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ABSTRACT

The present paper describes a frequency spectrum classi-

fication method for fault diagnosis of the LP gas pressure

regulator using Support Vector Machines. Conventional di-

agnosis methods are not efficient because of problems such

as significant noise and nonlinearity of the detection mech-

anism. In order to solve these problems, a machine learning

method with the Kullback-Leibler (KL) kernel based on the

KL divergence is introduced into spectrum classification.

We use the normalized frequency spectrum directly as in-

put with the KL kernel. The proposed method demonstrates

a higher accuracy than popular kernels, such as polyno-

mial or Gaussian kernels, or the conventional fault diagnosis

method and Gaussian Mixture Model with the KL kernel for

the examined problem. The high classification performance

is achieved by using an inexpensive sensor system and the

machine learning method. This method is widely applicable

to other spectrum classification applications without limita-

tion on the generality if the spectrums are normalized.

1. INTRODUCTION

Development of a learning machine for classification using

kernel methods, as typified by the Support Vector Machine

(SVM), has influenced a number of fields. The strategy of

classification before the introduction of kernel methods and

machine learning was that given high-dimensional data was

mapped onto a low-dimensional space that characterizes the

properties of the data well. Then, a number of useful param-

eters for classification are extracted and optimized statisti-

cally. Conversely, the strategy of kernel methods is to gen-

erate a map from given high-dimensional data onto a space

of higher dimension and then create a linear classifier in the

space. Kernel methods have been applied successfully in

various fields, including image, text and speech classifica-
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Fig. 1. Outline of diagnosis methods considered herein

tion, data mining and bioinformatics [1, 2]. Recently, kernel

methods have been investigated for application to fault di-

agnosis [3, 4].

Fault diagnosis must be performed in order to ensure

the safety of machines and instruments. Diagnosis meth-

ods based on time series, spectrum or spatial analyses have

been proven useful, and a feasible method is generally cho-

sen from among these methods based on the particular sit-

uation. The spectrum analysis method is generally used for

the diagnosis of machines that have a vibrating or rotating

structure. The use of spectrum analysis in this case is appro-

priate [5]. The analysis method in a time domain is not suit-

able in this case because machines that have a vibrating or

rotating structure often require inspection of the steady state

vibration or rotation rather than inspection of the transient

response. In such cases, the spectrum diagnosis method is

superior to time-series-based diagnosis methods. Conven-

tional spectrum analysis methods for fault diagnosis, e.g.,

the half-power method, extract a small number of feature

quantities from spectrum peaks caused by intended modes,

and these feature quantities are then investigated. Before
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the advent of machine learning methods, this was the only

the classification strategy. The above methods are effective

if the system model of the targets or the properties of obser-

vation data are well known. However, if the model of the

targets is unknown or the observed data is nonlinear, it is

difficult to apply the conventional diagnosis method because

the extraction of the feature quantities is often not correct.

Therefore, fault diagnosis using machine learning methods,

such as kernel methods, in which the entire set of spectrum

information is used as a feature, is a natural development.

Here, we consider the problem of fault diagnosis of LP

gas equipment. LP gas is a significant energy source that

is used in various applications in daily life. The use of LP

gas is not safe unless the LP gas supplying equipment is

properly maintained. The LP gas pressure regulator (here-

inafter called the regulator) is one piece of equipment used

in LP gas supply. The regulator regulates the pressure by

the movement of a rubber diaphragm fixed in the regulator.

In rare cases, it has been reported that the rubber diaphragm

will begin to vibrate abnormally even though the lifetime of

the diaphragm has not yet been reached. Abnormal vibra-

tion of the diaphragm can have the same effect as acceler-

ated deterioration of the rubber material, and a gas leak or

fire may occur if the diaphragm bursts. However, direct ob-

servation of the inside of the regulator is impossible in the

case of strictly explosion-proof construction. Testing and

inspection of the diaphragm condition must be performed

by dismantling the regulator or by using expensive remote

sensing systems operated by frontline workers. Therefore,

we developed an inexpensive and easy to maintain system

based on the indirect measurement of diaphragm vibration.

However, a number of problems remain to be solved before

its realization. The measurement system has an unaccept-

ably low sensitivity to diaphragm vibration, which is not

sufficient for easy fault diagnosis, because of the effects of

nonlinearity of the regulator mechanism and strong noise

intensity due to influence of the turbulent flow on the ob-

served data. In addition, the change in the gas flow influ-

ences the observed data to a greater degree than the change

in the vibration property caused by diaphragm deterioration.

Thus, the amplitude of the obtained signals provides little

information for correct classification. As a result, conven-

tional methods or linear classification can not achieve high-

performance diagnosis. Therefore, we need a more intelli-

gent method.

The SVM has been applied to fault diagnosis for ma-

chines that have a vibrating or rotating structure [6]. How-

ever, a first-order polynomial kernel was used as a kernel

function in the SVM, which is virtually the same as linear

classification. The adoption of such methods is not efficient

for the present fault detection problem because the differ-

ence in the observed signals between the normal and dete-

riorated regulator as measured by the newly developed sys-

tem are insignificant. Moreover, the characteristic param-

eters obtained for individual regulators have large variance

due to noise or nonlinearity. The present problem requires

the application of a more powerful kernel in order to ob-

tain high classification performance. Here, we focus on the

Kullback-Leibler (KL) divergence, which is a criterion of

the distance between two probability distributions. The KL

divergence is often used to measure the distance from the

true probability distribution to an arbitrary distribution in

the framework of probability or information theory. The KL

kernel method, in which the KL divergence is introduced as

a kernel, was proposed for speech and image classification

[7, 8]. This kernel is expected to become a good similarity

measure for not only probabilistic distribution but also the

normalized frequency spectrum.

In the present paper, we describe early fault diagnosis

of the LP gas pressure regulator using the SVM. The vi-

brations of rubber diaphragms are measured as time series

data using the newly developed system, and the frequency

spectrums of the vibration are examined for further inves-

tigations. The diagnosis is carried out by frequency spec-

trum classification with training data sets of normal and de-

teriorated regulators. After explaining the LP gas regulator

and the mechanism of diaphragm vibration, we consider the

properties of the observation data and the method of pre-

processing. Next, three polynomial kernels, Gaussian ker-

nel, χ2 kernel and KL kernel, are used to examine the SVM,

and the conventional method of classification performance

is shown. Figure 1 outlines the diagnosis methods consid-

ered in the present paper.

2. LP GAS PRESSURE REGULATOR AND THE

NEWLY DEVELOPED MEASUREMENT SYSTEM

2.1. LP gas pressure regulator

Figure 2 shows the LP gas single-stage pressure regulator.

Although there are various types of LP gas regulators, the

fundamental structure of the pressure regulator is the same.

We limit the present discussion to domestic LP gas single-

stage pressure regulators, which are used to depressurize
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Fig. 2. LP gas single-stage pressure regulator
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high-pressure gas in containers to low pressure for use in do-

mestic gas appliances such as stoves. For this purpose, the

regulator controls the divergence of the rubber valve and the

nozzle to equalize the pressure in a decompression cham-

ber and the pressure of an air chamber to a desirable output

pressure. Regulators have such a feedback system.

2.2. Cause of pressure regulator failure

The causes and modes of failures were varied, for example,

frozen water due to internal condensation in a cold region or

reliquefaction in the air chamber. These phenomena cause

disturbances in the feedback system of the regulator. How-

ever, these failures are detected early because the sound of

abnormal diaphragm vibration can be detected by the hu-

man ear.

The damping coefficient of rubber, which is a character-

istic of vibrational absorption, decreases with deterioration

[9]. As the damping coefficient decreases, the vibration be-

comes difficult to regulate. The sound of the vibration can

not be detected by the human ear because the changes in

the regulator diaphragm vibration are subtle. In addition,

the deterioration progresses gradually. Such deterioration

of the rubber diaphragm is defined as an early fault in the

preset paper.

2.3. Newly developed diaphragm vibration measurement

system

The exterior of the regulator is sturdy in order to ensure

explosion-proof construction, and it is difficult to measure

the vibration of the diaphragm directly. This vibration can

be measured using a remote measurement system. How-

ever, this is not practical because it requires expensive equip-

ment and a highly skilled operator. We developed the mea-

surement system illustrated in Figure 3. The mechanism of

the proposed system is as follows. A microphone fixed to

the upper wall inside a semi-closed vessel is used to detect

changes in pressure based on the air flow generated due to

the movement of the diaphragm. The microphone is inex-

pensive and small and has been used in a number of appli-
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Fig. 3. Proposed system for early fault diagnosis of the pres-

sure regulator

/ 0 1 2 3 4 5 6 7 8 9 : ; 4 < = > 6 8 6 9 ? < 9 6 8 6 > 9 6 @ : A B 8 < 9 4

3 C 3 3 D 3 3 E 3 3 F 3 3 G 3 3 H
IJ 9 6 K : 6 L 7 M

3 C 3 3 D 3 3 E 3 3 F 3 3 G 3 3 H
IJ 9 6 K : 6 L 7 M

/ B 1 2 3 4 5 6 7 8 9 : ; 4 < = L < 9 ; B A 9 6 @ : A B 8 < 9 4

Fig. 4. Normalized spectrums of the diaphragm vibration of

normal and deteriorated regulators

cations. Therefore, the proposed system is inexpensive and

lightweight, allowing ease of use and portability.

3. PROPERTIES OF OBSERVED DATA AND

PREPROCESSING

In the measurement experiments, we examined four unused

regulators (normal regulators), three of which had been ex-

pired for more than three years and one of which had been

made to deteriorated artificially (deteriorated regulator). Mea-

surement was performed four times for each the eight regu-

lators for flow rates of 200 L/h, 400 L/h, 600 L/h, 800 L/h

and 1,000 L/h with a sampling time of 1 millisecond. We

obtained a total of 160 data, including 80 normal regulator

data and 80 deteriorated regulator data.

Change in the gas flow strongly influence the observed

data in the proposed measurement system, as mentioned

above. In order to suppress the unfavorable effect on clas-

sification caused by amplitude differences of the gas flow,

we use normalized spectrums as a feature for classification.

Figure 4 shows the normalized spectrums for the 80 normal

regulator data and the 80 deteriorated regulator data, respec-

tively. These spectrums were estimated by the AR method

with an optimal number of coefficients obtained by the AIC.

Figure 4 shows that it is not easy to determine which peak

has a property associated with the change in the diaphragm

condition because all of the spectrums have multiple peaks.

For this reason, the application of the half-power method

to these spectrum analysis seems impractical. Moreover,

the spectrums have an insignificant difference between the

normal and deteriorated regulators. Therefore, we have to

adopt a more intelligent method in order to obtain a high

classification performance.
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4. SUPPORT VECTOR MACHINE AND

KULLBACK-LEIBLER KERNEL

4.1. Support Vector Machine

In this subsection, we provide a brief review of the SVM.

The SVM is a linear learning machine for binary classifi-

cation. The infinite nuber of discriminant hyperplane for

classification generally exists if the given data set is linearly

separable. The advantages of the SVM are that one discrim-

inant hyperplane can be created that has a maximum mar-

gin (the distance between the discriminant hyperplane and

the nearest point in training data to the hyperplane) with

the given training data for a classifier and that the discrim-

inant hyperplane is specified uniquely. Furthermore, using

the kernel method, the SVM becomes a powerful nonlinear

classifier.

Here, consider a binary classification that has a training

set consisting of N pairs of inputs and outputs (xi, yi) ∈
X × Y, Y = {−1, 1}(i = 1, · · · , N). A discriminant hy-

perplane with the weighting coefficient w, given by

f(x) =< w · x > +β (1)

is determined by solving a constrained optimization prob-

lem in dual space

maximize

N∑
i=1

αi −
1

2

N∑
i,j=1

yiyjαiαj < xi · xj >

subject to

N∑
i=1

yiαi = 0, 0 ≤ αi ≤ C (2)

where ai is the Lagrange multiplier, C is a regularization

parameter that controls the trade-off between the complex-

ity of the discriminant hyperplane and the errors of the SVM

on training, and < · > is the inner product. This is referred

to as the soft margin SVM. For expansion of the SVM to

nonlinear classifiers, nonlinear mapping from the original

input space X to the feature space Z Φ : X → Z is intro-

duced, and the similarity of xi and xj is evaluated by the

inner product < Φ(xi) · Φ(xj) >. Here, the function

K(xi,xj) =< Φ(xi) · Φ(xj) > (3)

is referred to as the kernel function. For easy calculation

of the inner product and in order to prevent a substantial

increase in computational complexity, the kernel function is

usually chosen as a function that can be computed without

explicit calculation of the inner product in the feature space.

The SVM becomes a nonlinear classifier by introducing a

kernel function to Equation (2), as follows:

< xi,xj >→ K(xi,xj).

That is to say, introducing the kernel function is equivalent

to linear classification in a high-dimensional feature space
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Fig. 5. Discretized frequency spectrum for constitution of

the feature vector

mapped by a certain nonlinear function. Therefore, classifi-

cation performance of the nonlinear SVM heavily depends

on the choice of the kernel function.

4.2. Kullback-Leibler kernel

The KL divergence gives a metric between two probability

distributions. The continuous form of the KL divergence

between p(x) and q(x) with random variable x is defined

as

D(p(x), q(x)) =

∫ ∞

−∞

p(x) log
p(x)

q(x)
dx. (4)

The kernel function must be a symmetric function [1, 2].

However, the KL divergence is not symmetric, and the sym-

metric KL divergence is considered to be

SD(p(x), q(x)) =

∫ ∞

−∞

p(x) log
p(x)

q(x)
dx

+

∫ ∞

−∞

q(x) log
q(x)

p(x)
dx (5)

and the KL kernel by [7] is defined as

KKL(p(x), q(x)) = e−a{SD(p(x),q(x))+b} (6)

where a and b are constants. This kernel has a property

whereby the generative probability and discriminate model

can be combined.

4.3. Modification of the KL kernel

The KL kernel is usually recognized as a kernel that mea-

sures the similarity of two probability distributions. In speech

and image classification applications [7, 8], the KL kernel

measures the similarity of two Gaussian Mixture Models fit-

ted to the decomposed frequency components from speech

or image data by Discrete Cosine Transform (DCT). How-

ever, in the present study, we do not consider the probabil-

ity density because we deal not with the probability func-

tion but with the frequency spectrum. Figure 5 shows a
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schematic illustration of the components of the feature vec-

tor, where ∆t is the sampling time and M is the number of

elements of the feature vector. The feature vector consists of

the discretized frequency spectrum, as xi = [xi(1) · · ·xi(k)
· · ·xi(M)]T . In the present applications, the KL kernel is

defined as

KKL(xi,xj) = e−a{SD(xi,xj)+b} (7)

SD(xi,xj) =

M∑
k=1

{
xi(k) log

xi(k)

xj(k)

+ xj(k) log
xj(k)

xi(k)

}
. (8)

5. EXPERIMENTS

The experiments were conducted using 80 data of normal

regulators and 80 data of deteriorated regulators, as explained

in Section 3. A total of 1024 data points (approximately one

seconds of time series data) were selected from the data for

the feature vector xi, and these data were used for classifi-

cation.

For comparison of the KL kernel with some popular ker-

nels and the conventional diagnosis method, we examined

the classification performance of these methods using six

types of features. The first feature that we selected is the

AR coefficient. The AR coefficient from the first order to

the 30th order as estimated by the Yule-Walker method was

selected as the feature vector xi = [xi(1), · · · , xi(30)]T .

This feature is not a spectrum. The reason why we se-

lected this feature is that the AR coefficient is often used

as a feature for time series classification. The second fea-

ture that we selected is the periodogram. The normalized

frequency components from 1 Hz to 500 Hz in 1-Hz incre-

ments estimated by DFT were selected as a feature xi =
[xi(1), · · · , xi(500)]T . The Nyquist frequency of the set

sampling time is 500 Hz. The third feature that we selected

is the smoothed spectrum obtained by the AR method. The

normalized spectrum estimated by the optimal order AR

method in terms of the AIC was selected. This feature con-

sists of the components from 1 Hz to 500 Hz, as in the case

of the periodogram. The remaining features that we selected

are smoothed periodograms obtained by 5-point, 30-point

and 60-point moving averages. The elements of these fea-

ture vector are the same as in the case of the periodogram.

The kernel functions used with the SVM for these six input

features are the first-order polynomial kernel (linear classifi-

cation), the second-order polynomial kernel, the third-order

polynomial kernel, the Gaussian kernel, the χ2 kernel, and

the KL kernel. In addition, we examined the performance

of the half-power method, which is a conventional diagno-

sis method.

Table 1. Accuracy percentage of the combination of the

classifier and the features
ARc PG AR MA1 MA2 MA3

P1 76.65 69.35 81.22 76.28 79.15 77.23

P2 83.75 69.97 81.91 78.24 80.01 78.36

P3 84.52 70.31 83.94 77.91 80.48 79.30

GA 76.85 68.89 82.90 77.14 80.27 79.05

χ2 76.04 69.13 89.77 76.69 80.44 79.31

KL × 80.61 92.41 83.44 89.16 82.79

HP × × 49.62 54.26 46.53 56.33

Table 2. Accuracy percentage of the fitted Gaussian mixture

and the spectrum for the KL kernel

GM3 GM4 GM5 AR

88.34 90.02 88.95 92.41

A total of 40 data extracted for the normal regulator and

40 data extracted for the deteriorated regulator were ran-

domly selected from each data set and assigned as a train-

ing data set. The remaining 80 data were then used for val-

idation. We repeated this operation 100 times. The SVM

and kernel parameters were fixed such that the accuracy

rates are as good as possible in these experiments. Table

1 shows the average accuracy percentage in the 100 opera-

tions. In Table 1, ARc, PG, AR, MA1, MA2 and MA3 in-

dicate the AR coefficient, the normalized periodogram, the

normalized spectrum estimated by the AR method and the

smoothed normalized-spectrum estimated by the 5-point,

30-point and 60-point moving average methods, respectively.

In addition, P1, P2, P3, GA, χ2, and KL denote the first-

order polynomial, the second-order polynomial, the third-

order polynomial, the Gaussian, the χ2, and the KL kernel,

respectively. Also, HP denotes the use of the half-power

method, and “×” indicates that a calculation is impossible

for this combination of feature and kernel. The combination

of the KL kernel with an input feature of the normalized

spectrum by the AR method provides the best performance.

The comparison of the probability distribution function

fitted Gaussian mixture and the estimated spectrum to the

KL kernel was also demonstrated. Table 2 shows the results

for the correct answer percentage of the mixture of 3, 4 and

5 Gaussians of diagonal covariance and the estimated fre-

quency spectrum. In Table 2, GM3, GM4 and GM5 denote

Gaussian mixtures of 3, 4 and 5 normal distributions. These

results also show that an input feature of the frequency spec-

trum attains the best performance.
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6. DISCUSSION

The experimental results obtained herein imply three useful

advantages. The first is the excellence of the KL kernel, as

demonstrated in the first experiment. The KL kernel shows

the best performance among all of the features considered

herein (except for the case in which calculation is impossi-

ble). This result shows that the KL kernel has an advantage

in similarity calculation, not only for probability distribu-

tions, but also for normalized frequency spectrums. The

second advantage is that high classification performance is

obtained with an input feature of a moderate smoothed spec-

trum, rather than a periodogram, as shown in the first exper-

iment. Actually, spectrums estimated by the AR and 30-

point moving average methods showed high accuracy rates.

The input of the periodogram shows a poor performance

compared to the other inputs. The reason for this is thought

to be the high sensitivity of the spectrum estimated by DFT

with respect to the noise effect. Therefore, suitable input

data representation or estimation is needed for correct clas-

sification. As in the case of the periodogram, the 5-point

moving average lacks smoothness and the 60-point moving

average is too smooth. An optimal number of data points

for the moving average procedure must be chosen by the

cross-validation technique, for example. The AR method is

convenient for practical use because it can be used to auto-

matically determine the optimal order in terms of the AIC.

The third advantage, as shown by the second experiment,

is better performance for the frequency spectrum than for

Gaussian mixtures fitted as data. The KL kernel is generally

expected to yield a good measure of similarity of spectrum

if the input feature satisfies the following condition:

M∑
k=1

xi(k) =
M∑

k=1

xj(k). (9)

7. CONCLUSION

The present paper described early fault diagnosis of the LP

gas pressure regulator using the SVM with the KL kernel.

Suppliers of LP gas must be able to detect abnormal condi-

tions of LP gas instruments, such as regulators, in order to

ensure safety. We proposed a vibration measurement sys-

tem for fault diagnosis of the internal rubber diaphragm of a

regulator. However, the use of conventional diagnosis meth-

ods in the proposed system is inefficient due to problems

such as strong noise and nonlinearity with respect to the

observation method. In order to solve these problems, we

applied the SVM with the KL kernel based on the KL di-

vergence to spectrum classification. The KL kernel is used

to measure the similarity between two probability distribu-

tions estimated from given data. The estimated normalized

frequency spectrum was used as an input feature to the KL

kernel as in the case of probability distribution. For the

problem considered herein, the use of the KL kernel pro-

vided a high accuracy rate compared to the use of polyno-

mial, Gaussian and χ2 kernels, and conventional fault diag-

nosis methods by spectrum analysis. We also demonstrated

that the proposed method, which employs the discretized

frequency spectrum directly as a feature vector, is more effi-

cient than the method that uses the KL kernel with the Gaus-

sian Mixture Model. High classification performance was

achieved, and a correct answer rate of more than 92% was

attained using only an inexpensive sensor and the machine

learning method. The proposed method can be applied to

other spectrum classification problems without limiting the

generality if the spectrums are normalized.
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