S S

J. Appl. Prob. 16, 36-44 (1979)
Printed in Israel
© Applied Probability Trust 1979

RANDOM COLLISION MODELS IN ORIENTED GRAPHS

YOSHIAKI ITOH,* Institute of Statistical Mathematics, Tokyo

Abstract

We investigate a random collision model for competition between types of
individuals in a population. There are dominance relations defined for each pair
of types such that if two individuals of different types collide then after the
collision both are of the dominant type. These dominance relations are
represented by an oriented graph, called a tournament. It is shown that
tournaments having a particular form are relatively stable, while other tourna-
ments are relatively unstable. A measure of the stability of the stable tourna-
ments is given in the main theorem.

RANDOM COLLISION; ORIENTED GRAPHS; TOURNAMENTS; COMPETING SPECIES; MAR-
TINGALES; ASYMPTOTIC PROBABILITY OF COEXISTENCE

1. Introduction

The problem of competing species has been considered by many authors since
Lotka (1925) and Volterra (1931). Ehrenfest’s urn model was discussed in detail
by Kac (1959), and another urn model for a problem in genetics was treated by
Moran (1958). Random collision models for competing species are considered by
Itoh (1971), (1973), (1975), and in Itoh (1973), several qualitative properties for
species coexistence were given with a computer simulation. Kimura (1955)
calculated the asymptotic probabilities for Wright’s model in genetics, which can
be interpreted as a random collision model without competition. Kimura (1958)
and Mather (1969) have considered deterministic versions of the stochastic
model investigated in this paper.

We investigate a random collision model for competition between types of
individuals in a population. Consider a population consisting of individuals, each
of which is one of p types. The types may represent species, genotypes, types
of consumer or other classifications. We let Ni(t) denote the number of
individuals of type i present in the population at time t, and let N(¢)=
(Nl(t)’ NZ(t)7 N, (t))

For each pair of types, a dominance relation is defined: either type i
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dominates type j or vice versa. We then consider random collisions between
individuals which are assumed to occur at the rate of one per unit time. If two
individuals of different types collide then two individuals of the dominant type
result from the collision. It should be noted that the term ‘dominate’ is not used
here in the sense in which it is used in genetics: see Moon (1968).

An oriented graph is a convenient means of representing the dominance
relations. An oriented graph is a collection of points, called nodes, representing
the types, and directed lines between the points, representing the dominance
relations. An oriented graph representing a complete set of dominance relations
is called a tournament.

The tournament [T,] consists of a set of 2r + 1 nodes such that each node is
dominated by r nodes and dominates r nodes. This symmetry gives such a
tournament a significant degree of stability, and the tournaments [T], r=
0,1,2,---, play an important role in the investigation of the random collision
model. As the types successively become extinct, the tournament of the
non-extinct types is altered. The main result of this paper indicates that
tournaments isomorphic to [T,], r = 0,1,2, - - -, are relatively stable, while other
tournaments are relatively unstable. A measure of the stability of a tournament
isomorphic to [T,] is given by the main theorem which indicates that

Pr((R(}=[T])~Co’, ast—o

where [R(f)] denotes the tournament of non-extinct types at time ¢, 6, =
1-2¢"s")/n(n—1) and C is a constant. The proof uses a family of martingales,
(K. (), %), t=0,1,2,-- -}, r=0,1,2,- - -, where % denotes the o-field gener-
ated by {N(u),u =0,1,2,---,t}.

To illustrate the behaviour of the model, we consider an example with
tournament [ V] given in the Figure 1(a). We note that [ V] is isomorphic to (T.).
A computer simulation of the process {N(¢),t =0,1,2, - -} is given in Figure 2.
At time 0 there are five types each with 20 individuals, and from time 0 to time
1392 the five types coexist with tournament [V]. At time 1392 type 5 becomes

Figure 1 (a) Figure 1 (b) Figure 1(c)



2 sandTd

YOSHIAKI ITOH




Random collision models in oriented graphs 39

extinct. From time 1393 to time 1921 there are four types having the tournament
obtained from [ V] by deleting the node corresponding to type 5 and lines to it, as
given in Figure 1(b). At time 1921 type 2 becomes extinct, and from time 1922 to
time 4786, there are three types having a tournament isomorphic to [T)], as given
in Figure 1(c). The relative stability of the tournaments [T>] and [T\] is indicated
by this realization.

2. Tournaments

A tournament [ T] consists of a set of nodes T, and oriented lines joining each
pair of nodes, such that each pair gf noges is joined by one ang only one oriented
line. Thus, if i, j € T then either ij or ji is in [T]. If the line ji is in [T], then we
say that i dominates j, and write i > j, or j < i.

Two tournaments [S] and [ T] are isomorphic, and we write [S]= [T], if there
exists a one-to-one dominance preserving mapping between their nodes.

A tournament [S] is a subtournament of a tournament [T] if there exists a
one-to-one dominance preserving mapping between $ and a subset of T. The
subtournament of [T] generated by S C T is the tournament with S as its set of
nodes and with dominance relations as in [T], and we write [S]C [T}

We define the dominance indicator for a tournament [T] as

1, if i > ],
a; = a; (T) = { 0, ifi =j,
-1, if i <j.
Note that a; = — a;.

For a tournament [T], S C T and a node k € T\S, we define the dominance
relation as follows:

k>S & > ax<0

i€S

k<S & > aw>0.

i€S
The tournament [T,] consists of a set of nodes T, ={0,1,2,---,2r} and
dominance relations defined by
i>j ifi—j=1,2,---,r (mod 2r + 1).

Thus, each node dominates (and is dominated by) r other nodes. In dealing with
the tournament [T,], it is convenient to define node i, for an integer i&€T, as
node i, where i, denotes the residue of i modulus 2r + 1. Thus node 2r+1is
node 0, and so on.

3. Definition of the model

We consider a population of individuals of p types, 1,2,---,p, whose
numbers are Ny(¢), Na(t),* - -, N, (t) respectively at time t. We define N(t)=
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(Ni(2), No(1), - - -, N, (¢)). It is assumed that initially N(¢) = a, that in each unit of
time one collision occurs, and that all possible collisions are equiprobable. There
exist dominance relations between the types as defined by the tournament [V],
with nodes V ={1,2,-- -, p} corresponding to the types, which is assumed to be
a subtournament of [U]=[T.). Further, it is assumed that after a collision
between individuals of different types, both are of the dominant type, while a
collision between individuals of the same type has no effect.

These assumptions imply that {N(t),t=0,1,2,---} is a Markov chain with
transition probabilities defined by

™ =Pr[N(t+1)=m; [N()=n)=2nn/n(n—1)  §j=12-,p i#];
0 ,
7 =PI[N(t+1)=n|[N@)=n]=> n (n —1)/n(n - 1);
i=1
where n =(n,n,---,n,), n=23,n, and n; is a px1 vector with ith
component n; + a;, jth component n; + a;, and all other components equal to
those of n.
If we let f;(7) = N;(n7)/n, then we are led to the deterministic approximation,
f(7) which is such that

@ fi(7)=ﬁ(‘r),;v aifi(v), i€V,

with f(7)>0 and Zicvfi(7) = 1.

We denote by # the o-field generated by {N(u),u =0,1,2,---,t}. We
denote the tournament of non-extinct types at time ¢ by [R(?)], so that
[R(0)]=[V]; and we define m = m(V)=max{r:[X]C[V],[X]=[T.]}. We
also define

gx(n)=ig( m, and HV.r(")=X; gx(n),

where A, ={X:[X]C[V],[X]=[T,]}. Note that Hy.(n) is equal to the
number of possible tournaments of individuals isomorphic to [T,] when N(t)=
n, and so the process Hy,, (N(t)) can be thought of as a measure of [T, ]-ness of
the population at time ¢.

4. Results
Lemma 1. If [Xic[V], [X]=][T,] then

1, ifj<X
2 ay = 0, ifjex
ex -1, ifj>X

Proof. This follows by straightforward enumeration of cases.
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Lemma 2. If [X]C[V], [X]=[T], and X >i (X <i) for every i € VX,
then [X] is uniquely determined.

Proof. This follows from the uniqueness of the solution of (2).

Lemma 3. Let[X]C[V],[X]=[T:] and k € V\X, such that x; <k <X
If X <k (X >k), and X*, k* are such that X* U {k*} = X U{k}, [X*]=[T.],
and X*>k* (X*<k*), then X* and k* are uniquely determined by k*=x
(k* = xi1), and X* = (X \{k*})U{k}. We write X*= X(k) and k* = k(X).

Proof. From the assumptions we have, for nodes x of X,

k <X, j=4L2,--,r;
k > x., j=0,—-1,-2,---,—r
It follows that
{x:k>x,xE(X\{x,-})}={x:x,->x,x€X}
{ {x:k<x,x€X\{x}={x:x<x,x€EX}

Thus we see that X * and k * are as specified above. The uniqueness follows from
Lemma 2.

Lemma 4. Let [X]C{V]C[U] and [X]=[T.], where m = max{r:
[X]C[V], [X]=[T.]}. Suppose that X <k for all k € V\X, and that | < X for
some | € U\V; then one of the following two statements holds:

() max{r:[X]C[VU{l}], [X]=[T}}=m+1,

() X()<k forall k €(VU{NX()

Proof. Let Y =X U{i,j}C U, [X]=[T), i> X, j <X and X(j)> i, then it

follows from Lemma 3 that [Y]=[T...]. Therefore, if (ii) does not hold, then
there exists & € V\ X such that X(I)> h, so (i) must hold.

Lemma 5. Let m =max{r:[X]C[V], [X]=[T.]}. If [W] is such that

[W]=[T.), i>W forall i€ V\W, and [W]C[V],

then [W] is uniquely determined. Further, for the tournament [W],

2m+1>
+

E@ve+ ) #)=[1- (2 (P )+ 3 No)/ nin= DN,

iEVA\W
Proof. We construct [W] from an arbitrary [X]=[T,]. From Lemma 3, if
k € V\X then either (i) X <k, or (ii) X (k)< k(X). Since max{r:[X]C V1]
[X]=[T.]} = m, Lemma 4 assures us that W can be constructed recursively.
Using Lemma 1, we find that
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33,3, @vm) = gu(a)m, = -2 (> %) gwmyn(n -1y,
EW jeV\w (gw(nij)_ Ew (n))mj - <ie;w ni) 8w (")/n(n - 1).

These relations lead directly to the given result.
Lemma 6. Let 6, =1~2("1")/n(n - 1), and define
K. (t)=6."Hv,(N(t)),
then {(K, (1), %), t=0,1,2,---} is a martingale for r =0,1,2,-- -,
Proof.
1

X€EA, iEV jEV

E(Hy, (N(t+1))| %) - Hy, (N(1) =3 [gx (n;) = gx (n)] ;.

Now,

+2 +

ievjev iexjex iEX jEY ieYj ey

where Y = V\X. We have, using Lemma 1,

2 Z [gx(n;) = gx (n)lm; = — 4 <2r2+ 1) gx(n)/n(n —1).

IEX je

Also, since gx (n;)— gx(n) =0 for i, j € Y, we have

2 2 [8x(m) = gx(m)]m; = 0.

ieYy j

Finally, we have

2 2 [8x(m) = gx(m)]m,

XEA, jEY i

= Z Z E [gx(i)(nii(x))—gX(i)(n)]Trii(X)

XEA, jEY iEX(j)

by definition of X (j) and j(X). Further, using Lemma 3 and Lemma 1, we find
that

i;( [8x (ny;) — gx (n)]m; + ie;/_) [gXU)(G/(X>) — 8xi(m)]myxy = 0.

It follows that

Z E [gx (ny)— gx(n)]m; = 0.

X€EA, i€X

Therefore, we have
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E(Hv., (N(t+1))| %)= 6.Hv..(N(t))
from which the result follows.

Theorem.

 Pr[RO)=[T]|NO) = @)
fim Hy. ()0, 6! -

l’ r=071"..7m;

where Q, = (1/L.)Sues, oty - * N2, E. ={(no, 111, n»,): m; are positive inte-
gers such that ={Zo n; = n}, and L, denotes the number of elements in the set E,.

Proof. Suppose first that [V]=[T.]. The process {N(),t=0,1,2,---}is a
Markov chain on the state space E. U{0}: the set of states for which
N:N,---N, =0 is an absorbing set which we denote as state 0. The transition
probability matrix of this Markov chain has unique second largest
eigenvalue A, =1-2(7%")/n(n —1), and corresponding left eigenvector x; =
(d, L7, L5, -+, L) for an appropriate d.

Thus, as t—®, given that [R(t)]=[T.], each of the possible states is
equiprobable, so that :

lim E(Hv.n (NO)|[RO)=([T.]) = Q-
Also, from Lemma 6, we have
E(Hv, (N(t))| N(0) = @) = Hy.m (@),
If [R(t)] #[T.] then Hy . (N(t))= 0, hence
E(Hv..(N(1))| N(©0) = @)
= E(Hv.. (N(0)| [RO] = [T )Pr(R(®)] =T ]| N(©) = @).

Thus the result follows for r = m.
If [T..] C[X], then using Lemma 5, we see that

Pr((R(1)]=[X]|N(©0)= a)=0(8"),

thus the time spent in any tournament of which [T.] is a subtournament is
asymptotically negligible compared to the time spent in a tournament isomor-
phic to [T ], so the result of the theorem holds for general [V] and r = m. The
above argument can be applied successively forr=m-1,m-2,---,1.

MacArthur (1957) considered from a census of birds that, if p — 1 points are
chosen at random on a stick, and if the stick is broken at these points then the
lengths of the resulting p segments represent the relative abundances of the p
species. The result proved above gives justification for MacArthur’s hypothesis:
it is most likely that [V]=[T,], in which case all possible partitions of the
population into 2r + 1 types are equiprobable.
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In many applications a modified time scale is more reasonable. If we assume
that each individual collides with one other individual on average in a unit time
interval, i.e., there are in collisions per unit time, then the time scale + = 2t/n,
the result of the above theorem gives

2r+1

Pr([R(7)]=[T.]|N(0) = @)~ kH,,, (% a) o Cem

where k = ff o 'fAfC;fl o 'f2' dfﬂdfl T df2" with A = {(fo’fh o ’fl”): f07f1’ T
fr >0, fo+ fit -+ fo, =1}

Another possible modification of the model is to assume that if individuals of
type i and type j collide then they become two i’s with probability 3+ & and two
j’s with probability 3 — 6, for 0= 8 =1, if i > Wright’s model is the case § = 0,
for which the asymptotic probabilities of species coexistence have been obtained
for an arbitrary combination of species: see Kimura (1955). We have considered
the case & =;. Analogous results can be obtained for other values of 8.
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