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Finding 
Module-Based 
Gene Networks with
State-Space Models

[Mining high-dimensional and short
time-course gene expression data]

D
NA microarray experiments allow us to examine
expression levels of a large number of genes simul-
taneously. When experiments are sequentially car-
ried out in a particular period (e.g., during cell
cycles), a time course of which dimension is equal

to the number of genes is achieved. To analyze such time-course
gene expression data may lead us to further understanding of the
mechanism to regulate expressions of many genes and responses
of gene expressions to drugs, etc. Let yn be an l-dimensional vec-
tor containing observed expression levels of l genes at the nth
time step (n = 1, . . . , N). A notable feature of time-course gene
expression data is that the number of the time points N is usually
much smaller than that of the genes l. In our previous experi-
ence [1], N is only 19, while l is about 800. It is not an unusual
situation but a typical case in time-course microarray data analy-
sis. One of the most significant challenges in bioinformatics is to
establish a statistical method that can analyze such a high-
dimensional and short-length time-course data.

A simple idea to model a series of time-course experiments
{y1, . . . , yN} is to use a multivariate autoregressive model.
However, in its application to a short time-course gene expres-
sion data, the conventional method of the parameter estima-
tion might fail due to the overfitting. Linear Gaussian
state-space models (SSMs,  e.g., [2], [3]) provide us with a way
to overcome such difficulties. SSMs have been used in a wide

variety of applications with great success [2], [4]. There are
several research studies using SSMs for analyzing time-course
gene expression data with successful applications, e.g., [5], [6].
In SSMs, a sequence of the observation vectors {y1, . . . , yN} is
modeled by assuming that at each time step yn was generated
from k-dimensional hidden-state variable vector denoted by
xn. Given a data set, the tasks to be addressed is the estimation
of  the parameters and sequence of the internal state vectors
and also the determination of the state dimension. In the con-
text of signal processing, the state vector xn is often regarded
as some unknown signals in yn. On the other hand, in our
problem, we can expect that xn represents expression level of
biological entities, i.e., gene modules, which are groups of the
transcriptionally coexpressed genes having similar biological
functions. In fact, it is a novel feature of this study to estimate
the module networks by using SSMs.

In this study, we explore the following problems to analyze
time-course gene expression data by SSMs. One is regarding
methods for parameter estimation and determination of the
dimension of the internal state variable. Although several
methods have been applied, e.g., [1], [6], [7], there are few lit-
erature studies which with to compare them. Thus we give a
brief review of the existing literature that use the SSM to ana-
lyze the gene expression time-course data. Another one is
about identifiability of the model. If we simply estimate the
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parameters of SSMs without any constraints for parameter
space, they lack identifiability. To identify a system uniquely, it
requires a specific algorithm to estimate the parameters with
some constraints. For that purpose, we derive an identifiable
form of SSMs and an algorithm for estimating parameters. The
last one is to extract biological information by interpreting the
estimated parameters, such as mechanism of gene regulations
at the module level. For that one, we explore methods to
extract further information using the estimated parameters,
that is, we reconstruct a mod-
ule network from time-course
gene expression data. 

SSMs
Let yn be an l-dimensional
vector containing observed
expression levels of l genes at
the nth time step where
n = 1, . . . , N. To model such time-course data, we use linear
Gaussian state-space models that are often simply called SSMs.
In SSMs, a sequence of the observation vectors {y1, . . . , yN} is
modeled by assuming that at each time step yn was generated
from k-dimensional hidden state variable denoted by xn. A
basic model of state-space model is shown as follows:

xn =Fxn−1 + vn (system model) (1)

yn =Hxn + wn (observation model) (2)

where F is the state transition matrix (k × k matrix), H is the
observation matrix (l × k matrix), and vn ∼ Nk(0k, Q) and
wn ∼ Nl(0l, R) are the system noise and the observation noise,
respectively. The initial state vector x0 is assumed to be a
Gaussian random vector with mean vector µ0 and covariance
matrix �0, i.e., x0 ∼ Nk(µ0, �0). In this problem, we need to
estimate unknown parameters and state vector in the model.
The dimension of state vector (k) is also unknown and thus
needs to be determined for the optimal one.

According to existing literature, the number of modules
is suggested to be much smaller than that of genes, e.g., [8],
[9]. If xn could represent state of modules, the estimated
dimension k becomes smaller than the number of genes l. In
that case, this method can be seen as a dimension reduction.
Estimating the parameter vector θ = {H, F, R, Q, µ0} and
the state vector xn, we can expect to obtain insightful infor-
mation of the biological system, for example magnitude of
the effect of the modules on genes (gene-module interac-
tion) from H matrix. We can also estimate networks between
the modules by investigating F matrix.

SYSTEM IDENTIFICATION
In this section, we briefly review several parameter estimation
methods and determination of the dimension of the state vec-
tor (i.e., number of modules) used in bioinformatics. Then we
remark the lack of identifiability of SSM and obtain a form of
SSM which retains identifiability of the system. We show an

expectation-maximization (EM) algorithm [10] for estimating
parameters of the model.

METHODS FOR PARAMETER ESTIMATION AND
DIMENSION DETERMINATION FOR STATE VECTOR
From the existing literature using SSMs for time-course gene
expression data, there are some variations: 1) how to estimate
the model parameters and 2) how to determine the dimension
of the internal state variable. To give a clear scope of how to

use SSMs for such time-
course data, we review these
variants and compare results
from them. Here we refer
three papers [1], [6], [7] in
which they used the same data
and the same SSM (1) and (2)
but different methods to esti-
mate the parameters and to

determine the dimension of xn. The data that they used is a
well-known public domain data, that is, gene expression data
of the yeast (Saccharomyces cerevisiae) obtained during cell
cycles [11].

In [6], the authors proposed a two-step manner; at the
first step, the state variable xn and the H is estimated by
factor analysis and the dimension of xn is determined by
minimizing Bayesian information criterion (BIC) [12].
Then at the second step F is estimated using a least
squares method. 

In [7], considering a Bayesian estimation, the authors esti-
mated F and H simultaneously using the variational Bayes
method assuming prior distributions for the parameters
[13]–[15]. The dimension of xn is determined by maximizing
the variational free energy. 

In the last paper [1], the authors estimated F and H simulta-
neously as [7] but by using a maximum likelihood estimation
with the EM algorithm [3]. They determined an optimal dimen-
sion of xn based on the minimum BIC.

The resultant optimal dimensions of the state variable
were different for these papers, in spite of the same data set
and the same model, that is, five for [1] and [6] and two for
[7]. We do not determine here which method is better for this
kind of data. More systematic comparison would be needed by
using both artificial and real data examples. In the following
analysis, the maximum likelihood estimation by EM algo-
rithm and BIC to determine the dimension of xn [1] is used to
estimate module networks. 

IDENTIFIABLITY OF SSMs
Although we showed some variants of parameter estimation
methods for SSMs in the previous section, there is a substantial
problem for system identification by using SSMs. If we simply
estimate parameters of an SSM without any constraints for the
parameter space (e.g., [1], [6], [7]), it lacks the identifiability,
that is, there exist infinite number of parameterizations yielding
the same likelihood.

ALTHOUGH WE SHOWED SOME
VARIANTS OF PARAMETER ESTIMATION
METHODS FOR SSMS IN THE PREVIOUS

SECTION, THERE IS A SUBSTANTIAL
PROBLEM FOR SYSTEM IDENTIFICATION

BY USING SSMS.
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The lack of identifiability of an SSM is remarked as follows:
Let � (k × k matrix) be an arbitrary nonsingular matrix. The
SSM can be replaced by 

�xn = �F�−1�xn−1 + �vn , (3)

yn = H�−1�xn + wn . (4)

This implies the SSM is equivalent under arbitrary transforma-
tions, that is, xn → �xn , H → H�−1 , F → �F�−1 , and
Q → �Q� ′, where Q is the variance-covariance matrix of the
system noise vn. To overcome such overparameterization, we
state the following proposition.

PROPOSITION 1
To avoid the lack of identifiability of SSM, it is sufficient to
impose

■ Q = Ik

■ H′ R−1 H = � ≡ diag {λ1, . . . , λk}
■ an arbitrary signed conditions for all elements in a partic-
ular ηi = (ηi1, . . . , ηik)

′ is assumed to be given on the
parameter space, where H′ = (η1, . . . , ηl).

PROOF
Due to Q = Ik, it holds that �Q� ′ = �� ′ = Ik. Hence, the family
of � is restricted to be that of orthonormal matrices. Furthermore,
since H′ R−1 H = �, the transformed � H′ R−1 H� ′ = ��� ′
also must be a diagonal matrix. This implies that the � must have
1 or −1 in its diagonal elements. Finally the third condition
restricts � = Ik because the sign of all elements in ηi is fixed. We
call the SSM with the above constraints SSM (CSSM). An EM
algorithm for CSSMs is derived in the next section.

MAXIMUM LIKELIHOOD
ESTIMATION WITH EM ALGORITHM
To obtain the maximum likelihood estimator of the parameters
in CSSMs, we derive an EM algorithm. The EM algorithm for
SSMs, which have no constraints, is already formulated by [3]
and [16]. Proposition 1 suggests that the constraints for CSSMs
relate only for Q, H, and R. Therefore, the modification points of
EM algorithm for CSSMs from that for SSMs are only required in
the parts relating to these parameters. More specifically, the
update equations in M-step for those parameters only need to be
modified. Thus, at first, we show the EM algorithm for SSMs as a
reference. Then we describe the modification points for CSSMs.

Let {YN, XN} be the complete data, where
YN = {y1, . . . , yN} is the set of observation data and
XN = {x0, . . . , xN} is the set of state variables (unobserved
data). Then the joint likelihood for the complete data is given by

P(YN, XN; θ) = P(x0)

N∏
n=1

P(xn|xn−1)P(yn|xn) , (5)

where θ = {H, F, R, Q, µ0} is the parameter vector in the
model. Note that �0 is assumed to be known [3]. The probabili-
ty densities P(x0), P(xn|xn−1), and P(yn|xn) are given by the

Gaussian distributions Nk(µ0, �0) ,  Nk(Fxn−1, Q) ,  and
Nl(Hxn, R), respectively. Thus the joint log-likelihood of the
complete data becomes

log P(YN, XN; θ) = − 1
2

log |�0|

− 1
2

(x0 − µ0)
′ �−1

0 (x0 − µ0)

− N
2

log |Q| − 1
2

N∑
n=1

(
xn − Fxn−1

)′
× Q−1 (

xn − Fxn−1
) − N

2
log |R|

− 1
2

N∑
n=1

(yn − Hxn)
′ R−1 (yn − Hxn)

− k + N
(
k + l

)
2

log 2π . (6)

In the EM algorithm, the conditional expectation of the joint
log-likelihood of the complete data

q(θ | θ†) = E
[
log P(YN, XN; θ) | YN, θ†

]
(7)

is iteratively maximized with respect to θ until convergence, where
θ† is the parameter vector obtained in the previous iteration. It is
well known that the log-likelihood calculated with the (i + 1)th
iterative estimated parameters is larger than that with the ith iter-
ative estimated parameters. An iteration of EM algorithm consists
of two steps called the expectation step (E-step) and the maximiza-
tion step (M-step), respectively. Each step in the i + 1th iteration
is shown as follows: In E-step, q(θ | θi) is calculated by

q(θ | θi) = E [log P(YN, XN | θ) | YN, θi]

= − 1
2

log |�0|

− 1
2

trace

{
�−1

0

(
V0|N

+ (
x0|N − µ0

) (
x0|N − µ0

)′ )}

− N
2

log |Q|

− 1
2

trace
{

Q−1 (
C − BF′ − FB′ + FAF′)}

− N
2

log |R|

− 1
2

trace

{
R−1

N∑
n=1

[(
yn − Hxn|N

)

× (
yn − Hxn|N

)′ + HVn|N H′
]}

− k + N
(
k + l

)
2

log 2π , (8)
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where θi = {H(i), F(i), R(i), Q(i), µ0(i)} is the parameter vec-
tor estimated in the ith iteration, and 

A =
N∑

n=1

(
Vn−1|N + xn−1|N x′

n−1|N
)

, (9)

B =
N∑

n=1

(
Vn,n−1|N + xn|N x′

n−1|N
)

, (10)

C =
N∑

n=1

(
Vn|N + xn|N x′

n|N
)

. (11)

In the above equation, the conventional Kalman smoothing esti-
mators xn|N , Vn|N , and Vn,n−1|N ,

xn|N = E {xn|YN} (12)

Vn|N = E
{
(xn − xn|N)(xn − xn|N)′|YN

}
(13)

Vn,n−1|N = E
{
(xn − xn|N)(xn−1 − xn−1|N)′|YN

}
(14)

can be calculated by using the Kalman filter [17] and the fixed-
interval smoother algorithm [4]. 

The log-likelihood 

log L(YN|θi) = log
∫

P(XN, YN|θi)dXN (15)

is also obtained as a byproduct of the Kalman filter.
In M-step, θi is updated to θi+1 to be θi+1 = arg maxθ q(θ |θi)

by ∂Hq(θ | θi) = 0, ∂Fq(θ | θi) = 0, ∂Rq(θ | θi) = 0,
∂Qq(θ | θi) = 0, and ∂µ0 q(θ | θi) = 0. Thus
θi+1 = {H(i + 1), F(i + 1), R(i + 1), Q(i + 1), µ0(i + 1)} is
obtained by 

H(i + 1) =
(

N∑
n=1

E
{

ynx′
n | YN

})
C −1 (16)

F(i + 1) = BA−1 , (17)

R(i + 1) = N−1
N∑

n=1

[(
yn − Hxn|N

)
× (

yn − Hxn|N
)′ + HVn|N H′

]
, (18)

Q(i + 1) = N−1(C − BA−1 B′) , (19)

µ0(i + 1) = x0|N . (20)

The procedure to obtain the maximum likelihood estimator of
the parameter vector θ̂ is summarized as:

1) Select the initial values of θ0 = {H(0), F(0),

R(0), Q(0), µ0(0)} and some reasonable  baseline levels of
�0 . The conventional Kalman smoothing  estimators
xn|N, Vn|N, Vn,n−1|N (12)–(14) can be recursively calculated
by Kalman filter and the fixed-interval smoother with the
upper initial parameters.
2) Calculate the conditional expectation of the log likelihood
with (8) (E-step).
3) Calculate (16)–(20) and obtain the next iterative estimated
parameters that maximize conditional expectation of the log
likelihood (M-step).

4) Insert estimated parameters to the state-space equations
(1) and (2), and calculate the conventional Kalman smooth-
ing estimators.
5) Repeat the upper procedures steps 2–4 until the log likeli-
hood is converged.
The EM algorithm for the maximum-likelihood estimation

may fail into a local maximum. Therefore the global maximum
must be chosen by comparing results from several sets of the ini-
tial values. We note that this algorithm can be extended to deal
with missing values in observation values naturally [3], [16].

MODIFICATION OF EM ALGORITHM FOR CSSM
In this section, we explain a modification of EM algorithm for
estimating CSSMs. Regarding Q, (19) is removed due to the
constraints of Q = Ik . Thus parameter vector for CSSMs
becomes θ = {H, F, R, µ0}. The modification for H and R are as
follows: If we assume R = rIl (r > 0), (18) is replaced by 

r(i + 1) = (Nl)−1
N∑

n=1

trace
[(

yn − Hxn|N
)

× (
yn − Hxn|N

)′ + HVn|N H ′
]
. (21)

Then the condition H′ R−1 H = � can be written by
H′ H/ r = � , which means h′

phq = 0 ( p �= q, 1 ≤ p, q ≤ k),
where hp and hq are the pth and the qth columns of H, respec-
tively. Given column vectors {hp|1 ≤ p, q ≤ k, h′

phq = 0 if
p �= q} of H(i), a column-wise recursive update equation for hp

of H(i + 1) is derived by maximizing q(θ |θi) subject to con-
straints h′

phq = 0 (p �= q) as follows:

hp = 1∑N
n=1〈x2

pn〉

(
N∑

n=1

〈ynxpn〉 −
∑
q�=p

hq

N∑
n=1

〈xqnxpn〉

−
∑
q�=p

1
‖hq‖2

N∑
n=1

h′
q〈ynxpn〉hq +

∑
q�=p

hq

N∑
n=1

〈xqnxpn〉
)

,

(22)

where 〈α〉 = E(α|YN, θi) is a conditional expectation of α. If
we set p ← 1, we can obtain H(i + 1) by recursing the calcu-
lation of (22) for k times with replacing hp of H(i) by hp cal-
culated by the equation and then setting p ← p+ 1 for each
recursion. Thus for CSSMs, (16) needs to be replaced by the
resultant H(i + 1).

CRITERION TO DETERMINE
THE DIMENSION OF THE STATE VARIABLE
To determine an optimal dimension of the state vector (k), we
use the BIC, which is given by

BIC(k) = −2 log L(YN|θ̂ (k)) + λp log νs, (23)

where log L(YN|θ̂ (k)) is the maximum marginal log-likelihood
with the parameter vector θ̂ (k) estimated in EM algorithm (15).
The number of parameters to be estimated is denoted by λp. The
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number of samples is represented by νs. In this case, νs = N: the
number of time points. We determine the dimension of the state
vectors that has the minimum
BIC, i.e., k̂ = arg mink BIC(k),
as the optimal one.

ESTIMATING MODULE
NETWORKS
In this section, at first we
explain a view of SSM for a biological system, that is, a represen-
tation of regulatory relationship of genes and gene-modules.
Then we explain an algorithm to estimate a module network
from the estimated parameter of SSM. Finally, it is applied to
the real data set.

We note that in the following section we use CSSMs and
assume R = rIl and r > 0.

TRANSCRIPTIONAL MODULES
We can expect that the internal state variable xn may represent
expression level of biological entities, i.e., gene “modules,”
which are groups of the coexpressed genes having similar bio-
logical functions, because of the form of observation model (2).

If we assume that the state vector, xn = [x1n, . . . , xkn]′ , rep-
resents expression levels of k modules at time n, the observation
model describes how expression levels of modules contribute to
the expression levels of each gene. On the other hand, the obser-
vation model leads to another representation

xn = Zyn + w̃n, (24)

where Z = UD−1 V′, w̃n = −Zwn, and V, D, and U are matrices
obtained from the singular value decomposition of H:
H = VDU′. From this equation, we can measure the magnitude
of contributions of genes to the expression levels of modules.

For the ith module, the equation can be written by
xin = ∑

j zijyjn + w̃in , where zij is the (i, j)th element of Z. If
we gather genes which have large |zij| for each module, we
can obtain group of genes. In fact by considering signs of zij,
we obtain two groups of genes for each modules, that is,
group with positive zij and that for negative zij. That can be
seen as a kind of clustering, however, it can allow a gene to
belong to multiple modules. This property is much suitable
for existing biological knowledge.

On the other hand, by the form of system model (1), we can
see it as a model representing dynamic interactions between
modules. Because it describes effect from xn−1 to xn, the rela-
tionship can be seen as causal relationship. Thus we can expect
to obtain module-regulatory networks by using the estimated
parameter, that is, F.

SEARCHING METHODS OF THE MODULE NETWORKS
By considering the system model (1), the module network can be
drawn by using F = { fij}. Here we denote the ith module by
MDLi regardless of time index. In that case, it can be done by con-
necting MDLi and MDLj with an arc (a directed edge) from MDLj

to MDLi when fij �= 0. Following a convention, we use a normal
arc (→)when fij > 0, and an inhibitory arc (�)when fij < 0.

The problem to make a
module network is to find
nonzero elements in the esti-
mated F.However, if we simply
estimate θ = {H, F, R, µ0} in
CSSM by the EM algorithm, it
is highly possible that all ele-

ments in F become nonzero. It means that we obtain a graph in
which any pair of nodes is connected regardless of the signifi-
cance of every arc. Such a graph is not meaningful. Therefore
we need to find significant arcs. To find them in a network, we
put constraints on F keeping some elements zero and estimate
parameters and obtain BIC for the constrained model. Then we
compare BICs obtained for models having different constraints
and select an optimal model of which BIC become the smallest.
Finally, we make a network using F of the optimal model.

Regarding the parameter estimation method for SSMs with
such constraints on the parameters, Wu et al. [18] derived an
EM algorithm. Following them, the constraints on F are repre-
sented as 

�vec F = g (25)

for known constant matrix � and vector g, where vec F denotes
the vector formed from matrix F by stacking the columns of F
beneath the one another. For example, let F = { fij} be a 2 × 2
matrix and put constraints that f12 = f21 = 0.In that case, � and
g become � = [02×1 I202×1] and g = [02×1].For M-step in EM
algorithm, an updating equation of F under (25) is obtained by

vecF = vec(BA−1) + (A−1 ⊗ Q)�′

× {�(A−1 ⊗ Q)�′}−1{g− �vec(BA−1)}, (26)

where ⊗ is the tensor product, A and B are given by (9) and
(10) [18]. In our settings, Q = Ik and g = 0Nc×1, where Nc is
the number of constraints on F, that is, the number of ele-
ments to be zero in F. Thus (17) must be replaced with (26)
for the EM algorithm.

Although we can obtain the best network by comparing
BICs for models using the all possible constraints on F, such
an exhaustive search is almost impossible especially when the
dimension of xn (k) becomes large. Hence, we search an opti-
mal network by a greedy search algorithm to find an optimal
constraints on F, in which we increase the number of con-
straints Nc one by one starting from Nc = 0 until
B̂IC

Nc
< B̂IC

Nc+1
, where B̂IC

Nc is the smallest BIC among
those from candidate models in which the number of zero ele-
ments in F is Nc. More specifically B̂IC

Nc = min BICNc
i , where

BICNc
i is BIC from the ith candidate model having Nc con-

straints (i = 1, . . . , iNc ). We denote F having Nc constraints
by FNc . In the ith candidate model having Nc + 1 constraints,
positions of Nc elements set to be zero in FNc+1

i are the same

IN THIS STUDY, TO EXTRACT
INSIGHTFUL INFORMATION FROM
TIME-COURSE GENE EXPRESSION

DATA WE USED STATE-SPACE MODELS.



as F̂Nc for B̂IC
Nc . Then a position of the Nc + 1th zero in

FNc+1
i for the candidate model is selected from the part of ele-

ments having no constraints in F̂Nc . We note that to avoid to
obtain meaningless solution, we do not put a constraint on an
element which is the only element having no constraints in
the row. Using the EM algorithm, we calculate BICNc+1

i for
the ith candidate model having Nc + 1 constraints. As the ini-
tial parameter of the algorithm we use
θ

Nc+1
0,i = {FNc+1

i,Nc
, ĤNc, R̂Nc, µ̂

Nc
0 } , where FNc+1

i,Nc
is a matrix of

which elements are the same as those of F̂Nc but an additional
zero is set as the Nc + 1th constraint; and F̂Nc , ĤNc , R̂Nc , and

µ̂
Nc
0 are those in θ̂Nc for B̂IC

Nc . We note that for CSSM having
Nc constraints, B̂IC

Nc is calculated by (23) with the number of
parameters λp = k{l + (k + 3)/2} + 1 − Nc , where l is the
number of the genes, k is the number of modules.

For the greedy search, at first step (Nc = 0) we need to pre-
pare the initial parameters (θ0

0 ) for the EM algorithm and then
calculate B̂IC

0
. After that, we calculate B̂IC

Nc+1
increasing Nc

one by one until the condition (B̂IC
Nc

< B̂IC
Nc+1

) is satisfied. If
it is satisfied, we stop the search and denote the Nc by N̂c. Then
we obtain the optimal parameter for the optimal constrained
model for B̂IC

N̂c .

TIME-COURSE MICROARRAY
GENE EXPRESSION DATA
To estimate the optimal dimension of state vectors
for real dynamical biological systems, we applied
the above method to a publicly available cDNA
time-course microarray gene expression data
obtained for studying the cell-cycle regulated genes
of budding yeast (Saccaromyces cerevisiae) [11].
The data set is available at http://cellcycle-
www.stanford.edu.

Spellman et al. [11] identified 800 genes as the
cell cycle regulated genes based on cluster analysis.
They obtained the microarray data using samples
from yeast cultures synchronized by three inde-
pendent methods: α factor arrest, elutriation, and
arrest of a cdc15 temperature-sensitive mutant.
Here we used the cdc15’s time-course data of the
800 genes. The time course of a gene includes
evenly spaced 19 time points. The observation
interval is 10 min. Figure 1 shows variations of
expression levels of genes. For the analysis, we
selected genes in which the number of missing
points is less than 10. As a result, the number of
selected genes is l = 763.

ANALYSIS AND RESULTS
To determine the optimal number of modules and esti-
mate the module network from the real time-course
gene expression data, at first, we applied the identifi-
able models (CSSMs) having different number of mod-
ules (k). We denote B̂IC

N̂c for the model having k
modules by B̂IC

N̂c
(k). Then we determined the opti-

mal number of modules k̂ by k̂ = arg mink B̂IC
N̂c

(k).
Figure 2 shows the profile of B̂IC

N̂c
(k) versus k,

(k = 1, . . . , 6). To obtain B̂IC
N̂c

(k) for each k, 20 dif-
ferent initial parameters (θ0

0 ) were used and the mini-
mum one were accepted as B̂IC

N̂c
(k). The profile takes

the minimum at k = 5. Thus we can decide that  k̂ = 5
is the optimal number of dimension of the internal vari-
able. This number is the same as the result of [1].

As a result, we obtained the optimal parameter
vector θ̂ = {Ĥ, F̂, R̂, µ̂}corresponding to k̂ = 5 and
the estimator of xn. Figure 3 shows the time course

[FIG1] The time-course gene patterns of 800 cell cycle related genes in the
cdc15 data.
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[FIG2] B̂IC
N̂c

(k) versus the dimension of xn: k.
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of the smoothing estimator x̂n|N . We can observe dif-
ferent pattern of time series for each module. Figure 4
shows the time course of observed gene expression
data yn and its prediction by the optimal model ŷn|n−1

of cyclins having different peaks that exemplify typical
cell-cycle related genes. It shows that the optimal
model could make fairly good predictions for such dif-
ferent patterns of gene expressions. It may supports
the validity of the estimation.

The estimated F̂ is given by

F̂ =




0.478 0 0 0 0
0 0.579 0 0 0

1.561 0 0 0 0
1.408 0 0 0 0

−3.666 0 0.869 0 0.667




. (27)

Using F̂ and the system model (2), we can obtain a
network representing the module-module interac-
tions (Figure 5). The captions in colored boxes are
explained in the next section. [FIG3] Time course of the smoothing xn|N.
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Figure 6 shows profiles of genes that are assigned as the
positive member (shown in the left panels) or the negative
member (shown in the right panels) for each module. Genes
which have the largest (the
smallest) ten contributions are
shown as the positive (nega-
tive) member for each module.
The gene profiles in the same
panel looks similar. The pro-
files of the positive and nega-
tive member of genes in the
same module show an antiphase relationship. Thus those
genes might be successfully classified into modules.

DISCUSSION AND CONCLUSION
In this study, to extract insightful information from time-
course gene expression data we used SSMs. We first gave a
brief survey of existing literature using SSMs applied to a
data set with different parameter estimation methods and dif-
ferent criteria to determine the number of modules. We then
derived SSMs with constraints (CSSMs) to overcome the lack
of identifiability of unconstrained SSMs and showed an EM
algorithm for CSSMs. We then explored methods to extract
further information using estimated parameters, that is, a
module network. To search an optimal network, we developed

a greedy search algorithm based on a framework of statistical
model selection using BIC. We applied the method to a real
gene expression time-course data. As a result, we could

determine the optimal num-
ber of modules and obtain
the module network.

Here we discuss the result-
ant module network (Figure
5) and the genes classified into
modules (Figure 6). Spellman
et al. [11] assigned attributes

(called peaks) for each genes in the data which represent the
time when the gene expressions levels take the peak during
cell cycle. According to the four phases (G1 → S → G2 → M)
in a cell cycle, for which the M phase is followed by the G1

phase to start the next cycle, they gave one of the five peaks G1,
S, S/G2, G2/M, and M/G1 for each gene. Using this informa-
tion for genes in modules, we can characterize the modules.
There are two colored boxes for each module in Figure 5.
which summarize the feature of the modules. The yellow
(blue) one with P (N) is for positive (negative) member of mod-
ules: phrases after the colon express the feature of the module.
The number in parentheses after a peak name is the number of
genes assigned in it. As shown in them, there is a  tendency
that genes with similar peaks accumulate in the same module

[FIG5] The estimated module network from F̂.
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as the same member. Considering such characteristics of the
modules and directions and types of arcs between modules, we
can advocate that the obtained network codes a partially con-
sistent regulatory relationship
between modules recalled from
the time sequence of the phas-
es in cell cycles. Furthermore,
we found that the same, i.e.,
positive or negative, member
in a module have similar type
of genes or functionary related
genes. An example is that
almost all of the genes of the negative members in MDL2 are
histon. Another interesting finding is that the genes in the
same module tend to form protein complexes, such as CLB1

and CLB2 in MDL1, CDC46 and CDC47 in MDL2 and so on.
This feature is helpful to identify cellular functions of genes
that are not biologically determined.

In this study, we showed
that the SSMs allow us to
extract useful information
from high-dimensional time-
course gene expression data.
We succeeded in estimating
biologically plausible module
network of Saccharomyces
cerevisiae cell cycle genes.

Based on this information, the next research is focused on the
estimation of gene-gene interaction as gene regulatory net-
works [19]–[21], that is a big challenge in bioinformatics.

[FIG6] The time course of genes belonging to the modules. The left (right) panels show genes which have the positive (negative)
contribution for each module. Each panel contains ten genes having larger (for the positive group) or smaller (for the negative group)
contribution to a module.
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DIMENSIONAL AND SHORT-LENGTH
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