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ON THE MINIMUM OF GAPS GENERATED BY
ONE-DIMENSIONAL RANDOM PACKING

YOSHIAKI ITOH,* The Institute of Statistical Mathematics

Abstract

Let L(t) be the random variable which represents the minimum of length of
gaps generated by random packing of unit intervals into [0,¢]. We have

P(L(x+1)= h)=%Lx P(L(y)= h)P(L(x — y) = h)dy

with

0 for 0=x<h
P(L(x)zZh)=41 for h=x<1
0 for x=1.
Using this equation the asymptotic behaviour of P(L(x)= h) is discussed.

ONE-DIMENSIONAL RANDOM PACKING; MINIMUM OF GAPS; DELAY NON-LINEAR IN-
TEGRAL EQUATION; ASYMPTOTIC BEHAVIOUR; NUMERICAL CALCULATION

1. Introduction

Random packing in an interval [0, x] by unit intervals has been studied by
several authors. Rényi (1958) proved that the expectation of the random packing
density approaches a constant

f exp{—Zj l-e du}dt#0.748
0 0 u

as x goes to infinity. Ney (1962) studied higher moments for the problem.
Dvoretzky and Robbins (1964) proved the corresponding central limit theorem.
Bankovi (1962) obtained the limiting distribution of a gap chosen at random. In
this paper we introduce a non-linear delay integral equation to study the
asymptotic behaviour of the minimum of lengths of gaps.

As in Rényi (1958), let us place at random a unit interval I, in the interval
[0, x]. We assume that the initial point £ of the interval I, is a random variable

Received 28 December 1978; revision received 26 February 1979.
*Postal address: The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu Minato-Ku,
Tokyo, Japan.

134




On the minimum of gaps generated by one -dimensional random packing . 135

uniformly distributed in the interval [0, x — 1]. If the intervals I,, I, - - -, I, have
already been chosen, the next randomly chosen interval will be kept only if it
does not intersect any of the intervals I,, I, - - -, I,. In this case this interval will
be denoted by ... If it does intersect any of the intervals I, I,, - - -, I, we neglect
it and choose a new interval. The procedure is continued until none of the
lengths of gaps generated by the intervals placed in [0, x] is greater than 1. We
denote by N(x) the random number of intervals packed in [0,x] by this
procedure and write M(x)= E(N(x)).

If a unit interval is already placed in the interval [0, x + 1] with initial point at y
(0 = y = x), then the average number of the intervals at the left is M (y) and that
of the intervals at the right is M(x—y). We have M(x+ lf y)=
M(y)+ M(x — y)+1, denoting by |y conditioning on the event that the first
interval is [y, y + 1]. Since y is uniformly distributed in [0, x], we have

(1) MG+ =1 [ M)+ MG - y)+ Dab.

Analyses given by Rényi (1958), Dvoretzky and Robbins (1964), and Bankovi
(1962) are based on this equation.

Let L(x) be the random variable which represents the minimum of lengths of
gaps generated by the above random packing procedure. If a unit interval is
already placed on the interval [0, x + 1] with initial point at y, then

P(L(x+1)=h|y)=P(L(y)=h)P(L(x~-y)=h).

Since y is uniformly distributed in [0, x], we have
) P(L(x+1)z h)=;1‘-f P(L(y)= h)P(L(x —y)= h)dy
o

with
0 for 0=x<h
P(L(x)zh)= {1 for h=x<1
0 for x=1.

A random packing model for elections is introduced in Itoh and Ueda (1978),
(1979), and Itoh (1978), to explain percentage gains among candidates of the
Liberal Democratic Party, using numerical values obtained by computer experi-
ments. In Itoh (1978), Equation (2) is introduced as a remark. In this paper we
study the asymptotic behaviour of P(L(x)= h) which will give a justification for
the values obtained by computer experiments.

2. Results

Put
f(x)=P(L(x)zh)
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then f(x) satisfies

© f+ =1 [ - )y
with
0 for 0=x<h
f(x)={l for h=x<1
0 for x=1.

We define the functions

fk(x) k=1’213,"'7

as follows;
1 for h=x<l1
filx)=
0 for x<h or 1=x,
and for k =2,
xil_zkﬁ*f;(x—l) for x# 1
i+j=
fi(x) =
0 for x =1,
where

forfie) = [ =)y,

We define the probability densities P *(x) as the k-fold convolution of P, (x),
where

ﬁ for h=x=1
Ph(x)=
0 for x <h or 1<x.

Lemma 1.

PULE)Zh)= 3, fi(x).

Proof. The existence and uniqueness of the solution of Equation (3) is trivial,

since the functional equation gives a unique way of constructing the solution
from the f(x) for x €0, 1].
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for=2(S 1) 5 (3 8) 0= x4 D+ A+ 1+ oo

Since fi(x + 1) =0 for x >0, f(x) = Zi, fi(x) satisfies Equation (3) formally.
fe(x)>0 for k(1+h)—1<x <2k —1,andotherwise f, (x)=0.
Soif k(1+h)—1<x<(k+1)(1+h)-1, f(x)=Z.fi(x). Hence

[(x+1)/(1+h)]
f=" 2
is the solution of Equation (3).
Lemma 2.

%lkp:*(x—kﬂ)gfk(x).

Proof. The statement for k = 1 follows from the definition. Assume that the
statement holds for every positive integer k for which k < k,. Then

1 x=1
fi) =g [ T A= 1=y
b Yot
T x 1 1 k"(l 2“?—)1 PRt (x = ko).

Since P{fo"*(x — ko) = 0 for 2ko+ 1 = x, we have

1 1 - h ky+1 . —_ h ko1 .
fk‘]“(x)g ikO(_ZT%—Pg‘kO 1)*(x - ko) = %LP#" 1)*(x — ka)-
0

Lemma 3. For an arbitrary h (0 < h < 1), there is a constant ¢ >0 which
satisfies

. [
I<ImsTm=n)-

Proof. The statement follows from an application of a theorem for terminat-
ing a renewal process in Feller (1971), p. 376 to Lemma 1 with Lemma 2.

Theorem. For an arbitrary h (0 <h <1), there exists a(h)>0 for which

lims [ e Dp(L(x) = h)dx = 1.

x—=>x X Jo

Proof. We consider

K+ 1= [ 1= )y
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with
0 for 0=x<h
f(x)= 41 for h=x<1
0 for x=1.
Putting
86)= | emfx+ i,
o
we have

(Ls—e:+ e"g(S))2= ~;,%g(8)-

Put a(s)=g(—s). Then

("’hs" L e‘a(s))2= d—ia(s).

From Lemma 3, a(s) blows up at a certain point a(h)>0. Hence

a'(s) o™
(a (S))2 s——0+a(h) .
So
—_—1z(s—a(h e**®  for s— —0+a(h).
a(s)

(See p. 139 of de Bruijn (1958)). Hence

(s +a(h)g(s) e €.

s—+0—a(h)

Thus we have

f fly +1)e*®0*?dy =~ x,
(1]
(See the Tauberian theorem on p. 443 of Feller (1971).) Thus the result follows.

3. Numerical calculations for a(h)

We give an algorithm to estimate the lower bound and the upper bound of
a(h). Since 0=g(s)= fse ~dx = 1/s, g() = 0. Putting ¢t = e >, and defining
¢ () by ¢(t)=g(s), we have

2¢'() =)+ C)P




On the minimum of gaps generated by one - dimensional random packing 139

with ¢(0)=0, where

2(1-1""Y)
CO="ogr

The existence and uniqueness of the solution for this intial value problem is
proved from a result on p. 4 of Cesari (1963).
&(t) blows up at a certain point T. Assuming C is a constant,

1( - __1_) =1
dt o)+ C 2°
Hence, for 7, <1,

11 1,
)T C d)rC 2T )

We estimate the upper bound T. The minimum of C(¢) in (7.1, ) is C(7).
We determine ¢, recursively by the following:

11 1
o+ C(r)) ¢+ C(m) 27
11 1
$:+C(r)) ¢+ C(m) 27
1 11
G-+ C(Tk) &+ C(Tk) a 27’

where 7. = k. We continue until there is no ¢x > 0 satisfying the equation. The
7. determined by such a procedure is an upper bound T of T.
We discuss the lower bound of T. For t =71,<1,

C(t)<(- t¥h_1)+ 1 )xz
- log 7o log 7o )

For 0 <t = 7, if there is an & (7o) such that

o(1)= 220 v _y)

—log 7o
then
, 41+ e To 2 h—1 Lh-1)
= — 2
2¢'(1)= (log o (t 2t +1)

for ¢t with 0 <t = 7. Under the above assumption
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2
() <2+ e(m)) (%t" _ z_l_lt%(hm_,_ t)

(log 7o) sh+3
=2!1+£!To!!z(l n_ A ey )= Y
Togry B! et = (1)

If for 0 <1t <7y,

o) = M (,%(h—l)_ 1),

—log 1o
and
(,-t;(TO) = 3—70%-% (To%(h_,)_ 1),
then

d()=d(t) for 0<t<r,

Putting ¢ (7o) = ¢, we determine ¢, recursively by following:

1 1 _1
dot+ C(1)) 1+ C(ro) 27
1 1 1

$:+ C(1)) ¢+ C() 27

We continue until there is no ¢ >0 for which

1 1 1
¢k—1 + C(kal) ¢k + C(’Tk_l) N 2 T

where 7. = 7o+ k7. The 7,_, determined by such a procedure is a lower bound
of T.

Using the relation ¢ = ¢, we can obtain the bounds for a(h), that is to say,
—3log T is a lower bound and —1ilog T is an upper bound for a(h).

In Table 1, we give the lower bounds and upper bounds for h =0.01k,
k=1,2,---,99, in which £(75) = 107%, 7,=10"° and = = 10°. The calculation is
performed by the significands of 15 decimal places. In Figure 1 we plot the values
of Table 1. Obviously a(0)=0 and a(1) = .

2

4. Applications and discussion

Random packing models for elections in Japan are introduced in the previous
works by Itoh and Ueda (1978), (1979), and Itoh (1978). Consider a stick of
length x = 2d. The stick is divided into two sticks with length x, and x, such that
x;1Zd and x;= d. Each possible division is assumed to be equally probable.




TABLE 1

" a(h) X a(h)

lower upper lower upper
bound bound bound bound
0.01 —0.20147 —-—— 0.07052 0.51 0.68108 - 0.68124
0.02 —0.06793 -—= 0.08533 0.52 0.69376 -—— 0.69390
0.03 —0.00489 - 0.09989 0.53 0.70659 —-——— 0.70671
0.04 0.03619 - 0.11421 0.54 0.71957 ——- 0.71968
0.05 0.06737 - 0.12830 0.55 0.73271 - 0.73281
0.06 0.09316 -—— 0.14216 0.56 0.74603 ——— 0.74612
0.07 0.11559 - 0.15582 0.57 0.75954 - 0.75963
0.08 0.13578 -——- 0.16928 0.58 0.77326 - 0.77333
0.09 0.15437 —-——— 0.18256 0.59 0.78719 —— 0.78726
0.10 0.17174 -——— 0.19567 0.60 0.80135 —-——— 0.80141
0.11 0.18818 - 0.20860 0.61 0.81576 ——- 0.81581
0.12 0.20385 - 0.22139 0.62 0.83043 ——— 0.83048
0.13 0.21892 -— 0.23403 0.63 0.84538 —-—— 0.84543
0.14 0.23347 - 0.24653 0.64 0.86064 —-—— 0.86068
0.15 0.24758 - 0.25891 0.65 0.87621 —— 0.87624
0.16 0.26133 —— 0.27117 0.66 0.89212 - 0.89216
0.17 0.27474 -——— 0.28332 0.67 0.90841 ——— 0.90844
0.18 0.28788 -— 0.29537 0.68 0.92508 —-——— 0.92511
0.19 0.30077 - 0.30732 0.69 0.94218 —-— 0.94221
0.20 0.31344 -—— 0.31919 0.70 0.95974 ——- 0.95976
021 0.32593 -—— 0.33098 0.71 0.97778 - 0.97780
0.22 0.33826 - 0.34270 0.72 0.99635 -—- 0.99637
0.23 0.35044 -— 0.35435 0.73 1.01550 - 1.01551
0.24 0.36250 -——— 0.36595 0.74 1.03526 -—— 1.03527
0.25 0.37446 -—- 0.37750 0.75 1.05569 - 1.05570
0.26 0.38632 -—— 0.38901 0.76 1.07685 -— 1.07686
0.27 0.39810 -—— 0.40047 0.77 1.09881 —-——= 1.09882
0.28 0.40981 -——— 0.41191 0.78 1.12164 -—— 1.12165
0.29 0.42146 -——= 0.42333 0.79 1.14543 -— 1.14544
0.30 0.43307 -— 0.43472 0.80 1.17028 -—— 1.17029
0.31 0.44464 -—— 0.44611 0.81 1.19630 ——— 1.19630
0.32 0.45619 - 0.45749 0.82 1.22362 -—— 1.22363
0.33 0.46771 -— 0.46887 0.83 1.25241 -——— 1.25242
0.34 0.47923 -— 0.48026 0.84 1.28284 -——— 1.28285
0.35 0.49075 - 0.49166 0.85 1.31514 -—— 1.31515
0.36 0.50227 —-—— 0.50308 0.86 1.34957 - 1.34957
0.37 0.51381 -— 0.51453 0.87 1.38645 —-—— 1.38646
0.38 0.52537 -— 0.52601 0.88 1.42620 -—- 1.42620
0.39 0.53696 -——- 0.53753 0.89 1.46931 —-—— 1.46932
0.40 0.54858 - 0.54909 0.90 1.51645 - 1.51646
0.41 0.56025 -—- 0.56071 0.91 1.56849 -—= 1.56849
0.42 0.57197 -—= 0.57238 0.92 1.62658 -——— 1.62658
0.43 0.58375 - 0.58412 0.93 1.69238 ——— 1.69239
0.44 0.59560 —-—— 0.59593 0.94 1.76831 -——- 1.76832
0.45 0.60752 —-——— 0.60782 0.95 1.85811 - 1.85812
0.46 0.61953 -—- 0.61979 0.96 1.96807 —— 1.96807
0.47 0.63162 -——— 0.63186 0.97 2.10998 —— 2.10998
0.48 0.64382 —— 0.64403 0.98 2.31035 - 2.31035
0.49 0.65612 - 0.65631 0.99 2.65391 - 2.65391
0.50 0.66854 - 0.66871




142 YOSHIAKI ITOH

upper bound of a(h)
————— lower bound of a(h)

-1
0.00 0.25 0.50 0.75 1.00

—h
Figure 1
TABLE 2
x=25
exp{—a(h)(x +1)} frequency of L(x)= h per
h upper bound lower bound 10000 computer experiments
0.01 188.342682 -—-- 0.1598697 --— 4624
0.02 5.8480263 -— 0.1087598 —--- 2600
0.03 1.1356907 -—— 0.0744817 —-—- 1517
0.04 0.3902792 -—— 0.0513327 -—— 930
0.05 0.1734716 - 0.0355891 -—— 595
0.06 0.0887375 - 0.0248158 -—- 357
0.07 0.0495199 - 0.0173982 -—= 237
0.08 0.0292939 - 0.0122601 -—— 160
0.09 0.0180695 - 0.0086805 -——- 1
0.10 0.0115015 —-— 0.0061746 —-— 68
0.11 0.0075021 - 0.0044107 -— 53
0.12 0.0049905 -— 0.0031633 -—— 35
0.13 0.0033730 - 0.0022773 -— 25
0.14 0.0023108 -— 0.0016452 -— 20
0.15 0.0016010 -—- 0.0011925 -—— 13
0.16 0.0011199 -——- 0.0008671 -— 10
0.17 0.0007901 -— 0.0006322 -— 7
0.18 0.0005615 -—— 0.0004622 - 3
0.19 0.0004016 - 0.0003387 - 2
0.20 0.0002889 —-— 0.0002488 —-— 2
0.21 0.0002088 —-— 0.0001831 - 2
0.22 0.0001515 - 0.0001350 - 1
0.23 0.0001104 —— 0.0000997 - 0
0.24 0.0000807 -—- 0.0000738 -——= 0
0.25 0.0000591 -— 0.0000546 - 0




On the minimum of gaps generated by one -dimensional random packing 143

h=02

1.01—1

numerical solution
---------- upper bound of e ~**®X**D
0.8 - — — —lower bound of e *®**=*D

15 20

Figure 2

Such division is continued until all sticks are shorter than 2d. The sticks obtained
by such procedure correspond to gaps generated by one-dimensional random
packing. (See Ney (1962).) Consider an election in a certain constituency. The
length x corresponds to the total votes obtained by candidates of a certain
political party, for example the Liberal Democratic Party. The party nominates a
candidate if he can obtain at least d votes. The length of each stick, which results
from the above procedure of division, corresponds to the votes obtained by a
candidate nominated by the party. We must remark that in Japan each voter can
vote for one candidate at an election even if the fixed number is more than one.
Evidence for this model is given in the previous papers by Itoh and Ueda (1978),
(1979) and Itoh (1978).

The present results give one of the checks for the computer experiments which
are used in the model fitting. Numerical calculations show that f(x) does not
oscillate very much for larger x. (See Figure 2.) For smaller x, we can calculate
directly from Equation (3). For larger x for example x = 20,21, --,30, the
approximation by e~ *®**V fits well to the result of computer experiments for
P(L(x)=h), as shown in Table 2 for x =25. A stricter treatment of this
discussion is our future problem.
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We remark that the maximum of lengths of gaps can be discussed in the same
way.

Acknowledgement

The author is most grateful to Dr J. M. Hammersley, who suggested to him an
essential idea for numerical calculations of a(h). He thanks Miss S. Ueda for
computer programs. Thanks are also due to the referee for helpful comments.

References

Bankovl, G. (1962) On gaps generated by a random space filling procedure, Publ. Math. Inst.
Hungar. Acad. Sci. 7, 395-407.

CEsARI, L. (1963) Asymptotic Behavior and Stability Problems in Ordinary Differential Equa-
tions. Springer-Verlag, Berlin.

DE BruuN, N. G. (1958) Asymptotic Methods in Analysis. North-Holland, Amsterdam.

DVORETZKY, A. AND ROBBINS, H. (1964) On the ‘parking problem’. Publ. Math. Inst. Hungar.
Acad. Sci. 9, 209-225.

FELLER, W. (1971) An Introduction to Probability Theory and its Applications, I1. Wiley, New
York.

IToH, Y. (1978) Random packing model for nomination of candidates and its application to
elections of the House of Representatives in Japan. Proc. Internat. Conf. Cybernetics and Society 1,
432-435.

IToH, Y. AND UEDA, S. (1978) Note on random packing models for an analysis of elections (in
Japanese). Proc. Inst. Statist. Math. 25, 23-27.

IToH, Y. AND UEDA, S. (1979) A random packing model for elections. Ann. Inst. Statist. Math.
31, 157-167.

NEY, P. E. (1962) A random space filling problem. Ann. Math. Statist. 33, 702-718.

RENYI, A. (1958) On a one-dimensional problem concerning random space-filling. Publ. Math.
Inst. Hungar. Acad. Sci. 3, 109-127.




