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In the previous paper [1] we interpreted the Volterra’s model as a
Boltzmann equation on some algebraic structure. Here we will consider
the discrete model which corresponds to the Volterra’s model concern-
ing struggle for existence.

Ehrenfest considered an interesting model which explains Boltz-
mann’s H theorem. P.A.P. Moran extended the Ehrenfest’s model and
considered some problem of genetics.

We consider a similar model like Moran’s and treat a Markov chain
which is a discrete analogue of Volterra’s equation.

Volterra treated the following nonlinear equation.

a r
( 1) a—-’nl=<§a”’n1>nt aij=—aji .

Since n; means the number of species i, it is essentially discrete
variable. So it is not meaningless to think a Markov chain corresponds
to (1). We can take this problem as a ruin problem with interaction.

1. On a Markov chain

i) In a box there are three types of particles, ®, ® and 3 whose
numbers are #,, n, and n,; with Ss‘_J n;=N.
j=1
ii) We define the following collision rule,
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iiiy We assume that in a unit time one collision occurs, and assume
the uniform distribution of colliding pairs. For simplifying the form-
ulation we permit a collision with itself.

By i), ii) and iii) we can derive the following Markov chain.

The state is in (%, n,, ;) With probability P (n,, n,, ns; t) at time ¢,
for the appropriate initial condition.

1
(n+nmp+n,)
+2(n,—1) (0, +1) P (0, —1, 1, +1, 145 0)
+2(n,—1)(ny+1) P (my, m—1, my+1; %)

+2(n;—1) (n,+1) P (0,41, my, mg—1; 9)} .

P(ny, my, my; t+1)= {(ri+nj+n) P (ng, ny, ny; 1)

Consider the product of numbers of three species at time ¢. It is
represented by a random variable Hy(?).

THEOREM 1.
B (H(t+D)| H(0)=(1-22 | ()
PrROOF. Let the state be in (n, n,, n;) at time ¢ and consider the

product of the numbers of three species. By i), ii) and iii) the state
is in

(ny+1, ns—1, ny) with probability 27;}?2
(g, my+1, my—1) " 2_1;\;?&
(my—1, ny, n5+1) " 2%’?1
(1, Mz, M) 7 M_’I';\"ri_'l'_"_g_ )

So the expectation of the product is

(1 -2 %)nmzna .

2. On an odd number of species

On an odd number of species, we can determine equivalence relation
as the case of three species. Then we can consider a similar Markov
chain and derive the similar relation.

DEFINITION. If the collision between 7 and j is represented as the
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following, we say that ¢ is stronger than j. @ @
DEFINITION. There are 2k-+1 species in a ™~ <
box. If each species is stronger than k species @ — @

but weaker than another % species, we say that
all species are equivalent.

It is obvious that the system with an even number of species can
not satisfy the above equivalence.
i) There are 2k+1 species in a box whose numbers are u,, n,,
oy Ngeyr, With

2k+1

2 %1=N .
i=1

ii) All species are equivalent.

ili) We assume that in a unit time one collision occurs, and assume
the uniform distribution of colliding pairs. For simplifying the form-
ulation we permit a collision with itself.

iv) The random variable H,,.,(t) means the product of the numbers
of 2k+1 species.

THEOREM 2. If i), ii), iii) and iv) are satisfied, we can derive the
following relation E (Hy1(t+1)| Hyesr()) = (1 —2(e41Cof N*) Haesa(2)-

PROOF. Let the state be in (n,, %, -+, Nsyy) at time t and consider
the product of the numbers of 2k4-1 species. By the above 1), ii), iii),
iv) the state at time ¢-+1 is in

(nl! Ngye =y ni+1y"°a nj"'ly' "yn2k+l)

2nm;
N2

with probability

and remains unchanged with probability RZH n}/N*® So the expectation
i=1
of the product is (1—2(;Co/ NN My- + Ny

3. On an even number of species

DEFINITION. If all species become equivalent by addition of an
appropriate species, we say that all species are quasi-equivalent.

To simplify the discussion we consider the case of six species. If
all species are quasi-equivalent, we can represent the relation among
the species by Fig. 2, without loss of generality. If we take away
any one of two species 1 or 6, all species become equivalent.

In general case of 2k species we can find two species 7 and j such
that all species become equivalent if we take away any one of these two.
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1 2 3 4 5 6
1 0 1 -1 1 -1 1
i This means species 2 is
2 -1 0 1 -1 1 -1 stronger than species 3.
3 1 -1 0 1 -1 1
4 -1 1 -1 0 1 -1
5 1 -1 1 -1 0 1
6 -1 1 -1 r -1 0
Fig. 2

One of these two is stronger than k—1 species and weaker than another
k species. We name this species “ weakest species”.
We consider the following system.
i) There are 2k species in a box composed of n,, n;,: -+, ny indi-

viduals with % n;=N.

ii) All species are guasi-equivalent.

iii) We assume that in a unit time one collision oceurs, and assume
the uniform distribution of colliding pairs. For simplifying the form-
ulation we permit a collision with itself.

iv) The random variable H,,.(f) means the product of 2k—1 species
excluding weakest species 1.

THEOREM 3. If the above i), ii), iii) and iv) are satisfied, and if
the number of weakest species i is represented by random variable X(t),
the following relation holds.

E (ot +1)| Hya) = (14 220 2esiCo Ny

Proor.
species.

To simplify the discussion we consider the case of four
The collision rule ean be represented by the following

O _-O

@/ \@ for j=1,2,3,4
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Let the state be (n, n,, n;, n,), then the state at time ¢+1 is

(n,+1, n,—1, my, m) with probability 2_’;71]2&
(1, my+1, my—1, ny) ” _2%272@_3
(ny, My, my+1, my—1) ” ZLA;?_
(m—1, ny, 1y, ny+1) 1 2?;;12%1
(4, %2“;%3, ny—1) " %
(ni+1, my, mg—1, my) " %

So the expectation of the product is

<1 4 21— 251Gy

N >nm2n3 .

So
E (H/(t+1)| B/ ()= 1 + 202G ) )

And we can prove

E (oot )| Hioa(0) = (14 X2 Ny

4. Conclusion

Let there be 2s+1 species and all species are equivalent, the state
transition is governed by Theorem 2. In an appropriate time, one
species ruins and all other species become quasi-equivalent. Then the
system is governed by Theorem 3. In an appropriate time species ¢
will be ruined and all species will be equivalent and system will con-
sist of 2s—1 species. Then the system will be governed by Theorem 2.
In this way Theorems 2 and 3 will be alternately applied, and at last
one species will remain.

5. An example of computer simulation

Let there be 5 species each with 20 individuals and all species be
equivalent, the change of the system is governed by the law which we
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100 individuals f
.
:

20 individuals™

‘‘‘‘‘

1,000 times: 2,000 times

Fig. 3(b)

have discussed in Section 4. The computer simulation of this case is
in Fig. 3.
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