Oriented Graphs Generated by Random Points on a Circle

(*) Yoshiaki Itoh¹ Hiroshi Maehara² Norihide Tokushige³

Abstract

Extending the cascade model for food webs, we introduce a cyclic cascade model which is a random generation model of cyclic dominance relations. Put *n* species as *n* points Q_1, Q_2, \ldots, Q_n on a circle. If the counterclockwise way from Q_i to Q_j on the circle is shorter than the clockwise way, we say Q_i dominates Q_j . Consider a tournament whose dominance relations are generated from the points on a circle by this rule. We show that when we take mutually independently distributed *n* points on the circle, the probability of getting a regular tournament of order 2r+1 as the largest regular tournament is equal to $\binom{n}{2r+1}/2^{n-1}$. This probability distribution is for the number of existing species after a sufficiently long period, assuming a Lotka-Volterra cyclic cascade model.

 $(*) \cdots$ Speaker

¹The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu Minato-ku Tokyo, 106-8569 Japan, email: itoh@ism.ac.jp

²College of Education, Ryukyu University, Nishihara Okinawa, 903-0213 Japan, email: hmaehara@edu.u-ryukyu.ac.jp

³College of Education, Ryukyu University, Nishihara Okinawa, 903-0213 Japan, email: hide@edu.u-ryukyu.ac.jp