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Abstract: In this study, we consider a time series model which combines the partial non-
Gaussian state space model and self-organizing state space model (SOSSM), where the
SOSSM has been proposed to an extension of the generalized state space model. The com-
peting different system/observation models for the state vector can be simultaneously dealt
in this model as introducing a switching structure, and appropriate system/observation
models among them is automatically determined as a function of time. As a result, we are
free from a procedure of selecting models among competing models. Of course, this model
allows us to consider an inclusion of two system/observation models which conflicts each
other in some sense. Namely, we need not have well-organized knowledge about modeling of
the time series. We therefore call this model the evolutionary time series model. We regard
the approach based on the evolutionary time series model as one of the machine learning
approaches. The evolutionary time series model can be formulated within a framework of
an extension of SOSSM which takes a convenient form from a computational point of view.
The Monte Carlo filter (MCF) is fully employed to handle computationally extensive and
difficult tasks. The approach we propose demands a huge computational power and then
its realization in practice relies on the massive parallel computer systems. To illustrate, we
demonstrate an application of the proposed method to simulated data as well as a seasonal
adjustment of the Japanese Gross Domestic Product (GDP) data.
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1 Introduction

A partial non-Gaussian state-space models [2, 18]
is a linear model whose parameter evolve with time
according to an unobserved stochastic process s; and
defined by:

(1)

x¢ = Fy(s¢)xe—1 + Ge(se)ve
y: = Hy(se)x¢ + Eq(s¢)wy,

where x; is an n, X 1 vector of unobserved sate vari-
ables, and y; is an n, dimensional vector observa-
tion. Given s;, all matrices, F;, G¢, H;, and E; are
known matrices of appropriate dimension. The noise

sequences v; and w; are assumed to follow v; ~ N (0, Q:)

and w; ~ N (0, R;), respectively. Conditional upon s,
this model is a standard linear Gaussian state space
model [1]. The process s; is usually assumed to be a
first order Markov process of Markov transition kernel
p(s¢|st—1). The switching Gaussian state space
model is considered as a variant of the partial non-
Gaussian state space model [5].

The generalized state space models (SOSSM) are
also the useful framework for describing a wide variety
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of the time series models [11, 14] and are described by
the following two equations:

{ Xt = f(Xt—l,Vt) (2)

ytN'l"( ° |xta00bs)-

f:R™ x R™ — R™ is given function. {v:} is in-
dependent and identically distributed (i.i.d.) random
process with v, ~ ¢(v|@sys). 7 is conditional distri-
bution of y; given x;. ¢(-|-) and r(:|-) are, in general,
non-Gaussian densities specified by the unknown pa-
rameter vectors, 65y, and 6,5, respectively.

To realize a dependency of 8,,, and ., on time in
the generalized state space model, the self-organizing
state space model has been introduced [14]. Namely,
we can consider a model in which 6,y and 6,5 also
evolve with time. For a simple notation, we set 8; =
[6%ys,6>00ps,c)'- A system model for time-varying pa-
rameter 0; is described by 6; = ¢(6;_1,¢€:), where &,
is a white noise sequence with density function ¢(e|£).
We usually adopt the random walk model for g: 8, =
0:—1 + € [11, 14]. The parameter to be estimated by
the maximum likelihood method, £, is anticipated to
be up to 5 dimensional vector.

In this study we propose a general framework which
combines the partial non-Gaussian state space model



and self-organizing state space model conceptually. Sec-
tion 2 describes this framework which we call an evo-
lutionary time series model. Section 3 shows three ex-
amples of the evolutionary time series models. Sec-
tion 4 explains a calculation of how to estimate the
state vector and to determine the posterior distribu-
tion. An implementation of the procedure on the par-
allel computing is also described. Section 5 illustrates
an application of the evolutionary time series model
to simulated data set. Section 6 demonstrates an ap-
plication of the evolutionary time series model to a
seasonal adjustment of the Japanese Gross Domestic
Product (GDP) data.

2 Evolutionary time series model

2.1 Latent switching vector variable

In this study we assume that in addition to the state
vector process x; and 6, a discrete latent switching
vector variable

It:[Itla'-'aItK]l (3)

influences the distribution of y;, where the k-th ele-
ment in (3) takes values in {1,...,m*}. The num-
ber of all combinations of possible switching variable
is M = m' xm?x---xmX. Therefore we are required
to predetermine M generalized state space models. We
denote the dependency of f, g, and r on the latent
switching vector as fI, g., and = respectively.

The general form of the evolutionary time se-
ries model that we propose in this study is obtained
by augmenting the state vector x; with both the pa-
rameter vector @; and latent switching vector I; as
zt = [x},0},I;]. Then the model for the augmented
state vector z; is given by

{ Z; = F*(Zt—l,ut)

Yt ~ rI:It ('|Zt),

(4)
where the nonlinear function F™* is defined by

fI:It (xt—1,Vt)
9y, (Or-1,€0) |- (5)
h(I;—1)

F*(thl, ut) =

The system noise u; is defined by u; = [v}, e}]".

There are various ways of giving a time-dependent
structure for I, I; = h(I;—1). The simplest way is the
independently exchangeable prior, where an element of
I;, If, is assumed to an iid process with Pr{I}f =
Jj} = n; (e.g., [19]). An evolution of I, h(-), is in
this study realized by considering Markovian switching
prior where If, is assumed to be a stationary Markov
process with Pr{If = j|I} | = i} = nf (see eg.,
[5, 16]). 7% is called the transition matrix or Markov

transition kernel. The reason we adopt the Markovian
switching prior is that it can be regarded as a discrete
version of the random walk which describes a time de-
pendent structure of the parameter vector 6; in this
study.

No correlation among the latent switching variables
is here considered (namely, independently Markov switch-
ing model) so that nfj is common to all k£ and defined

by
. 0.95

1=
0.05/(m* — 1) (6)

i % .
3 Examples of model

3.1 local level model with switching
system/observation variance

The local level model with switching system /observation
variances is given by

Mi—1 + vy v~ N(O,Q,[gk])

e =
Ye = et wy, thN(OaR)[sk])
log,, ng] = log,, Qyi]l + Eg]t’
e N0, ) for k=1,2
log,, B! = log, R, +el,,

elpl ~ N(0,el) fork=1,2. (7)

The two type of the system noise variance sequences,

£1] and Q,[f], is discriminated by the latent switching
variable, I}; Q,[}] for I} =1 and Q,[f] for I} = 2, respec-
tively. Similarly, R\ for I? = 1 and R} for I? = 2.
Then the number of all combinations of I} and I? val-
ues are four; M = 2 x 2. For this model, the function
forms appearing in the evolutionary time series mod-
els, F'* and r are common to all cases. The parameter
vector optimized in parallel is £ = | gl], ?], é”,{g]]’ .
This model can be formulated to the evolutionary state
space model with

ze = [u,log, Qi log,, Q7 log,, R},
log,, R, I}, I7]. (8)

When we focus on a simpler one based on this model,
for example, the model with constant Q¥ and R, it
can be reduced to be the simplest model among the
models called switching Gaussian state space model [5,
12] or modification of the Jump Markov linear system

[2].

3.2 Switching trend model

The function form appearing the system model men-

tioned above, f,_ (), is independent of the latent
—1t



switching variable. Here we consider three different
system model each of which are labeled with I}:

for I! = 1: first order difference (D1) model

Me = pi1 + g UP] ~ N(OaQ)[sl]) (9)
for I! = 2: second order difference (D2) model

21 — -2 + U,Ez], vt ~ N (0, Q?]) (10)

Bt =
for I} = 3: heavy tailed non-Gaussian noise model
peo= e+, ot~ 00,08, (11)

where C(O,Q?]) is the Cauchy distribution with the

centered at 0 and dispersion parameter Q,[?]. We call
the third model C1 model hereafter. An employment
of the heavy tailed Non-Gaussian distribution such as
a Cauchy distribution for a system noise distribution
is aimed at detecting the very large jumps of the trend
component which shows a smooth behavior except for
the jump points [13]. As in the previous model, we as-

sume that all parameters appearing in a description of
[1] (2]

system noise distribution, Q; ; ', and Q?], evolves
with time:
k k
log,, Q) = log, @}, + <,

el ~ N, fork=1,23 (12)

We assume that in addition to a simple descrip-
tion for the observation model of y; = u; + wg, wy ~
N(0,R;), the time dependence of R; can be simply
described by

log10 R, log10 Ri_1 +e€ry,

ER,t ™~ N(0a£2) (13)

Then K = 1 and M = m! = 3. This model can be
formulated to the evolutionary state space model with

[t pe—1,1og QY log, 7,

log,, @1, log, , Ri, I}]. (14)

Zy =

The function forms F™* are properly defined according

to the system models Eq.(9-13). The parameter vector
[ (1] g[2] ,[38] &]'.

optimized in parallel is £ = [, & ,&

3.3 Switching seasonal variation model

Usually, an analysis of the seasonal time series is car-
ried out in terms of the procedure called seasonal ad-
justment which is designed to decompose a time series
y; into multi-factors: a trend component p;, seasonal
component s;, observation noise component w;, and so
on. We consider a model by which y; is decomposed
into three factors: y; = ps + s + wy. The decompo-
sition can be achieved by assuming the stochastically
perturbed linear difference equation on each compo-
nent [9, 13, 20]. We consider two type of the trend

model used in Section 3.1. Namely we use the D1 and
D2 models:

for I! = 1: D1 model
pi o, o~ (0, Q)

Be =
for Itl = 2: D2 model
o= 2= sty oy~ N(0,Q7)
log10 [k] log10 Q1 o1t [cl;]1 o
E[CI;]It ~N(0,&M) for k=1,2. (15)

When we analyze a quarterly data y;, there are
several ways to define a structure of the seasonal vari-
ation of s; as a system model. The first way, which
is labeled by I? = 1, is a simple representation such

as Sy = S¢_4 + vg 1, vgl]t (O,Q[;]t) An alternative
choice is the model which is frequently adopted in the
standard basic structural model (BSM) [4, 9, 10]: s; =
—(st—1 + 8t—2 + 8¢-3) + Uéz,]t, where U% ~ N (0, Q[2])-
Of course, a time dependency of both Q[;]t and Q[22]t is
again introduced as follows:

for I? = 1: Diff model

st—a+vh1, vhi~N(0,QL)

for I! =1 and I? = 2: Sum model
(2]

St =

st = —(St—1+ 8t—2 + 5t-3) + V5,
vt ~ N (0, Q{z])
log,, [2’“1 = log10 Q2 " [5]2 .
cloha ~ N (0,6 fork=1,2. (16)

This model has K = 2 and m! = m? = 2 and can be
formulated to the evolutionary state space model with

_ (1]
z; = [Nt,/itflasta5t71a5t72a5t73a10g10 1,9

log,, Qﬂ,log10 Q{;’L,loglo [22,1, L.

The function forms F** are properly defined according

to the system models Eq.(15,16). The parameter vec-
[ El] (2] ¢[1] [2]]/.

tor optimized in parallel is £ = 6,8 5,8

4 Calculation

4.1 Recursive calculation [9, 13]

The SOSSM exploits the useful recursive formulas for
estimating conditional probability distribution of the
state vector z; given datayi.; = [y1, Y2, . .-, ¥;], P(Zi|¥1:5)
[9, 13]. The recursive formulas are given by a set of the
following two steps at each time t: prediction and fil-
tering .

(1) prediction: Assuming knowledge of the posterior
distribution for the state vector at time ¢ — 1,



p(zt—1|y1:t—1), compute the one-step—ahead predictive
distribution at time ¢, p(z:|y1.t—1), by

P(Zt|y1:4—1) = /P(Zt—1|}’1;t—1) -p(z¢|Ze—1)dze—1. (18)

(2) filtering: Based on the obtained distribution,
p(Z¢|y1:t—1), compute the posterior distribution at time
t, p(z¢|y1:), by

7(yt|z:) - p(ze]y1:6-1)
p(yelyi:t—1)
r(yt|z:) - p(Ze]y1:6-1)
Jr(yelze) - p(ze|y1:e—1)dze

P(Zt|}’1:t) =

(19)

These recursive formulas still demand the repeated
necessary integrations over a state space which increases
enormously with respect to the state dimension n,.
A sequential Monte Carlo method [3] for filtering and
smoothing, called “Monte Carlo filter” (MCF) [14] or
“bootstrap filter” [7] has been proposed to overcome
this computational problem.

4.2 Monte Carlo filter (MCF)[7, 11, 14]

To review MCF, suppose that p(z:|y1.:—1) and
p(z¢|y1::) are approximated by the N realizations,

{z)) Jli=1,...,N}
{z))li=1,...,N},

and (20)

Zyy = (21)
respectively. It can be shown that these particles can
be generated recursively by the following algorithm:

1. For ¢« = 1,...,N generate n.-dimensional ran-
dom number z(% ~ p(zo).

2. Repeat the following steps for t = 1,...,T. For
(a)—(d), repeat N times independently for i =
1,...,N.

(a) Get IV by IV = RA()).
(b) Generate n.-dimensional system random num-
ber e\ ~ ¢(e|¢) and n,-dimensional sys-

tem random number vgi) ~ q(v|0£i)).
(c) Compute Z,E\izq = F* (Z:Eif)1|t71’
uf? = v, e

(d) Compute ﬁt(i) =Ty, (y¢lze = ZETZ_J-

ugi) ), where

(e) Obtain Z;; by the sampling with replace-
ment from Z;;_; with sampling probabili-
ties proportional to ﬁt(l), cee, iEt(N).

This filtering algorithm can be extended to the smooth-
ing by storing the past particles and resampling the

vector of particles (Zlgfzfp Z,:Eif)1|t71’ - Z'E?thfl) rather
(9)

than the single particle Zyy g

Once the Monte Carlo smoothing is performed to
the evolutionary time series model, the log likelihood
in MCF, [M°F(£), is given by

T
logp(yrrl€) = > logp(yelyi—1,€)

t=1
T N .
= Zlog(Zﬁt(l))—TlogN
t=1 =1
= (g, (22)
where
Pl 1) = [, (dep(alyie s,z

1%

1 i
5 S @ (23)
i=1
The posterior distribution of the state vector x; is
defined by a marginal posterior distribution given by
pxlyin) = [ plalyindot. (@4
Based on p(z:|y1.1), we can calculate the probabilities

Pr(I}f = flyi.7), £ = 1,...,m* which are estimated
from a marginal posterior distribution by:

Pr(If = llyr.r) =

%#{zggﬂ, with IF = ¢i = 1,..., N}, (25)
(4)
t|1:T
mates to p(z¢|y1.7). Actually, p(z:|y1.7) is determined
by the fixed interval smoother explained in this section.

A successful usage of the parameter estimation pro-
cedure relies on how to set its initial distribution, p(8y).
Usually, it is recommended to adopt a uniform distri-
bution of which range covers a possible range of 8. On
the contrary, the initial distribution of Iy does not af-
fect an estimation seriously, and then it is enough to
give an equal probability on all discrete values for any
k:

where z is a particle of which distribution approxi-

(26)

4.3 Grid search for an optimal £ with
parallel computing

As mentioned in Section 2, a parameter vector to be
optimized is only & of which dimension is expected to
take less than 5. Many numerical experiences suggests
that £ need not require a fine tuning, because it pro-
duces insignificant change in a behavior of the esti-
mated 6; in time domain. Hence we conduct a grid
search for an optimization of £. For example, when
£ is a scaler variable, we choose an optimal ¢ among
three candidates: ¢ = 1072, 103, and 10~%.



Table 1: Parallel Computer Systems at ISM

Product CPU CPU No.
SGI2800 MIPS R12000 400MHz x 80 CPUs
SGI1200 PentiumlII 800MHz x 100 CPUs

When £ is a four dimensional vector as appearing
in the previous section, only 81 (3*) values of the log-
likelihood have to be determined. Such rough opti-
mization based on the grid search can be easily im-
plemented on the parallel computer systems with MPI
(Message Passing Interface) library [17] as follows. If
we assign the ith value of £ among 81 cases to the ith
processor (node) on the parallel computer system, all
information required for performing the Monte Carlo
filter to calculate [™°F (&) is common to a processor ex-
cept for a value of £&. Then we can take an advantage
of the parallel computer as much as possible, because
an amount of communication between the processors is
quite small; we have only to gather a value of [M°F (&)
from the processors, and determine an optimal £ with
the maximum value of [™°F(£), which is specified by
£¢*. As a result, we can enjoy a benefit of exploiting
the parallel computing.

The Institute of Statistical Mathematics (ISM) has
two massive parallel computer systems listed in Ta-
ble 1 that we used in this study. Here we would like to
defend an expected criticism against a prospect of an
approach of using the evolutionary time series model
which relies on a massive parallel computer system.
Since an organization of possessing the massive paral-
lel computer systems is in general limited, most of users
are obliged to perform their analysis on the PC with
a single CPU. However, there are new projects which
frees a user from his/her computational resource. For
example, the Ninf is an ongoing global computing in-
frastructure project which allows users to access com-
putational resources including hardware, software and
scientific data distributed across a wide area network
with an easy-to-use interface [8]. In future, we will
realize the approach proposed here in a kind of Ninf
system.

5 Application to simulated data

5.1 Data simulated from a local level
model with switching observation
variance

First, we apply the method of Section 3.1 to a time
series of length 7' = 400 simulated from a local level
model with switching observation variance [5]:

Ue—1 + Vg, Vg~ .ZAOV 0.00:
we ~ ZAO, .mwv Awﬂv

Mt =

Yt = e+ wy,
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Figure 1: Analysis of a local level model with switching
observation variance. (a) Given data (thin line) and
simulated trend component, p{™*¢ (thick line). The
data points with larger observation noise are denoted
by a black portion in the bar. (b) Estimated pu¢, fiz. A

thick line is pirve.
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Figure 2: The probabilities of having a larger obser-
vation noise, Pr(I? = 2|y;.r). A black/white bar is
identical to one shown in Figure 1.
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0.01, I; =1,
0.1, I;=2,



and I; is simulated as a 2-state Markov chain with
transition matrix n given by Eq.(6). The simulated
data y; is denoted by a thin line in Figure 1. The sim-
ulated p, pi™“, is shown by a thick line in this figure.
The black portion of a bar exhibited in the bottom
corresponds to the points with I} = 2; namely, "¢ is
contaminated at these points with larger observation
noise. Figure 1(b) demonstrates the estimated trend
component, ji;. For this problem, we give the following
initial distribution: p(uo) = N(0,0.01), p(log, E]) =
U([-3.5,-2.5]), p(log,, Q1)) = U([~1.5,—0.5]),

p(log,, Rgl]) = U([-2.5,-1.5)), and p(log,, Rgz]) =
U((—1.5,—0.5]). We use N = 50,000 particles for this
analysis. pi"“® is again superposed in this figure by
a thick line. A bar exhibited in this figure is iden-
tical to one in Figure 1(a). It is clearly shown that
Zi: has a good agreement with uf™¢ except for around
t = 50. To illustrate this good agreement, we calcu-
late Pr(I? = 2|y1.r). Figure 2 shows Pr(I? = 2|y1.7)
against the simulated I; (a black/white bar). It is seen
in this figure that the data points with I; = 2 is clearly

detected by an evolutionary time series model.
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Figure 3: (a) Simulated data (thin line) and estimated
trend component (thick line). (b) Ratio of the proba-
bilities of each model among three trend models.
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Figure 4: (a) Simulated data (thin line) and estimated
trend component (thick line). (b) Ratio of the proba-
bilities of each trend model.

5.2 Estimation of the trend component
with discontinuities in both its level
and slope

We consider the data of length 7" = 200 which is gen-
erated from the following model: y; = pi™*® + wy,
wi ~ N(0,0.01), where puf"" is a piece-wise liner func-
tion denoted by a thin line in Figure 3(a). There are
the discontinuities in its level at ¢ = 101 and ¢ = 181.
The intervals of t = 41 ~ 60, and 131 ~ 180 have a
finite value of the slope. Except for these intervals,
pirve has a constant level. We apply the switching
trend model explained in Section 3.2 to this time se-
ries. N = 10,000 particles are used for this problem.
The estimated trend component, [, is superposed on
this figure by the thick line. Since we have a good
agreement between fi; and u!™¢, a discrepancy be-
tween them is invisible.

The satisfactory results that we have obtained are
most easily communicated graphically. Figure 3(b) il-
lustrates a ratio of each model among three models;
D1, D2, and C1 models. The two curves drawn are
defined by:

Pr(I} = llyv.r) + Pr(I} = 2ly1.r)
Pr(I} = 1|yi.1).

Upper line:

Lower line:



Accordingly, a ratio of the length of three portions
(three arrows in Figure 3(b)) separated by these two
lines for each time represents to what extent each model
among three trend models is employed as a function of
time. As mentioned previously, only the C1 model can
account for an abrupt change in the level. Figure 3
clearly shows that this expectation is realized by the
evolutionary time series model. It is obvious that the
D2 model is appropriate when there is a finite value of
the slope. Actually, for the intervals of the slope be-
ing a finite, the D2 model has a majority among three
trend models. In short, the evolutionary time series
model can accommodate itself to the observations.

We apply the same evolutionary time series model
to other simulated time series with a different obser-
vation noise sequences: w; ~ N(0,0.25). A stan-
dard deviation of this noise process is 5 times larger
than that for the time series analyzed previously. Fig-
ure 4(a) demonstrates the simulated data y; and esti-
mated trend component that are obtained. The esti-
mated trend component is denoted by the thick line.
A presence of larger observation noise in comparison
with that in previous figure produces larger discrep-
ancy of fi; from pi"“¢. However, the time series model
can also detect a sharp drop in the level at ¢ = 101 as
well as reasonable smoothing elsewhere. Figure 4(b)
demonstrates a ratio of each model. In contrast to Fig-
ure 3(b), the C1 model keeps to account for at least
one third of the probabilities throughout a time. A re-
placement of the trend model in response to u{™“¢ are
made slowly owing to larger observation noise.

6 Application to seasonal adjust-
ment of GDP data

For further illustration we analyze the Japanese Gross
Domestic Product (GDP) data from second quarter,
1955 to first quarter, 1995. The GDP data is a quar-
terly data. We apply the evolutionary time series model
explained in Section 3.3 to the logarithmically trans-
formed GDP data which is shown in Figure 5(a). The
reason of applying the log transformation is that a lin-
ear decomposition suits for the logarithmically trans-
formed GDP rather than the original one. Of course,
an alternative transformation through such as the Box-
Cox transformation is available (a square root trans-
formation is better), but a detailed investigation re-
garding to a way of transformation is not essential for
discussion.

N = 100,000 particles are used for this problem.
The estimated trend component fi; is indicated by a
thick line. A thin line in Figure 5(b) shows the prob-
abilities f’;(Itl = l|y1.r) as a function of time. The
thick line connects the first difference of fi; normalized

by its maximum value:

Hip1 — e
A, = — —. 29
max. {fig41 — it} (29)

it —

It is seen in Figure 5(b) that A, ; takes zero and smaller
values for the intervals of the probability being nearly
to one. This tendency is visually demonstrated by
making a scatter plot of Pr(I} = 1) versus A, ; shown
in Figure 6. An extremely smaller percentage of the
D1 model for the initial several data points seen in
Figure 5(b) is owing to poor adjustments of the ini-
tial distribution for xo. Figure 7(a) shows the esti-
mated seasonal component, 5;. Figure 7(b) connects
the probabilities of the Diff model being appropriate
as a function of time, Pr(I? = 1]y.7).
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Figure 5: Analysis of the log GDP data (quarterly
data). (a) Given data and estimated trend compo-
nent, fi; (thick line). (b) The probabilities of the
D1 model being appropriate as a function of time,
Pr(I} = 1llyi.r). A thin line connects the first dif-
ference of the estimated trend component normalized
by its maximum value.
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