Integral polyhedra associated with submodular functions defined on $\{0, 1, 2\}^S$

Takashi TAKABATAKE

Graduate Division of International and Interdisciplinary Studies, University of Tokyo Komaba, Meguro-ku, Tokyo 153-8902, Japan e-mail: takashi@klee.c.u-tokyo.ac.jp

Abstract

A generalization of submodular set functions, named greedy-type function, is introduced. A greedy-type function is a function from $\{0, 1, 2\}^S$ to \mathbb{R} which satisfies:

- (G1) f(2p) = 2f(p) for every $p \in \{0, 1\}^S$,
- (G2) $f(p) + f(q) = f(p \lor q) + f(p \land q)$ for any $p, q \in \{0, 1, 2\}^S$,
- **(G3)** $f(\chi^X + \chi^Y) + f(\chi^X + \chi^Z) \ge f(\chi^Y + \chi^Z) + f(2\chi^X)$ for any $X, Y, Z \subseteq S$ with $X \subsetneq Y \subsetneq Z$,

where

- S is a nonempty finite set,
- $\chi^X \in \{0,1\}^S$ denotes the characteristic vector of $X \subseteq S$,
- $(p \lor q)_e = \max\{p_e, q_e\}, (p \land q)_e = \min\{p_e, q_e\} (e \in S)$.

The polyhedron associated with a greedy-type function $f: \{0, 1, 2\}^S \to \mathbb{R}$ is

$$\{x \in \mathbb{R}^S \mid \sum_{e \in S} p_e x_e \le f(p) \text{ for every } p \in \{0, 1, 2\}^S\}$$

and is denoted by P(f). The face structure of P(f) is characterized with maximal chains of a certain partial order defined on $\{0, 1, 2\}^S$. A dual algorithm, whose validity is ensured by this characterization, maximizing a linear function $c^T x$ over P(f) is proposed. Through this algorithm integrality of P(f) is shown for integer-valued function of greedy-type.

Certain types of bipartite network flows which give a rise to greedy-type functions will also be discussed.