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1 Introduction 

DNA microarray technology has allowed us to measure gene expression levels on 
genomic scale. Although many details inside a cell are not precisely known, gene 
expression data on a genomic scale provides useful insights into a living cell. 

Data thus collected enhance fundamental understanding of life on the molecular  
level, and may prove useful also in medical diagnosis, treatment and drug design 
(Drăghici, 2003). 

Towards time-course gene expression data, a wide variety of models, such as Boolean 
networks (Akutsu et al., 1999), differential equations (Chen et al., 1999) and linear and 
non-linear auto-regression models (Schmitt and Stephanopoulos, 2003) have been 
introduced to model cellular systems. Many of these published models can be considered 
to be special cases of a general class of graphical models known as dynamic Bayesian 
networks (Jensen, 2001; Murphy, 2002). Dynamic Bayesian networks are suitable for 
modelling gene expression data, because they can handle noisy or missing data, or handle 
hidden variables such as protein levels that may have an effect on mRNA expression 
levels. Although microarray technologies have made it possible to measure time course 
of the expression level of many genes simultaneously, we cannot hope to measure all 
possible factors contributing to genetic regulatory interactions. As well as this, gene 
expression data are known to include missing and outliers. Therefore, the ability of 
Bayesian networks to handle such hidden variables would appear to be one of the main 
advantages as a modelling tool (Kim et al., 2003). Although modelling gene networks  
by dynamic Bayesian networks is useful, the dimension of the observation variables  
(i.e., the number of genes) tends to be limited to relatively small numbers owing to its 
computational complexity. Therefore models which retain goodness of dynamic Bayesian 
networks and have lower computational complexity is demanded. Linear Gaussian  
state-space models (Harvey, 1989; Shumway and Stoffer, 1982), is a candidate for such 
models. Linear Gaussian state-space models are in a class of dynamic Bayesian networks, 
which assume that the observed time-course measurements (e.g., expression levels of 
genes) are generated by some hidden state variables that evolve according to Markovian 
dynamics. If the dimension of the state variable is relatively small, we can estimate the 
parameters in the model even if the number of genes is large, and thus may extract 
information about the system to generate the time course of gene expressions. 

In this study, we use the linear Gaussian state-space models to model time-course of 
gene expression levels owing to the above reason. If we apply linear Gaussian state 
models to such data, there would be two problems: 

• how to estimate the parameters of the model 

• how to determine the appropriate dimension of the hidden state variable. 

In this study, we estimate the parameters of the model based on maximum likelihood 
estimation method by using Expectation-Maximization (EM) algorithm (Dempster et al., 
1977). The dimension of the hidden state variable is determined by using Bayesian 
information criterion (BIC; Schwarz, 1978). The purpose of this study is to apply the 
linear Gaussian state-space model to a published cDNA microarray time-course data for 
yeast cell-cycle regulated genes obtained by Spellman et al. (1998) and estimate the 
parameters and determine the optimal dimension of the state variable. Then we compare 
the results with those reported in other papers (Wu et al., 2004; Yukinawa et al., 2005), in 
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which they used almost the same data and the same model but used the different method 
to estimate the parameters and the different criterion to determine the dimension of the 
state variable. In the discussion section, we especially focus on the comparison of the 
selected dimensions. 

The organisation of this paper is as follows. In Section 2, we explain models  
and the parameter estimation methods. The method to determine the optimal dimension 
of the internal variable is also explained. In Section 3, we analyse a publicly available 
time-course gene expression data by the above methods and show the results. Then we 
discuss the results in Section 4. Section 5 is the concluding remarks. 

2 System identification methods 

2.1 Linear Gaussian state-space models 

Let yn be an l-dimensional vector containing observed expression levels of l genes at the 
n-th time step, where n = 1, …, N. In order to model such time-course data, we use linear 
Gaussian state-space models, which are often simply called state-space models and a 
candidate to overcome difficulties mentioned above. State-space models have been  
used in a wide variety of applications with great success (Kitagawa and Gersch, 1996; 
West and Harrison, 1997). There are also studies using state-space models for gene 
expression data, which showed successful results (e.g., Rangel et al., 2004). 

In state-space models, a sequence of the observation vectors {y1, …, yN} is modelled 
by assuming that at each time step yn was generated from k-dimensional hidden state 
variable denoted by xn. A basic model of state-space models is shown as follows: 

1 , (System model),n n nx Fx v−= +  (1) 

, (Observation model),n n ny Hx w= +  (2) 

where F is the state transition matrix (k × k matrix), H is the observation matrix  
(l × k matrix). vn ∼ Nk(0k, Q) and wn ∼ Nl(0l, R) are the system noise and the observation 
noise, respectively. The initial state vector x0 is assumed to be a Gaussian random  
vector with mean vector µ0 and covariance matrix ∑0, i.e., x0 ∼ Nk(µ0, ∑0). If one knows 
the values for the parameters H, F, R, Q, µ0, and ∑0, in the model, the conventional 
Kalman smoothing estimators, xn|N, Vn|N, and Vn,n–1|N can be calculated as conditional 
expectations, that is, 

| 1{ | , , },n N n Nx E x y y= …  (3) 

| | | 1{( )( ) | , , },n N n n N n n N NV E x x x x y y′= − − …  (4) 

, 1| | 1 1| 1{( )( ) | , , },n n N n n N n n N NV E x x x x y y− − − ′= − − …  (5) 

by using the Kalman filter (Kalman, 1960) and the fixed-lag smoother algorithm 
(Kitagawa and Gersch, 1996) efficiently. However, in this case, these parameters that 
determine the system are unknown and thus they should be estimated to identify the 
system. In this study, we estimate these parameters by the maximum likelihood method 
using EM algorithm. The estimation methods are explained in the following section. 



 

 

   

 

   

   80 R. Yamaguchi and T. Higuchi    
 

    
 
 

   

 

 

       
 

2.2 Maximum likelihood estimation with EM algorithm 

In order to obtain the maximum likelihood estimator of the parameters in the model,  
we use EM algorithm (Dempster et al., 1977). The EM algorithm for state-space models 
(equations (1) and (2)) is formulated by Shumway (2000) and Shumway and Stoffer 
(1982) as follows. 

Let {YN, XN} call the complete data, where YN = {y1, …, yN} is the set of 
observation data and XN = {x0, …, xN} is the set of state variables (unobserved data). 
Then the joint likelihood for the complete data is given by 

0 1
1

( , ; ) ( ) ( | ) ( | ),
N

N N n n n n
n

P Y X P x P x x P y xθ −
=

= ∏  (6) 

where θ = {H, F, R, Q, µ0} is the parameter vector in the model. ∑0 is assumed to be 
known (Shumway and Stoffer, 1982). The probability densities P(x0), P(xn|xn–1) and 
P(yn|xn) are given by 
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Thus the joint log-likelihood of the complete data becomes 
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 (10) 

In EM algorithm, to estimate the maximum likelihood parameter vector θ̂ , the 
conditional expectation of the joint log-likelihood of the complete data 

† †( | ) [log ( , ; ) | , ],N N Nq E P Y X Yθ θ θ θ=  (11) 

is iteratively maximised as a function of θ until convergence, where †θ  is the parameter 
vector obtained in the previous iteration. It is well known that the log-likelihood 
calculated with the (i + 1)-th iterative estimated parameters is larger than that with the  
i-th iterative estimated parameters. An iteration of EM algorithm consists of two steps 
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called the expectation step (E-step) and the maximization step (M-step), respectively. 
Each step in the (i + 1)th iteration is shown as follows. 

In E-step, q(θ|θi) of equation (11) is calculated by 

{ }1
0 0| 0| 0 0| 00

1
| | |

1

( | ) [log ( , | ) | , ]
1 1log | | trace ( ( )( ) )
2 2

1log | | trace{ ( )}
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log | |
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−

=

=
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+ +−

∑

∑

 (12) 

where θi = {H(i), F(i), R(i), Q(i), µ0(i)} is the parameter vector estimated in the ith 
iteration, and 

1| 1| 1|
1
( ),

N

n N n N n N
n

A V x x− − −
=

= + ′∑  (13) 

, 1| | 1|
1
( ),

N

n n N n N n N
n

B V x x− −
=

′= +∑  (14) 

| | |
1
( ),

N

n N n N n N
n

C V x x
=

′= +∑  (15) 

In the above equation, the conventional Kalman smoothing estimators xn|N, Vn|N, and  
Vn,n–1|N (equations (3)–(5)) can be calculated by using the Kalman filter and the fixed-lag 
smoother algorithm as already mentioned in the previous section. It is noted that the  
log-likelihood 

log ( | ) log ( , | )d ,N i N N NL Y P X Y Xθ θ= ∫  (16) 

is also obtained as a byproduct of the Kalman filter. 
In M-step, θi is updated to θi+1 to be θi+1 = arg maxθ q(θ | θi) by ∂Hq(θ | θi) = 0, 

∂Fq(θ | θi) = 0, ∂Rq(θ | θi) = 0, ∂Qq(θ | θi) = 0 and 
0

( | ) 0.iqµ θ θ∂ =  Thus θi+1 = {H(i + 1), 
F(i + 1), R(i + 1), Q(i + 1), µ0(i + 1)} is obtained by 

1

1
( 1) { | } ,
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n n N
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 ′+ =  
 
∑  (17) 
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1 1( 1) ( ),Q i N C BA B− −+ = − ′  (20) 

0 0|( 1) .Ni xµ + =  (21) 

The procedure to obtain the maximum likelihood estimator of the parameter vector θ̂  is 
summarised as below. 

P1: Select initial values of θ0 = {H(0), F(0), R(0), Q(0), µ(0)} and some reasonable 
baseline level of ∑0. The conventional Kalman smoothing estimators xn|N, Vn|N,  
Vn,n–1|N (equations (3)–(5)) can be recursively calculated by Kalman filter and the 
fixed lag smoother with the upper initial parameters. 

P2: Calculate the conditional expectation of the log likelihood with equation (12).  
(E-step) 

P3: Calculate equations (17)–(21) and obtain the next iterative estimated parameters that 
maximise conditional expectation of the log likelihood. (M-step) 

P4: Insert estimated parameters to the state-space equations (1) and (2), and calculate the 
conventional Kalman smoothing estimators. 

P5: Repeat the upper procedures P2–P4 until the log likelihood is converged. 

The EM algorithm for the maximum likelihood estimation may fall into a local 
maximum. Therefore, the global maximum must be chosen by comparing the results from 
several sets of the initial values. We note that the above algorithm can be extended to 
deal with missing values in observation values naturally (Shumway, 2000; Shumway and 
Stoffer, 1982). 

2.3 Identification of dimension of the state variable 

The dimension of the state vectors k is not yet identified. Bayesian Information Criterion 
(BIC; Schwarz, 1978) is introduced in this section in order to solve this problem. BIC for 
a model, which have k-dimensional state vector is as follows: 

( )ˆBIC( ) 2log ( | ) log ,k
N p sk L Y vθ λ= − +  (22) 

where ( )ˆlog ( | )k
NL Y θ  is the maximum marginal log-likelihood with the parameter 

vector ( )ˆ kθ  estimated in EM algorithm (equation (16)). λp is the number of parameters to 
be estimated. νs is the number of samples. In this case, νs = N: the number of time points. 

We consider the dimension of the state vectors that has the minimum BIC,  
i.e., k = arg mink BIC(k), as the optimal one. 

3 Analysis 

In order to estimate the optimal dimension of state vectors for real dynamical biological 
systems, we applied the above method to a publicly available cDNA microarray  
time-course data set obtained for studying the cell-cycle regulated genes of yeast 
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(Saccaromyces cerevisiae) (Spellman et al., 1998). The dataset is available at 
http://cellcycle-www.stanford.edu. 

Spellman et al. (1998) identified 800 genes that meet an objective minimum criterion 
for cell cycle regulation. They obtained the microarray data using samples from yeast 
cultures synchronised by three independent methods: α factor arrest, elutriation and arrest 
of a cdc15 temperature-sensitive mutant. Here we used the cdc15’s time-course data of 
the 800 genes. The time course of a gene includes evenly spaced 19 time points.  
The observation interval is ten minutes. Figure 1 shows variations of expression levels of 
genes. Each of them shows rather a good wave form. For the analysis, we selected the 
time courses in which the number of missing points is less than ten. As a result, the 
number of selected time courses (i.e., the number of genes) is l = 763. 

Figure 1  The time-course gene expression data (cdc15) 

 

We then applied state-space models in which dimension of xn are k ∈ {1, …, 10} to the 
data, and estimated maximum likelihood parameters and BIC for each case. In the 
analysis, we assumed diagonal matrices for Q and R in the model. We also assumed that 
all of the diagonal elements of R are the same. For each k, EM algorithm was applied five 
times with different initial parameter vectors to avoid local maxima of the log-likelihood. 
A parameter vector for each k yielding the largest log-likelihood among five of them was 
considered as the maximum likelihood parameter: ( )ˆ kθ . Then we calculated BIC(k) by 
equation (22) for each k, where νs = N = 19 and λp = k(k + l + 2) + 1. 

Finally, we obtained k = 5 as the optimal dimension of state vectors by k = arg mink 
BIC(k) (see Figure 2). 
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Figure 2  Dimension of xn(k) vs. BIC 

 

4 Discussion 

There exist closely relating studies to this study, which dealt with the problem to 
determine the dimension of internal variable using almost the same model and data of this 
paper (Wu et al., 2004; Yukinawa et al., 2005). Here we compare these methods and 
results with those in this study. 

Although there are small differences between them in methods to treat missing values 
in data, the more significant differences are in methods to estimate parameters and 
criteria to determine the optimal dimension (Wu et al., 2004), they proposed a two-step 
manner, at the first step, the state variable xn and the H are estimated by factor  
analysis and the dimension of xn is determined by minimising BIC. Then at the second 
step F is estimated using a least square method. In Yukinawa et al. (2005), considering 
Bayesian estimation, they estimated F and H simultaneously using a variational  
Bayes method assuming prior distributions for the parameters. The dimension of xn is 
determined by maximising the variational free energy. In this study, we estimated F and 
H simultaneously as Yukinawa et al. (2005) but by using a maximum likelihood 
estimation with EM algorithm and without setting prior distributions for the parameters. 
We determined the dimension of xn by BIC. All of their methods are schematically shown 
in Figure 3. 

The estimated optimal dimension of internal state variable in this study was five.  
This is the same as that estimated in Wu et al. (2004). On the other hand, the estimated 
dimension by Yukinawa et al. (2005) was two. However, it should be noted that for 
calculating BICs, Wu et al. (2004) used the number of genes for νs in equation (22), not 
the number of time points. For a time-course data, the number of time points is usually 
used for νs. Since the number of genes in this data is much larger than that of time points, 
their obtained BICs have larger penalties for model complexities and thus the resulting 
dimension may change when the number of time points is used for BICs.  
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Figure 3 Comparison of procedures of the three papers 

 

This comparison showed that the different estimation methods resulted in the different 
number of optimal dimension of the internal state variable. At this time it is difficult to 
answer a question which method is better than the others, that is, which method makes 
more accurate result, because criteria they used to determine the optimal dimension were 
different. Thus, it should be needed to investigate performances and tendencies of these 
methods systematically by using real and artificial data examples which have various 
numbers of genes and time points. 

5 Concluding remarks 

In this study, we applied state-space models in order to model the time-course data of 
gene expression levels of yeast, which have significant features, i.e., high dimension and 
short length. We used EM algorithm for parameter estimation and BIC for an optimal 
dimension of internal variable of ˆ, i.e., .nx k  As a result, we obtained ˆ 5.k =  Then we 
compared the result, those of two studies (Wu et al., 2004; Yukinawa et al., 2005), which 
used almost the same model and the same data but different parameter estimation 
methods and criteria to determine the optimal dimension. Although our methods chose 
the same dimension of that in Wu et al. (2004), more systematic performance comparison 
using various real and artificial dataset would be needed. 
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We focused on determination of the dimension of internal variable in this study.  
The next important step is to compare the estimated parameters θ̂  and time course of 
state variables with the existing biological knowledge. It is especially useful if the 
internal variable can be interpreted in a real biological system. It is also expected that 
parameters F and H have important information about the connection between internal 
variables and genes. Estimating such networks and extracting other useful information by 
using the estimated parameters is our future work. 
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