The looseness of triangulations on closed surfaces

Takayuki Tanuma*

A triangulation G on the closed surface F^2 is called *tight* if there is a face of G which has three distinct colored vertices on its boundary for any surjective color assignment $f: V(G) \to \{1,2,3\}$. (Such a face is called a *heterochromatic* face.) For example, Arocha, Bracho and Neumann-Lara have discussed on triangular embeddings of the complete graph K_n into surfaces and shown a certain method to constract a series of tight triangulations with complete graphs and a series of untight ones. This concept is extended by Negami and Midorikawa. A triangulation G is called *k*-loosely tight if there is a heterochromatic face for any surjective color assignment $f: V(G) \to$ $\{1,2,3,\ldots,k+3\}$. The looseness of a triangulation G is defined as the minimum value of k such that G is k-loosely tight, and is denoted by $\xi(G)$. The looseness $\xi(G)$ depends on the embedding of G in general. However, we shall show that $\xi(G)$ is determined only by the combinatorial structure of Gin some special cases. We denote the independence number and the diameter of G by $\alpha(G)$ and dia(G), respectively.

THEOREM 1. Let G be a triangulation on the sphere, the projective plane, the torus or the Klein bottle. Then G is 1-loosely tight if and only if $\alpha(G) \leq 2$ and dia $(G) \leq 2$.

THEOREM 2. If G_1 and G_2 are two triangulations on the projective plane that are isomorphic to each other as graphs, then $\xi(G_1) = \xi(G_2)$.

^{*}Department of Mathematics, Keio University, 3-14-1 Hiyoshi Kohoku-ku Yokohama 223-8522, Japan. E-mail: tanuma@comb.math.keio.ac.jp