Proceedings of the 2nd U.S.-Japan Joint
Seminar on Statistical Time Series Analysis
Honolulu, Hawaii, January 25-29, 1993

A Monte Carlo Filtering and Smoothing Method
for Non-Gaussian Nonlinear State Space Models

Genshiro Kitagawa
The Institute of Statistical Mathematics
4-6-7 Minami-Azabu, Minato-ku, Tokyo 106 JAPAN

January 9, 1993

Abstract

A new algorithm of filtering and smoothing for non-Gaussian nonlinear state space
models is given. The algorithm is based on a Monte Carlo method and approximate
each conditional probability density function by many of its realizations. The significant
merit of the present algorithm is that it can applied to any nonlinear non-Gaussian higher
dimensional state space models if the dimension of the system noise and the observational

noise are low.

1. Introduction

A Monte Carlo method for non-Gaussian nonlinear filtering and smoothing is shown
here. In this method, each distribution is expressed by many of its realization, and the
movement of each particle is simulated by using the assumed model.

In recent years, the use of non-Gaussian or nonlinear models becomes very popular in
time series analysis. For example, West, Harrison and Migon (1986) considered generalized
dynamic linear model. Kitagawa (1987) directly generalized the state space model to the
case where either of the system noise and the observational noise are non-Gaussian. In the
method, recursive formulas for filtering and smoothing are derived and many nonstandard
problems in time series such as the abrupt changes of parameters of the model, outliers
and skewed distributions can be properly handled with this model. The method can be
easily generalized to discrete distribution models (Kitagawa, 1987) and nonlinear models
(Kitagawa, 1991).

On the other hand, the difficulty with this numerical method is that it requires in-
tensive use of the computer both in memory and CPU time. To mitigate this difficulty,

110


kitagawa
テキストボックス
Proceedings of the 2nd U.S.-Japan Joint Seminar on Statistical Time Series Analysis
Honolulu, Hawaii, January 25-29, 1993

kitagawa
テキストボックス




110


Gaussian-sum approximation was used in applying for the non-Gaussian seasonal adjust-
ment where typically 13 dimensional state space model was required. Considerable work
has been done on the refinement of the numerical algorithm based on computationally
more efficient integration algorithm or a Monte Carlo method.

In this paper, we will present a direct Monte Carlo method for filtering and smooth-
ing. The algorithm is based on the approximation of each conditional probability density
function by many of its realizations. The difference of the present algorithm from other
Monte Carlo method is that here we use the Monte Carlo method for the entire filtering
and smoothing not only for the numerical integration. The significant merit of the pro-
posed algorithm is that it can applied to any nonlinear non-Gaussian higher dimensional
state space models if the dimension of the system noise and the observational noise are

low.

2. Non-Gaussian Nonlinear State Space Model and Filtering
Assume that the time series y, is obtained by the following non-Gaussian nonlinear

state space model

Iy = f(xn—lyvn) (1)
A2, wy), (2)

Yn

where z,, is a k-dimensional state vector, v, and w, are £-dimensional and 1-dimensional
white noise sequences with densities ¢(v) and r(w), respectively. f and h are possibly
nonlinear functions R* x R = R* and R* x R — R, respectively. It is also assumed that
y = h(z, w) has an implicit function such that w = g(z, y). The initial state vector z is
distributed according to the density p(zo).

This type of state space model contains a broad class of models. Some examples

follows.

1. If f(z,v) = Fz + Gv and h(z,w) = Hz + w, then g(y,z) = y — Hz and we obtain

an ordinary state space model.

2. If f(z,v) = fi(z) + v and h(z,w) = hi(z) + w, then g(y,z) = y — hy(z) and we

obtain a nonlinear state space model.
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3. If f(z,v) = 2 + v and h(z,w) = e*w, then ¢g(y,z) = ye™® and we obtain a model

for time series with time-varying variance.

The problem of the state estimation is to evaluate the conditional density p(z,|Y:),
where Y, is the o-algebra generated from {yi, -, y:}. In the following development of the
filtering and the smoothing algorithms, each conditional density is expressed by using its
realizations.

2.1 One Step Ahead Prediction
Assume that {sy,..., s} and {vy, ..., vm} are independent realizations of p(z,-1|Yn-1)

and g(v), respectively. Namely,

{51,-8m} ~ p(za-1]Yn-1)

{vi, s vm} ~ q(v). (3)
Here, if ¢; is defined by

ti = f(si,v), (4)
then, obviously, ¢, -+, ,, are distributed as p(z,|Yn-1).
2.2 Filtering
Given the observation y, and the realizations of the predictor, {1, ,tm} ~ p(z4|Yn-1),
compute o; = p(ynl|t;) = r(9(yn,t;)) for j = 1,..,m. Next, obtain s,,---,s, by
the resampling of ¢y, ...,%,, with the probabilities proportional to a;, ..., @, respectively.
Namely, define s; by
t; with probability on/(a; + -« + o)

5§ =1 : (5)
tm with probability oy, /(cn + -+« + o)

Then {s1,++,s.,} is distributed as p(z,|Y,).

This can be verified as follows. When m independent realizations ¢;,:--,t,, from
P(2n|Yn-1) are given, the distribution function of p(z,|Y,-;) is approximated by the em-
pirical distribution function -

Pa(e) = — - I(a, ), 6)

=1
where I(z,1;) is the function defined by I(z,a) = 0if z < a and I(z,a) = 1 otherwise.
This means that p(z,|Y,-1) is approximated by the probability function

Pr(X, =t|Y,1) = % fori=1,-+-,m. )
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Then, given the observation, y,, the posterior probability is obtained by

Pr(X, =t4lY,) = Pr(X,=1tYn-1,9s)
p(Xn =, anY —1)
p(ynlyn—l)
P(¥n|Xn = 8:) Pr(Xn = ti|Ya1)
zih P(yn|Xn = ;) Pr(X, = tj|Yn-1)
(¢ 7904 # a;

Sm . L=
E;'n=1 127 iy 23-1 O‘J

(8)

Therefore m independent realizations {sy, ..., s, } of p(z,|Y,) is obtained by the resampling
of {t1, ..., tm} With
r

Pr(s; = t_,'IYn) = m‘

fori=1,..,m. (9)

This means that the posterior distribution function

Z o I(z,t;) (10)
]—1 J =1
is approximated by
1 m
E;I(w,s;). (11)

2.3 Likelihood of the Model
Given the observations yi, ..., yn, the likelihood of the parameter 8 of the model is

obtained by

N N
L(g) = p(yh aleg) = H p(ynlyl’ ceey yn-—lye) = H p(anYn—l)- (12)

n=1 n=1

Therefore, since p(yn|Yn-1) = a;, the log-likelihood is given by

J"l

£€0) = Z log p(yn|Yn-1)

n=1
N m
= Z log (Z aj) — Nlogm (13)
n=1 3=1
N m
= > log (ZP(%M)) — Nlog m.
n=1 1=1

2.4 An Algorithm for Filtering

Summarizing the preceding subsections, we obtain the following algorithm for filtering:
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1. Determine k, the number of realizations used for the approzimation of each distri-

bution.
2. Generate a k-dimensional random number sgo) ~ po(z) for j=1,..,m.
3. Repeat the following steps forn=1,..,N

(a) Generate a £-dimensional random number v§~") ~q) forj=1,..,m

(b) Compute t;") = f(sg-"—l), v§")) forj=1,..,m.

(c) Compute ozg-") = r(g(y,‘,tg-"))) forj=1,..,m.

d) Generate s™ ~ (T7, A™) 1T o™ I(z, ™) for j = 1,..,m by the resam-
J 1=179 7=1""3 J
pling of 7, ..., 1),

2.5 An Illustrative Example

Consider a nonlinear one dimensional state space model

Ty = Tp-1+ Up (14)
Yn = Zn+ Wn, (15)

where v, and w, are white noises distributed as the Cauchy distribution, C(0,0.01)
and the normal distribution, N(0,1), respectively. Here, to be specific, we assume
that p(z,-1|Yn-1) is N(0,1) and consider the predictive and the filter distributions,
9(24|Yn-1) and p(z,|Y,). The panels (a) and (c) in Figure 1 show the density func-
tions of p(zn—1|Yn-1) and g(v,) and their 100 realizations. In (b) and (d), the bold curves
show the empirical distribution functions defined by 100 realizations shown in (a) and (c),
respectively. The fine curves show the true distribution functions. The panel (e) shows
the 100 realizations of p(z,|Y,-;) directly computed by (14). On the other hand, the
curve in (e) shows the “exact” density function obtained by numerical convolution of the
densities. The panel (f) shows the corresponding distribution function and the empirical
distribution function, respectively. (g) shows the “exact” filtered density p(z,|Y,). 100
realizations in (g) are the same as the one in (e). However, the probability of each real-
ization is not 1/m but is o, and the corresponding distribution function becomes the one
shown in (h). The panel (i) shows 100 realizations obtained by the resampling of the data
shown in (g) according to the probability given by (5). It can be seen that the empirical
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distribution function shown in (j) resembles to the one in (i) and is close to the “exact”

one shown by fine curve.

3. Smoothing
3.1 Smoothing by Storing the State Vector
In this section, we assume that each density function is approximated by an empirical

distribution function and we use the following notation,
p(t), -ty = Pr(X; =1, X, = tP)Y)). (16)

Assume that (s(l) (-"_1)) ~ p(s(") (-"_l)lY,,_l) = 1/m and vg") ~ q(v), and define

(..., t") by

(*) :
) _ for :1=1,..,n-1
t; . 17
{ f(s(" -1 v;) for i=n. (17)
Then (t(l) (")) can be considered as realizations from p(t(l) ,tg") |Yz).
Next, given an observation y,, p(tj )Tty 5 )lYn_l) is updated as follows:
p(t), - () = p(ED, -, 87 Yams, ) (18)
_ Pl 87)p(EY,  Y) (19)
P(Ya|Ya-1)
This indicates that we can do smoothing by storing and resampling m sets of realizations
(tg»l), ,tg"))rl ,m with the same probability as for the filtering.

Therefore, an algorithm for smoothing can be obtained by replacing the Step 3 (d) of
the algorithm for filtering by

(d)' Generate (sgl), (")) ~ (T, oz("))‘1 D a(")l(m t( Y for j =1,...,m by the

resampling of {t; ), ™Yz, m-

In principle, this algorithm realizes the fixed interval smoothing for the nonlinear non-
Gaussian state space model. However, in practice, since the number of realizations is
finite, the repetition of the resampling (d)’ will gradually decrease the number of different
samples and will causes a difficulty.

As an example, we consider the trend estimation problem shown in section 5.1 of

Kitagawa (1987). We have 500 observation and estimate the trend by the Gaussian



model

tp = tpo1+ v, vy ~ N(0,1.22 x 1072)
Yn = tptw, wy, ~ N(0,1.043) (20)

The right panel shows the true smoothed density p(z;|Yse0) obtained by the Kalman
smoother. It can be seen that after 10 steps, the realizations {sﬁl), ...,s%o} seems to
become reasonable representatives of p(z1|Yseo). However, it should be noted here that
significant overlap of the realizations occurs and the number of actual realizations becomes
only 22 after 50 steps. It is further reduced to 16 at n=100, 8 at n=200 and 2 at n=>500.

Therefore, it is recommended to stop the smoothing algorithm after repeating the
resampling not so many times (say less than 5 per cent of m). The algorithm may be

written as follows:

(d)" For fized L, generate (s&2,...,s) ~ (T, &A1 o1, o8I (2,8) for j =
1,...,m by the resampling of {tg"—l'), 150} SRR
This is equivalent to apply the L-lag fixed lag smoother rather than the fixed interval
smoother.
Figure 3.1 (a) and (b) show the filtered and 40-lag smoothed estimate of the trend
based on the Gaussian model. On the other hand, Figure 3.2 (a) and (b) show the

estimates based on a non-Gaussian model
v, ~ Cauchy(0,3.48 x 107°), w, ~ N(0,1.022) (21)

figure 3.3 (a) and (b) show the “exact” estimates obtained by (a) the Kalman smoother
and (b) the non-Gaussian smoother shown in Kitagawa (1987). It can be seen that the 40-
lag smoothed estimates show good accordance with the ones by the “exact” fixed interval
smoother.

Since the distribution is expressed by the realizations, we can obtain various statistics
besides the mean value. However, they are not shown here.
3.2 Smoothing by Two-filter Formula

Another way of smoothing is to use the two-filter formula used in Kitagawa (1990).
Define Y™ = {y,,-*+,yn}, then we have Yy =Y, _; UY™. Therefore

p(anYN) = p(anYn-lr Y")
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x p(zn,Y"|Ya-1) (22)
= p(Ynlmn)P(mnlyn—l)-

Here p(Y™|z,) can be evaluated by the following backward filtering.

p(Y¥|zn) = p(yalza)
P(Yﬂ+1|mn) /p(Yn+1Imn+1)p($n+lImn)dxrﬁl (23)
P(Y™|2n) = p(ynl|zn)p(Y™|2,).

We assume that the function z = f(z, v) in equation (1) has an implicit function such

that v = v(z, z).
1. Do smoothing shown in section 2.4 and store the realizations of the predictor, (tg"), Jj=
1,...,m) for n=1,...,N.

2. Do backward filtering and the smoothing by the following algorithm

(a) Compute ﬂ;") = r(g(yN,tg”))) for j=1,.....,m.
(b) Repeat the following steps for n=N—1,...,1
i. Compute 6;") = ﬁj(-"“)q('y(tg-"“),tj(”))) for j=1,...,m
ii. Compute ﬂj(") = r(g(y,.,tg-")))ég-") for j=1,...,m
iii. (7L, /9§"))"1 Dy ﬂ}")f (z,tg-")) is the distribution function approzimating
the smoother p(z,|Yn)
iv. If necessary, generate si™, ..., s™Mby the resampling of £, ..., ™ with the

relative weights g™, ..., B

4. Examples
4.1 Trend Estimation (k=2)
For the estimation of the mean value function of the nonstationary time series, we

use a second order trend model

T, = 21 —Tha+v,
Yn = Tn + wy. (24)

Here v, and w, are white noise sequences that are not necessarily Gaussian. As the

distribution of v, or w,, we might use, for example, the following models:
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Gaussian p(z) = (2702)"7 exp {—z2/20?}
Cauchy  p(z) = 77~} (% + 22)?

Figure 4.1 shows an artificially generated data with three bents at n=150, 250 and

400. Figure 4.2 shows the estimate of the trend T,, based on a Gaussian model
v, ~ N(0,1.0 x 107*), w, ~ N(0,0.36)

The estimate T}, is obtained as the mean of 4000 realizations. The abrupt changes of the
slope are not so clear. On the other hand, Figure 4.3 shows the results by a non-Gaussian
model

v, ~ Cauchy(0, zzz), w, ~ N(0,0.36)

With this non-Gaussian system noise model, the sudden changes of the slope are clearly
detected.
4.2 Seasonal Adjustment

The standard model for seasonal adjustment is
Un =Tn + Sp + w, (25)

where T, is the trend component given above and S, is the seasonal component defined
by
Sn = _(Sn—l + e Sn—p+l) + Uy, . (26)

Figure 5.1 shows the quarterly inventory of private companies in Japan. In the middle
of the series, the energy crisis occurred and the trend of the series suddenly changed.
However, the estimate by a Gaussian model shown in Figure 5.2 does not detect the
abrupt changes of the trend. On the other hand, the one by a non-Gaussian model clearly
detects the abrupt changes of the trend and the seasonal pattern twice in 1973 and in
1974.
4.3 Nonlinear Model .

We consider the data artificially generated by the following model which was originally
used by Andrade Netto et. al.(1978) and reconsidered in Kitagawa (1991):

1 2527,,_1
Ty = E:c,,_l + 1—4T3-1' + 8cos(12n) + Un
z3
UYn = % + w,. (27)



The problem is to estimate the true signal z, from the sequence of observations {y,}
assuming that the model (29) is known. Our filter and smoother were applied to this
problem. For comparison, the well-known extended Kalman smoother and a nonlinear
smoother based on numerical computation were also applied.

Figure 6.1 shows the data y, and the signal z,. Figure 6.2 shows the estimate of z,
by the Monte Carlo method. It can be seen that fairly good estimate of the signal was
obtained by this method. Figure 6.3 shows the results by the “exact” nonlinear smoother
(Kitagawa 1991) and the extended Kalman smoother. It can be seen that the Monte carlo
method provides close approximation to the “exact” smoother and that it is by far better

than the extended Kalman smoother.
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Figure 4.1
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Table Captions

(a) Initial distribution, (b) distribution function of the initial distribution
(c) system noise, (d) distribution function of the system noise

(e) predictor, (f) distribution function of the predictor

(g) filter, (h) distribution function of the filter

(i) resampled filter, (h) distribution function of the resampled filter

Trace of the realizations of the smoother

(a) Monte carlo filter for Gaussian model

(b) 40-lag Monte Carlo smoother for Gaussian model

(a) Monte carlo filter for non-Gaussian model

(b) 40-lag Monte Carlo smoother for non-Gaussian model
(a) “exact” smoother for Gaussian model

(b) “exact” smoother for a non-Gaussian model

Artificially generate data
Estimated trend by a Gaussian model
Estimated trend by a non-Gaussian model

Inventory of private companies in Japan
Seasonal adjustment by a Gaussian model
Seasonal adjustment by a non-Gaussian model

Data and signal

Monte Carlo smoother
“Exact” smoother
Extended Kalman smoother
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To be given later

Figure 5
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Figure 6. 3
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