ < j/,
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and
Vi<yg, 35 st wi=zpwi=zp = i <jl
On the other hand, this permutation of coordinates changes the expression of

(B4) as D = D1 N D2 N D3 N D4 with

Di= () {&| falwi,) —gale;) >0}, 1<k<4,
aEAy

where
Al ={a€Alian<ja<r}, Ar={a€A|r+1<i,<ja},
As={a€cAliac <rr+1<j.}, As={ac€A|jo<rr+1<i,}.
Define the sequence with double suffix {x;; € R"} by

Lij :(wl, sy Wiy Vil e ooy Upy Wt 1y - ooy Wy Upge 1, - - 7Un)7

1=0,...,7, 7=0,...,8,

with s =n — r. Note that * = x,9, y = ®ps, * N Yy = oo, * V Yy = x,.s. Define the
closed rectangle S;; which has four vertices {@;_1 j_1,®i j_1,%; j, ®i—1}. Suppose
the statement that

x,yeD = S;CD forall 1<i<r1<j<s, (B.5)

which shall be proved later. Then if ¢ satisfies (b), by integrating (B.3) with respect

to x; and x; over S;;, we get

0 < (@i j—1)p(@i—1,;) < p(xiz1,j-1)e(Ti ;).

Therefore from the argument of Kemperman (1977, p.329, Assertion (i)) or Karlin
and Rinott (1980, Proposition 2.1), we see that the FKG condition (B.1) holds.
Finally we prove (B.5). We only have to prove that if &,y € D then «* € D

with
*_
"= (wy,. .., wi—1,v; + S(W; — V;), Vit1y .-, Upy

Wyt 1y oy Wrjm1s Urg + U (W — Vrgej )y Urjitds - -+ Un),
for0<s<1, 0<t<I1.
The assumption x,y € D1 means

fa(vi)_ga(vj>>oa fa(wi)_ga(wj)>07 i<j§7’,

which implies * € D; because

fa(wi) = ga(vj + s(w; —v;)) > fa(wi) — ga(w;) >0,
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and
fa(vi + s(wi —v;)) = ga(vj) = fa(vi) = ga(vj) >0

for all 0 < s < 1. The assumption x,y € D, also implies £* € Dy. The assumption
y € D3 means
fa(vi) = ga(w;) >0, i<r, r4+1<j,

which implies ** € D3 because
fa(vi + s(w; —vi)) — ga(vj + t(w; —v5)) > fa(vi) — ga(w;) >0

for all 0 < s,t < 1. The assumption € D, also implies &* € D4. Therefore we
prove * € D and (B.5) is established. The proof is completed. []

Remark B.1 If the density ¢ on X which satisfies (a) of Lemma B.1 is TP,
(Karlin, 1968) in each pair of the coordinates, ¢ can be proved to satisfy the FKG
condition by the same way.
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