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| Abstract
In graph theory, en oriented graph which represénts dordnance

reletions is called e tournament. We introduce a random collision
"ﬁﬂbﬂel on & tournament [v] for competi£ion of épecies. Our collision
ruie is that an individual of species i and an individual of specmes

j collide with each other and become two indiv1ﬂuals of 1 if i dominstes
j. Ir, for 2r+1 species, each species domlnates r of the other species
r 4 is domina:_hea by the remained r of the other spec:l.es, we say that

the tournsmént of the 2r+l species is isomorphic fo tournament'[Tr].
We start from a population which conteins m species with'dominance
relations of [v]. Ifivlc tT 1, thé probability.that'it coptains 2r+l .
spec1es with a tournament isomorphlc t6 [T J is given asymptotlcally in
the main.theorem forr=1,2, «-- , M, where M is defined by
M = Max{r I[Tr]C: [v]}. Taking an sppropriate time scale t for en
application, we find the'asymptdtic probability is proportional 1o

“2r+1%2 %' ) R . o
e vhere n is the population size. Stochastic properties used
in our proof are based on properties of tournaments. For example, &

a martingale which represents so to speak & measure of [Tr]ness of

the system plays a mejor role in this paper.

RANDOM COLLISION: FINITE NUMBER OF PARTICLES; ORIENTED GRAFHS; COMPETING
SPECIES: MARTINGALES; SUPERMARTINGALES; EIGEN VALUE; ASYMPTOTIC PROBABIL.-

ITY OF COEXISTENCE




1. Introduction

Probiems of species competitions have been studied by many authors
since Lotka[9] and Volterra [14]. Ehrenfest's urn model was ﬁiscﬁssed.
"ﬁiﬁ:detail bﬁ Kec [5],'aﬁd Moran [13] £reated'another ura model in :
‘relation to a.géneticlproblem. The preéent author treaﬁed_ranaom
collision models for competing species, [é],'[3], [4]. A stochastic ::
model with finite numher of.inﬁivi&uals for each species has been
.1ntroduced in [3], and several gualitative condltlons Tor species
coexistence ‘has been studled with aid of computer simulation. Kimara
{7] has calculated the asymptotic probablllties of coexistence for.

M‘J/V}“" { T ‘?-(M \.w
study tan~be applied to the case
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The presen

I-,,'lr

Wright's genetic modely
A
with competition.

We use oriented graphs to represent the dominance relatlon in
competition and 1ntroduce random collisions on the oriented graphs.
According to that model, an‘individuel of species I and an individual of.
species j collide (come into contact) and become two individuals of
species i, if species i.dominates j (see Fig. 1), or become two individuals
of species J if theldominance reletion is reversed. The word “dominance”
is here used as a graph theoretic term, and this is not be confused with
the dominance-recessive relationship in genetics. A class of oriented
graphs representing dominance relstions is called "tournament', (see Moon
[121) |

The object of this paper is to give an asymptotic result for

coexistence of species in relation to tournaments. Our theorem is stated

in section 4. Here we introduce our study by a special case of it, that




is to say, we illustrate a2 random collision model whose tournament [V]
are given in Fig. 2, in which the species, denoted by the nodes, Vo

dominates Vis V) dominates v

o end so on, The number of individuals of

.- ;species vy &t time u is the random variable Nv (w) for 4 =12, 2, -+ ,

5, where DN (u) = n is a time independent constent. Denoting the
i=1 Y4 o o - .

‘yector varigble (Nv (u), N, (n), -+ , N, (w)) b}fﬁ(u), e define two

1 2 5 o
functions Hv (ﬁ(u)) and K (.I?(u)'). Suppose that there are at least one
. ’2‘ ’l "
individusl for each species. Replacing species vs in ¥ig. 2 by one
individual of species v,

[V] for individuals". So the number of all possible ;tournaments for

, Wwe call this oriented graph as "the tournament

individuals of the five competing species is now defined as function

. 5 : :
HV . As is easily seen HV -(-ﬁ(u)) = 1 N_ (u). Next, we consider
32 s2 i=1 vi. - . .

five subtournaments isomorphic to [Tl] in Fig. b, with nodes {vl_, Vo '\.?h} .
{vys 73, Vs}s {Va, ) 'vl}_’ (v, Vg v} and {v., v, v3}. Applying the
sbove replacement by individuals, the number of all possible tournaments
isomorphic to [Tl] for individuals of the five species of [V] is denoted
vy Hy 1(35(1.1)), which is so to speak a measure of [Tl]ness of the system

2

at time u. We have

H, 1(5?(11)) |
= N, ()N, () )+ K, ) NVB(uS X o)
+ ¥ 3(11) N N 1{1.1) * 3, () NVSm ()
+ st(u) Nvl(_u) ,NVB(ﬁ) . ' '

e

> >,
Denoting ¥ by the g-algebra generated by N(0), N(1}, --- , N(u),




{ 2~5—_l—)) Hva(N(u)) Fou=0,1,2, == }

—'Ll

32 %1mmn u=ml,&-“}anmmﬂ%ﬂﬁ.

ala-1)

If opne of Nv 3 éay Nv s, 15 zero, the ccrrespondipg tournament are
: . -
represented by Fig. 3. In this case, evidenily H, 2(N(u)}
. k]

and {(1 -

c.

{1 -2 3 2 )) Hv l(i«’(u)) F,oow=0,1, 2, +++ }is also a martingale.

n_
where N ' . '
B.v‘l(N(u)) = Nvl(u)sz(u) th(u) + Nv3(u) th(.u) Nvlfu)-
Besides, we have
2,0, + N, (u)-

ot (- , _ -
| .:.(Nvl(.u+l)Nv?fuvl)th(u+l) |7 ) = (1_ gy )N"l(u) N‘_’3(u)ﬂvh(u) :

Using these relations and calculating gigen values and their eigen vectors
of the transiﬁion Qatrix for the model, we have an asympteotic result on
species coexiéten;e in relation to [Tl] and [Tz].

A computer simulation giveh in Fig. 5 will help the reader to
understand the model. At time O there are five species with the
tou:nament [v] iz Fzg. 2 each with 20 1nd1v1duals From time.o to
time 1392 the five species coexist. From 1393 to 1921 the four species

with the tournament in Fig. 3 exist. From 1922 to 4785 three species

with a townamsnt isomorphic to {Tl} in Fig. I coexist.

For the generzl case we need the formulations and lewras which are

stated in the following sectlons.




2. Tournament

A class of oriented graphs, such as given in Fig.2, 3 and &, is
nemed "tournament". Inthis section we use a.lterm "node" instead of the
bem "species". A tournament [T] conélli_sts‘of e set of m nd:ies
?={1, 2, +-- , m} in which each pair of distinct nodes i and j is
Joined by one and oaly olne of the oriented_ arcs l—j’ or ﬁ. If the arc j_I
is in {T], then we say i dominates j and write as i > j. Two tournaments
are iscmorphic if there exists a one-to-one dominance preserving
cﬁrrespondence between their nodes. We write [T] = [T'] if [T] is
isomorphic to [T']. A tournement [V] is a subtournament of a tourﬁament
[T] if there exists a one-to-one mapping N between the nodés of [V] and
& subset of the nodes of [T] such that if p > q, then N{p) > N{q). We
write (V] € [T] if [V] is e su‘btournament of [T]. The subtournament of
[7] generated by X € T is the tournament with X as its nodes set and
with all the dominance felations in [T} that have both their endpoints I: !

in X. We define 245 for & tournament [V] as

1 Oif i >
a,.= 0 if i =}
1]

-1 if f3 < 3.

For a nede a« of the tourﬁament (V] and the subset W of V, wWhere a n W = ¢,
& dominance relation is defined as

a>W if I a, <0
i

a<W if r a, > 0.
. o]
ieW

[Tr] is a tournament which consists of a set of nodes T, = {o, 1, 2,




.- , 2r)} in vhich each pair of distinct nodes i and J is Joined by the

dominance relations
iy if i-3351,2, 100, T (mod 2r+l).

fr(-) is a periodic function of integers defined by the followings:

i) £(i) =i for 0O <is2r

ii) fr(i+(2r+l)m) = fr(i) for any integer n.




3. Model apd its property
We consider a system which satisfies the following.

i) In a population there are individuals of m species v_, ve,

+++ , V_ vhose numbers are nv.(O), n (0), -+ , n_ (0) respectively at
RN | 1 A m .

t:'uﬁe Zero.
ii} We assume that in a unit time one collision occurs and assume
the uniform distribution of colliding pairs.

iii) An ipdividuzl of species vi and an individual of species v

3

collide with each other and become two individuals of species v it

vy v, orv, =v,. v's are nodes of the tournement [V] C [Ts].

J i J
To clarify the sbove i), ii), iii), we pose iv).

iv) The numbers of individuals of the m species at time u are

. . ’
expressed by the random vector N{u) = (N (u), ¥_(w), --- , X {(u))
Y Vo vm :

which are defined by the following markov chain

P(f(us1) = 3, | F(w) = 3) = e
w = ni:] u) = nlnol)
R o hi;.(?}{."l}
P(H(u+1) =0 W) =7) = = 2 "
i=l n{n-1)
i d | -
+heren={n ,n , "+ ,n J,n= z nv,a.nd n; . is a m dimensionzal
10V “m i=1 Vi d

vector defined for i F j in which i's component n, and j's component
i
n + ectivel
n. of n are replaced by nv'+ . and n +a . vespectively.

Y3 i 1Y i Vid

L n
Wit
riting P(nij

instead of P(N(u)=n), we have

| ) instead of P(N(ut1) = K“] N(u) = 1) and P(nu)




(1) PE) = P@I RPN +3 T RELRDPE ).
“+ -

= t
n nij
%3

z_ (u)
Putting P (u) = ——, and taking an appropriate time scale,

'we have the i‘olloving determmstzc a.pproxlma.tlon for the process,

which is used in the proof of Lemma 2
a m
(2) P (e} =P (£)( £ a _P (t))
’ at A -V v‘jEV viv‘j vj
for v; €V, with P_(t) > 0 enda I P (¢) =
i vev Vit
Vi
Notations and assumptions for Lemmas and Theorem. (x], W], [w']

end [V] are the subtournaments of [Ts} generated by nodes sets X, W, W!

and V respectively where X, W, W', VC T, &nd W, W' C V.

(m) = =
E!.x ® v.eX nvi
1
@)= £ g.(n).
Hy o8 . Eyin
[x]=(T_]

t's, v's, and w's are nodes of the tournaments [’i‘s}, [Vv] ena [W]

respectively. a's are defined for the tournament [T_] (See section 2).

Lemma 1. ILet [W] = [‘I‘rl,

1 if vj-< W

E.av.: 0 ifv, eV
v, W vij J

-1 if vj>w.




Lemme 2. Let [W] =z [‘I‘r] and [W'] = [Tr].
If W >vi (W< vi) for every v, € V\W end W' > v, (Wt ¢ vi) for

every v, € V\W', then W = W',

P Proof. If [W} = [Tr]’ and W >-vi for every V5 E VW,

(2} %E' L (t) = n P2 (£)( ¢ P (%)) > 0.
vieW i visw i vi eV\W i

Since I P_(t) =1, the following two must hold for Eq. (2).

v,
vi_sV i
i) I B (t) increases and T P, (t) approaches to zero.
visW i v.eVW i
A
ii} I P (%) increases and )X P, (t) approaches to zero. .
visW' Y3 vicv\W' i :

If W' ¥ W the zbove two is not mutually consistent from the unigueness

of the solution of Eg. (2). Q.E.D.

Lemma 3. Let [W]. = {’I‘r], W= {wo, v . W r} where O S Wy <

1s Tt >

cae < er £ 2s, and wi—< v, <X¥

H

1
vhich satisfy W' U v , =WUv, (W] = [T ), end v , < W' (v_ > W),

are vniquely determined as W' = (W \wi) U v, (W' = {(W\w ) Uvu'),

£, (i-+1)

).

and vu, = wi (va, = wi‘r(i"-l)

We write the above W' as W{va) and v_y &s vu(w).
Proof. From the assumptions,

va-{ wfr(i+j) for j=1,2, -« , v,

and



Yo ¥ Ve (sg) TOT 3T T T T

Thus we See

’{x!va)- x, x € (W \wi')} :__{x‘lvi} X, X € W}

'{xiva_-< x, x € (W \wi)} '{xlwi-< X, #.E wl.

From this we have

' = ' ’ =
W (W \ wi) Lfvh, LA PR

We see the uniqueness from Lemmsa 2. . ' Q.E.D.

Temma 4. Let [W] = [TMj for M = Max {r| [Tr] c [v]}, W< v, fox

every v, € V\V¥ and let t&-{ W for t_, which satisfies t N V = ¢, then
ene of the following two holds (See Notations and assumptions}.

i-5' Max {r| [T JC (vUt I} =M+1
1) W(z,) <t for every tgoe (VUL )\l ).

_ Proof. Based on Lemma 3, we cen prove the statement;

Let (WU valu.v%) c Té" | (W] = [TI_], vu'l> W, va2—< W, and

”("u ) > v, » then (w U'vu U v, ] = [? .}. From this, if ii) does

2 1 1 2 ¥l
not hold, there exists v, which satisfies v ¢ VAW and W(ﬁa):? Vi
So i} must hold. ' Q.E.D.

Lemma 5. Let

Max {r | [Tr] C [v1l = M,

i) +then W whith satisfies the followings is uniquely determined.

W] = [TM}

10




end

vi>— W

for every vi € VAW,

ii) for the ¥, let F"u be the g-algebra generated by ﬁ(o),ﬁ(l),--- ,'ﬁ(u),

2 C. o+ I N_.{v
2172

g(n-l)

S

(3 Eg,®@a)) 1) = (1 - ) g (Ru)).

Proof.

3} We construct W from em arbitrary X which satisTies

(x] = (7).

Frcu; Lemms 3 one of the following two holds, for X and Vo with
N v, = 9.

a) X< L

b) X(vu:) < VG(X)-
Since Max{r | [Tr] C [vi} = ¥, L;amma. L assures us thet W can be
constructed recursively from thelx.

'ii) Using Lemma 1, we have

2 c '
> > > ey iz
i,jﬁw (g,(n;5) - sw(jn)) Pla,, I 2) ® Ta(m1) g,(n),

i%j

L

and

iiw (g.ﬂ(nij) - sw(n)) P(nij |
JeVAW

Using these relations, we have

. i
E(g, (Fu1)) | Flw) =) = (2 - VW 7y g (). Q.ED.

11
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Lemma 6. Let "E'u be the g-algebra generated by N(0), N{(1),

F(u), and let Max{r | [Tr]-C {V]} = M, then the sequence {Wv z_(1.1), Fu

u=0,23%,2, *-- } is a martingale for r = 1, 2, -+ , M, in which

“ c,
Y L= p 2rtl 2 4™

Proof. From Iemma 3 and Lemma 1, :Lf f}(]

I (g, (%, )—%bNP S 19

i€X

n(n_-"l) V,I‘

(N(u)).

{T] for j & V\X

* 2 (EX(J)(nlj(X gxta)(n))P 3(X)|

iex(J)

A{x(j) and J(X) are defined in Lemma 3.) So we have

: oz (g(n..) - g )P, ]W)
VoX ie=X Sx nij *x 1
[T J=[x] JeV\X
1
= = I T | E(g(n )-— (n))P |n)
2. yox jeV\X iex * * %
[m l=(x]
r ) .
fiizi(j)st(j)fnij(x)) - &) BP0 12D
Since Cey(E ) S g =0 for i, 5 e VX,
V'DZK igj (5)((“:13) - g_x 3 )P(n [n)
[z, J=(x] 1,367\
e e 1 2.0 - e GRG, |3
[Tr];[X] i,jex
o _ Qr"f‘lCQ T £ ()
ale-1) gy A
(T_la(x]
From these relations, we have
2 C
m%rﬁmﬂnlmm=ﬁ)-%rm>:—i%%fuvgm
2 3 ni{n- >

12
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4. Main theorem

We use the following notations.

2o YR

i . XCV
i _ [Tr]g[x]
where '
) m
(X)) ={{n_,2_, <+ ,n_ )| I n_  =mn,n's are nonnegative
% 1 V2 m oi=1 Vi

integers, n_ > O for every v, € X, n_ = 0 for every
v, . i v, .

' i _ i

ﬁ;eV\X,XCVL

Lr is the number of elements of the set EV(V) for m = 2r+1,

Theorem.,. Let [V] C [Ts] and M = Max {r |[Tr] < [(v]},

then :
> -+
P(N() e B, [N} =%). . .. .
(5)1im 2 ] o =1
1o i - et u
r(Y)(E— T Lnonla--nzr) (L -2 23—;—20
? r n +n_+ts-««4+pn_ =n n(n-—l)
o 1 2r .
o R ,---,n2r>0.
for r =1, 2, ==+ , M.
Proof of theorem.
i} +the case of (V] = [Tr]
Without loss of generality we can assums Viel T ifori=2~0,1, 2,
«ee , 2r. We call the set of vectors,
2r
- -a = I .
{(no, n, T N n2r)| izc n, =n, n's are nonnegetive

integers, n, = 0 for at least one of n's},
state 0. By an appropriate numbering for the distinct elements of EV(V}

from 1 to L, we can consider the state space § = (o, &, --- , L ).
r



The transition metrix is written as

-

1 U 0 * . . 0
_ Plo
By a= | Fog
. Q
~PL0 J 7

The matrix A has maximum eigenvalue 1 corresponding 1o the lefti
5 .
eigenvector x_ = (1, 0, 0, --- , 0) since the state 0 is absorbing.

The second eigen velue .A -of A is the maximum eigenvalue of Q, end hence

1

is real and satisfies

10 = 1= Al 2_[7L2l2lk3]2 “r 2‘]ALI_[.
: 2r+1%2 |
We can find kl = l'— 2 m >I|k2|and the left eigen vector of AJ. is
;1 = {4, -Ig"- N il—~ s Tt 31—-) for an sppropriate d.
T T r ' .

Let ;£ be the left eigen vector corresponding to li. Any 1 + Lr
dimensional vector is ekpressed as

> > > >
x = Co(x)xo + Cl(x)xl + eea CLr(x)x .

Thus we have

. o C
@ +,r > 2r+1 2 U 2r+1 72 (¥
XA = C (x)x +C{x)(L -2=—==):x, +0(l-2=—"7T),
0( o 1 n(n_l)) 1 n(n—l)
where ]
-
x = (1,0, 0, , 0)
o
and

14




T = e P
xl" (d: L 2 L LI L] L )'
™ T+ ..

r
Since
o 2r
2 = 1
vl=lrd, 5 ()= 1 N,
e : - i=o
we have
| N - . - - . —_—
iii E(HV,r( (u)l N(u) e EV,r) n +n +-%-+n =n nonl n2r Lr
. o 1. 2r
: no>0,nl>0,---,n2r>o
From Lemme 6, we heve
2r11 2 )

E(H.Vgr(ﬁfu)) [ (o) =) = Hv,rfv5tl - 2 21

1 N(u) ¢ B(V), B, r(E(u}) = 0. So
m(r, (Rw) 1§0) = ) = 2, M) | ¥(w) e 5, JP@ em,_[H0) =¥)

Thus we heve

1im
e 1 - -+ u
Uy G L ‘myomy ) -2 = ll? )
? rn+tn +---+n, =N ° T a(n
1 2
n ’nl}' ,n2r>0
= 1, fTor the case [V] = [Tr].

ii). the general case.

ir [mr] C [X] and [Tr} £ [X],

p(f(w) e B(x) [H(0) = ¥)
_ ~ 2m(x)+102- wo 2r¥1C2 u
o{x ? n(n-1} ) o=olt -2 n{n-1) )

for M{X) = Max{r |[Tr] < [X]}, from Lemma 5. Using Lemma & and the zbove

i), ve have Eq. (5) for x =1, 2, --. , M. Q.E.D.

15
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- fend A

haﬁlont situation. BSuppose an. individual with gene A

5. Applications
1) Kimura [8) gave en exemple for his fundamental theorem for

A

natural selections, as the following. - Consider three alleles Al, 2

3 with frequencies Pl’ p2 and ps;_ For simplicity assume a-
1 has its fitness

decreased by the amount ¢ when it is surrounded by individuals with Az,

while A, if surrounded by the.former Al gains fitness by the samé amount

2

¢, Similarly A2 vhen surrounded by A, individuals loses fitness by ¢,

3

vhile the reverse situaticn whould add fitness c to an A3 individual; and

_so on cyclically. Then the law of change of gene freguencies will be the

deterministic approximation of our process in the case [V] = [Tl]’ as
2 CPl(P3 - p,)

(6) 7 Pp = epylpy ~ pg)

E P3 = CP3(P2 - Pl)
In this case
3t PaPoP3 = O
Mather [11] considered selections through compelfition of plants in

various situations. He dicussed a difference equation corresponding to

the following differential’ equation

d _ — T .an
= Py~ pi(jil aijpj)’ 354 = "2y for i = 1, 2, , m.

Our model represenis the stochastic case of the situations treated by
Kimura and Mathexr.

For applications the following assumption ii)' is more reasonable

16




than ii) of our model.
ii)' each individual collide with another individuel one time on
the average in 2 uwnit time interval

“;rj“ So u of the denomlnator of Eg. (5} must be replaced by, —-u

'Since | 1
HV (Y)(“—' z nonl---ner)
+‘1'
r n +nl +ﬂ2
S LR L >0
A g Tem e ol
EV,r R I'r n +n_+dee-etp =n n n n i
o 1 2r
no’nl"”’n'zr>0
end since
j; T E__El...; fgi
L n n n
a4 edpn,. =
r notny n,, ™4
o’n ."D2r>o
is epproximeted by k = Ir o« r popl...pzr-apodpl... dp2r

Ipo'i'Pl'I‘- . .—I-pzr-_-l
PO ,}-'Jl F I ’pQI‘}O

.

for sufficiently large n, we have an asymptotic formulla
o o u
> B0 = ) ~x l ) “2r+l 2 n
P(N(u) e Ev’rl N(0) = y) =k Hy r(n e

S
for a constant k'£k, vhere = v represents frequencies of species.

B

Consider a random collision model with the collision rule thal one
i and one j become two i's with probability %—+ a2 and two j's with
probability %-— afor 0 <acx %-if i 3. Wright's model ig the case
= 0 for vhich the asymptotic probabilifies cf species coexistence are

obtained for an arditrary combination of species.{See Kimura [7]). The

1. ; . .
case g = E—ls treated in our theorem. Analogous results can be obtained

for the other cases.



2) Our random collision process is épproximéted by the system of

stochestic differential equations,

ax, (t) = e X (£)(X(t) ~ X,(t))at
+c %xl(ffi (t) @ f(t) ~ e, #x (£)x,(t) dblz( t),
) - (t)(X-_L £ - xe)e
+e ‘&' t)X (t d“c)lz(-t) - 5 \/xz(t)x3(t doys(t),
ax (£} = c X (t)(x (t) - X (t))at

ff“(_T___HT - e, MEIX (2]
+ )X, () ab, t) e, X3(t Xl(t) dbsl(t
vhere blz(t), b23(t) and bBl(t) are mutually independent Brownien motion.

Using Itd's formulle (Sée:Ii]); we have 3 ‘
a(x, (1) + X,(t) + %5(¢)) = 0,

3
end for the c;algebra F, génerated by X(s) E{Xl(s),Xz(s),XB(s)) for0ss<t,
E(d(Xl(t)Xe(t)X3(t))l F,) = - % cg 302Xl(t)}£2(t)}(3(t)dt.

if ¢, =0, Ea. (1) representé Wright's model for three zlleles. IT
e, = 0, Eq. (7) coincides to Eq. (6). Eq. (7) seems to have interesting
properties. But we could not prove the existence and uniqueness of the

solution- .

3) MacArthur [10) considered from a census of dirds that, if m-1
points are thrown at random on a stick and if the stick is broken at
these points, the length of the m resulting segmenﬁs represent the rela-
tive abundances of.the m.speCiés. As we see in"the proof of our theorenm,

each element of the set EV(V) with [V} = [Tr] tends to be equally probable.

So our resulis give a justification for Macirthur's consideration.




k) We comsider 2 system of competipglbrands in & market. TFor
'-éxgmple, oﬁe who usually takes cigarettés of brand J has opportuniﬁies
of comparing to the oth;r brands. E;e'co}lision rule of the modél tfeated
#./here corresponds to that he compareseto his J to & cigarette of i and
ﬁ;cides“hacﬁgnge his favorité brand to i. BSo the model treated here
represents en iﬁealized situation of coméeting brands in a2 ﬁgrkét. The

-speed of epproach td the monopoly is estimated by our results.
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