Complexity Results for Calculating Power Indices of Weighted Majority Games

Yasuko Matsui

(Department of Mathematical Sciences, Faculty of Science, Tokai University)

Abstract

We discuss the problem for calculating power indices which satisfy some properties. We say a power index satisfies the *strict dummy property* when an element of the power index is equal to 0 if and only if the corresponding player is dummy. We say a power index satisfies the *strict symmetricity* when a pair of elements of the power index is equivalent if and only if the corresponding pair of players is symmetric. It is easy to show that (1) the Shapley-Shubik power index, the Banzhaf power index and the Deegan-Packel power index satisfy the strict dummy property and (2) the Shapley-Shubik power and the Banzhaf power index satisfy the strict symmetricity.

In this talk, we show the following theorem.

Theorem 1 (1) Calculating a power index which satisfy strict dummy property is \mathcal{NP} -hard.

(2) Calculating a power index satisfying strict symmetricity is \mathcal{NP} -hard.

References

- J.F.BANZHAF III, Weighted Voting Doesn't Work, Rutgers Law Review, 19 (1965), pp.317-343.
- [2] J.DEEGAN AND E.W.PACKEL, A New Index for Simple n-person Games, Int. Journal of Game Theory, 7 (1978), pp.113-123, Physica-Verlag, Vienna.
- [3] R.M.KARP, Reducibility among combinatorial problems, in R.E.Miller and J.W.Thatcher eds., COMPLEXITY OF COMPUTER COMPUTATIONS, Plenum Press, New York, 1972, pp.85-103.
- [4] L.S.SHAPLEY, A value for n-person games, in Contributions to the Theory of Games, Vol.II, in H.W.Kuhn and A.W.Tucker eds., ANNALS OF MATHEMATICS STUDIES, 28, Princeton University Press, 1953, pp.307-317.
- [5] L.S.SHAPLEY AND M.SHUBIK, A method for evaluating the distribution of power in a committee system, American Political Science Review, 48 (1954), pp.787-792.