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ABSTRACT

We report the first application of the ensemble Kalman filter
(EnKF) to an intermediate coupled atmosphere-ocean model
by [1], into which the sea surface height (SSH) anomaly ob-
servations by TOPEX/POSEIDON (T/P) altimetry are assimi-
lated. Smoothed estimates of the 54,403 dimensional state are
obtained from 1981 observational points with 2048 ensemble
members. While data assimilated are SSH anomalies alone,
an ensemble experiment of 2002/03 El Niño event based on
the EnKF can predict consistent Niño 3 sea surface tempera-
ture (SST) anomalies about 5 months in advance.

1. INTRODUCTION

The El Niño-Southern Oscillation (ENSO) phenomenon is the
strongest climate variation on seasonal to interannual timescales,
and it depends essentially upon coupled interactions of the
dynamics of ocean and atmosphere. ENSO is characterized
by quasiperiodic interannual oscillation of tropical Pacific sea
surface temperatures (SSTs) with a dominant period of ap-
proximately 4 years. Since ENSO affects not only global cli-
mate but ecosystems in and around the tropical Pacific and
economies of several countries, successful prediction of ENSO
is of great interest from scientific and social points of view.

With an atmosphere-ocean coupled model, Zebiak and
Cane [1] (hereinafter referred to as ZC) have provided the first
successful ENSO prediction. The ZC model is a nonlinear
anomaly model of intermediate complexity, and reproduced
an ENSO-like quasiperiodic variation. In the real ocean, how-
ever, even if a precursor of ENSO is detected, ENSO itself
often does not follow the signature as the model predicts:
the real ocean is more complex. On the basis of intermedi-
ate coupled models, data assimilation studies have been car-
ried out for better prediction and reanalysis of ENSO events.
Adopted assimilation schemes to the coupled models were the
representer method [2], the adjoint method [3], a reduced-
order Kalman filter (ROKF) [4], or the extended Kalman fil-
ter (EKF) [5]. However, the schemes listed above could not
treat the ZC coupled model without modification or approx-
imation. When the above two variational methods (the rep-

resenter method and the adjoint method) were applied, the
atmospheric component was modified or simplified in order
to derive the adjoint equations. The two sequential meth-
ods (ROKF and EKF) require a linear approximation of the
nonlinear model. It means that the advanced schemes may
degrade the model’s ability to reproduce nonlinear develop-
ment.

In addition, the lack of system noise or Gaussian sys-
tem noise employed by these works is another problem. If
the model dynamics is assumed to be perfect (so-called “the
strong constraint”), and the optimal initial and/or boundary
conditions are estimated, assimilation experiments are carried
out under the system noise-free condition [3, 4]. This condi-
tion assumes a system model without the noise,
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where �� is a state vector and �� describes the model dynam-
ics. Apparently the assumption of perfect models is question-
able for simple coupled models as the ZC model. On the other
hand, the weak constraint was employed by [2] and [5]; they
assumed Gaussian system noise added to the model equation
as

�� � �� ������ � �� (2)

where �� is system noise generated from the Gaussian distri-
bution. This system model is more reasonable compared with
the strong constraint, Eq. (1). The weak constraint model is,
however, still questionable because the Gaussian system noise
is added for all state variables. Since the model includes non-
linear transformation, Gaussian perturbation is converted to
non-Gaussian perturbation, and some of the system variables
then should be affected by non-Gaussian system noise. How-
ever, it is difficult to set alternative noise suitable for nonlin-
ear systems and this is actually impossible for the ROKF and
the EKF because the system noise is treated with covariance
matrices.

The ensemble Kalman filter (EnKF) [6] can solve these
problems. First, the EnKF can handle dynamic models with-
out any modification or approximation since the EnKF re-
quires neither linearized model nor adjoint model. Second,



the EnKF can easily introduce a non-Gaussian system noise
appropriate to nonlinear models. The EnKF treats the sys-
tem noise by realizations generated from an assumed distri-
bution. When we impose the realizations of the system noise
on certain variables, their effects are conveyed to other vari-
ables according to the model equation. As a result, even if the
imposed realizations are from Gaussian, received effects by
the other variables can be non-Gaussian which can be consid-
ered as the system noise consistent with the nonlinear model.
These two advantages of the EnKF produce more accurate
prediction error. In addition, the EnKF can provide reason-
able initial perturbation for ensemble forecasting.

In spite of these advantages, the EnKF has not been ap-
plied to coupled atmosphere-ocean models as far as the au-
thors examined. One reason may be required computational
load of the EnKF; mathematically, we need ensemble mem-
bers larger than the number of data points. However, the re-
cent development of computer technology gradually enables
us to conduct EnKF experiments based on the coupled mod-
els. In the present paper we report the first application of the
EnKF to a coupled atmosphere-ocean model.

2. ENKF AND ENKS

2.1. EnKF

The EnKF [6] can deal with a nonlinear system equation and
a linear observation equation given by

�� � �� ������ ��� � (3)
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where �� is a state vector at time �, �� is a function describ-
ing model dynamics including the effects of system noise � �,
�� is a time series, �� is a matrix, and �� is observation
noise. The nonlinear system equation (3) includes the weak
constraint system equation (2), and noises �� and �� can be
non-Gaussian. In the EnKF, distributions of � �, ��, and �� are
approximated by many realizations (ensemble). With 	 en-
semble members, the conditional distribution of the one-step-
ahead predictor is approximated by an ensemble consisting
of
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where ����
������� �
 � �� � � � � 	� is a member of an ensem-

ble that approximates the previous filtered state distribution,
and ����� �
 � �� � � � � 	� is a realization of ��. An ensemble

of the current filtered state ����
��� �
 � �� � � � � 	� is obtained

with the approximated Kalman gain � �:
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Fig. 1. EnKF, PF, EnKS and PS.

where � ����� and 
� are covariance matrices of ����
����� and

�
���
� , respectively.

It may be instructive to compare the EnKF with the par-
ticle filter (PF [7, 8, 9]). As in the standard Kalman filter
algorithm, both the EnKF and the PF consists of a one-step-
ahead prediction step and a filtering step. The one-step-ahead
prediction of the EnKF, Eq. (5), is a time transition of each
realization of the state using a system noise realization, and
is identical with that of the PF. What is different between the
EnKF and the PF is their filtering steps. As in Eq. (6), the
EnKF updates the realizations with the approximated Kalman
gain (7) such that value of every realizations becomes closer
to the observation. Upper parts of the left-hand panel in Fig-
ure 1 schematically shows the two steps of the EnKF. The
PF, on the other hand, realizations of the filtered state are ob-
tained through a resampling process from those of the pre-

dicted state with weights of their likelihood, �
�
����

���
�����

�
for


 � �� � � � � 	 . That is, realizations which are located close to
the observation will survive and also have their copies, while
those far from the observation will be dismissed. It should be
noted that value of realizations remains unchanged in the PF.
In the upper parts of the right-hand panel in Figure 1, upper-
most and lowermost realizations are dismissed, while central
one obtains its two copies after the resampling.

2.2. EnKS

The ensemble Kalman smoother (EnKS [6]) is a smoothing
algorithm for ensemble approaches, which stems from the
fixed-lag smoothing algorithm. The smoothed distribution at
time � � � given ��� � � � � �� is approximated by an ensemble
member computed as
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where� ��������� is a cross-covariance matrix between����
�������

and �
���
�����. Index � denotes a time lag for smoothing and



takes �� � � � � � where � is the fixed lag.
Lower parts of Figure 1 compares the EnKS and the par-

ticle smoother (PS [8, 9]). In the EnKS (8), every realizations
of the filtered state is updated by a future observation and
the approximated smoother gain (9). In the PS, realizations
of the smoothed state are obtained according to resampling
at the future time step. That is, past realizations that gen-
erate the future resampled realizations will survive or rather
duplicate, while those will dismiss if their descendant is not
resampled.

3. SIMULATION MODEL AND DATA

The ZC model couples two linear shallow-water equations: a
steady-state atmospheric model and a dynamic reduced-gravity
ocean model. The atmospheric component is forced by heat-
ing that depends on SST and surface wind convergence. The
SST evolves in time according to the thermodynamic equa-
tion. The ocean component is forced by surface wind stress
calculated from surface wind through the bulk formula. The
ZC model includes nonlinear equations for heating anomaly
due to the surface wind convergence and for the wind stress.
All variables are anomalies with respect to the prescribed monthly
mean climatology. Dimension of the state of the ZC model
amounts to 54,403.

We assimilated the sea surface hight (SSH) anomaly ob-
servations by TOPEX / Poseidon (T/P) altimetry from its cy-
cle 1 to cycle 364 (from September 23, 1992 to August 11,
2002). The number of data points at each cycle is usually
1981, but it can decrease down to 1,720 due to partially miss-
ing data, and at cycle 118 the data are totally missing.

4. ASSIMILATION EXPERIMENT

4.1. System noise, Observation noise, and other parame-
ters

As seen in most simulation models, the ZC model computes
time evolution of the state �� in the form of the system equa-
tion without system noise imposed:

�� � �� ������ �� � 	� � (10)

If we add a process for imposing system noise somewhere
in the computation, the ZC model immediately results in a
system equation, Eq. (3). We make an EnKF experiment by
adding a system noise to the thermocline depth anomaly,

���� � ���� � ��� (11)

which can be interpreted as an uncertainty in the prescribed
monthly mean thermocline depth. We first generate Gaus-
sian noise and then modified the realizations such that they
satisfy a physical constraint of the ZC model: System noise
�� added to the Rossby component of the thermocline depth
���� should be orthogonal to the Kelvin waves.
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Fig. 2. Area-averaged SSH anomalies of the observation
(thin), the filtered state (thick dashed), and the smoothed state
(thick solid) in Niño 3 (
ÆN–
ÆS, �
	Æ–�	ÆW).

We assume a Gaussian for observation noise: �� � 	 �	� 
��.
To construct
�, we at first treat the SSH anomaly data of each
point as one dimensional time series and smooth it with the
first-order trend model. Applying the same procedure to the
other data points, we obtain the residuals for all points inside
the basin. With the residuals we calculate a sample covariance
matrix and assume it to be 
�.

With 2,048 ensemble members, we run the EnKF proce-
dure from T/P cycle 1 to cycle 364. The number 2,048 is
selected because it is larger than that of the maximum data
points, 1,981. Model time step is set to be identical to the T/P
sampling interval, 9.915625 days, and spin-up period is set
to 90 years (3316 iterations), when the characteristic standing
oscillation is reproduced.

4.2. Result

The observation, the filtered state, and the smoothed state
are compared in Figure 2, which shows time evolution of
the area-averaged SSH anomalies in the Niño 3 SST regions.
Thin, thick dashed, and thick solid lines represent the obser-
vation, the filtered estimate, and the smoothed estimate, re-
spectively. Here we let the fixed lag � � � � �. All states
before time � then will be updated by ��, and resultant states
smoothed by ���� are equivalent to those obtained by the fixed
interval smoother. Time delay in the filtered estimates was
adjusted in the smoothed estimates. The retrieved negative
anomalies were clearly seen in Niño 3 1995 and during 1998–
2000.

Figure 3 shows a prediction experiment of 2002/03 ENSO
event. Predicted states based on the data until October, 2001,
showed a gradual increase of the Niño 3 anomalies until May,
2002, and a rapid increase that may correspond to the 2002/03
ENSO event. However, the estimated peak amplitude amounted
to over �ÆC, which was overestimated compared with the ob-
servation (� ��
ÆC). If we started the prediction in later months,
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Fig. 3. SST anomalies observed in Niño 3 (5ÆN–5ÆS, 90Æ–
150ÆW, black lines), accompanied with predicted ones (red
lines) starting from the filtered state on (a) October 7, 2001,
(b) January 4, 2002, (c) April 4, 2002, and (d) July 2, 2003.

predicted Niño 3 indices became more reasonable to the ob-
servation. Actually, after three or six months, predicted states
also demonstrated increasing trends of the Niño indices but
the peak amplitudes became smaller. Finally, prediction from
the filtered state on July, 2002, gave a much accurate state dis-
tribution. An observed positive excursion related to the ENSO
event was predicted within the deviations. However, while
observed SST anomalies decrease after December, 2002, the
prediction gave rather continued warm period. We infer that
the prediction gives reasonable Niño 3 index within future five
months.
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