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Abstract: In this study, we consider a time series model which combines the partial non-

Gaussian state space model and self-organizing state space model (SOSSM), where the

SOSSM has been proposed to an extension of the generalized state space model. The com-

peting di�erent system/observation models for the state vector can be simultaneously dealt

in this model as introducing a switching structure, and appropriate system/observation

models among them is automatically determined as a function of time. As a result, we are

free from a procedure of selecting models among competing models. Of course, this model

allows us to consider an inclusion of two system/observation models which conicts each

other in some sense. Namely, we need not have well-organized knowledge about modeling of

the time series. We therefore call this model the evolutionary time series model. We regard

the approach based on the evolutionary time series model as one of the machine learning

approaches. The evolutionary time series model can be formulated within a framework of

an extension of SOSSM which takes a convenient form from a computational point of view.

The Monte Carlo �lter (MCF) is fully employed to handle computationally extensive and

di�cult tasks. The approach we propose demands a huge computational power and then

its realization in practice relies on the massive parallel computer systems. To illustrate, we

demonstrate an application of the proposed method to simulated data as well as a seasonal

adjustment of the Japanese Gross Domestic Product (GDP) data.

Keywords: latent variable, machine learning, Monte Carlo �lter, parallel computing, partial non-

Gaussian state space model, self-organizing state space model, switching model.

1 Introduction

A partial non-Gaussian state-space models [2, 18]

is a linear model whose parameter evolve with time

according to an unobserved stochastic process st and

de�ned by:(
xt = Ft(st)xt�1 +Gt(st)vt

yt = Ht(st)xt +Et(st)wt;
(1)

where xt is an nx � 1 vector of unobserved sate vari-

ables, and yt is an ny dimensional vector observa-

tion. Given st, all matrices, Ft, Gt, Ht, and Et are

known matrices of appropriate dimension. The noise

sequences vt andwt are assumed to followvt � N(0; Qt)

and wt � N(0; Rt), respectively. Conditional upon st,

this model is a standard linear Gaussian state space

model [1]. The process st is usually assumed to be a

�rst order Markov process of Markov transition kernel

p(stjst�1). The switching Gaussian state space

model is considered as a variant of the partial non-

Gaussian state space model [5].

The generalized state space models (SOSSM) are

also the useful framework for describing a wide variety
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of the time series models [11, 14] and are described by

the following two equations:(
xt = f(xt�1;vt)

yt � r( � jxt; �obs):
(2)

f : Rnx � Rnv ! Rnx is given function. fvtg is in-

dependent and identically distributed (i.i.d.) random

process with vt � q(vj�sys). r is conditional distri-

bution of yt given xt. q(�j�) and r(�j�) are, in general,

non-Gaussian densities speci�ed by the unknown pa-

rameter vectors, �sys and �obs, respectively.

To realize a dependency of �sys and �obs on time in

the generalized state space model, the self-organizing

state space model has been introduced [14]. Namely,

we can consider a model in which �sys and �obs also

evolve with time. For a simple notation, we set �t =

[�0sys;t; �
0

obs;t]
0. A system model for time-varying pa-

rameter �t is described by �t = g(�t�1; "t), where "t

is a white noise sequence with density function �("j�).

We usually adopt the random walk model for g: �t =

�t�1 + "t [11, 14]. The parameter to be estimated by

the maximum likelihood method, �, is anticipated to

be up to 5 dimensional vector.

In this study we propose a general framework which

combines the partial non-Gaussian state space model



and self-organizing state space model conceptually. Sec-

tion 2 describes this framework which we call an evo-

lutionary time series model. Section 3 shows three ex-

amples of the evolutionary time series models. Sec-

tion 4 explains a calculation of how to estimate the

state vector and to determine the posterior distribu-

tion. An implementation of the procedure on the par-

allel computing is also described. Section 5 illustrates

an application of the evolutionary time series model

to simulated data set. Section 6 demonstrates an ap-

plication of the evolutionary time series model to a

seasonal adjustment of the Japanese Gross Domestic

Product (GDP) data.

2 Evolutionary time series model

2.1 Latent switching vector variable

In this study we assume that in addition to the state

vector process xt and �t, a discrete latent switching

vector variable

It = [I1t ; : : : ; I
K
t ]0 (3)

inuences the distribution of yt, where the k-th ele-

ment in (3) takes values in f1; : : : ;mkg. The num-

ber of all combinations of possible switching variable

isM = m1�m2�� � ��mK . Therefore we are required

to predetermineM generalized state space models. We

denote the dependency of f , g, and r on the latent

switching vector as f
I
, g

I
, and r

I
, respectively.

The general form of the evolutionary time se-

ries model that we propose in this study is obtained

by augmenting the state vector xt with both the pa-

rameter vector �t and latent switching vector It as

zt = [x0t; �
0

t; I
0

t]
0. Then the model for the augmented

state vector zt is given by(
zt = F �(zt�1;ut)

yt � r
I=It

(�jzt);
(4)

where the nonlinear function F � is de�ned by

F �(zt�1;ut) =

2
64

f
I=It

(xt�1;vt)

g
I=It

(�t�1; "t)

h(It�1)

3
75 : (5)

The system noise ut is de�ned by ut = [v0t; "
0

t]
0.

There are various ways of giving a time-dependent

structure for It, It = h(It�1). The simplest way is the

independently exchangeable prior, where an element of

It, I
k
t , is assumed to an iid process with PrfIkt =

jg = �j (e.g., [19]). An evolution of It, h(�), is in

this study realized by consideringMarkovian switching

prior where Ikt , is assumed to be a stationary Markov

process with PrfIkt = jjIkt�1 = ig = �kij (see e.g.,

[5, 16]). �kij is called the transition matrix or Markov

transition kernel. The reason we adopt the Markovian

switching prior is that it can be regarded as a discrete

version of the random walk which describes a time de-

pendent structure of the parameter vector �t in this

study.

No correlation among the latent switching variables

is here considered (namely, independentlyMarkov switch-

ing model) so that �kij is common to all k and de�ned

by

�kij = �ij =

(
0:95 i = j

0:05=(mk � 1) i 6= j:
(6)

3 Examples of model

3.1 local level model with switching

system/observation variance

The local level model with switching system/observation

variances is given by

�t = �t�1 + vt; vt � N(0; Q
[k]
t )

yt = �t + wt; wt � N(0; R
[k]
t )

log
10
Q

[k]
t = log

10
Q

[k]
t�1 + "

[k]

Q;t;

"
Q;[k]
t � N(0; �

[k]
1 ) for k = 1; 2

log
10
R

[k]
t = log

10
R

[k]
t�1 + "

[k]

R;t
;

"
[k]

R;t � N(0; �
[k]
2 ) for k = 1; 2: (7)

The two type of the system noise variance sequences,

Q
[1]
t and Q

[2]
t , is discriminated by the latent switching

variable, I1t ; Q
[1]
t for I1t = 1 and Q

[2]
t for I1t = 2, respec-

tively. Similarly, R
[1]
t for I2t = 1 and R

[2]
t for I2t = 2.

Then the number of all combinations of I1t and I2t val-

ues are four; M = 2� 2. For this model, the function

forms appearing in the evolutionary time series mod-

els, F � and r are common to all cases. The parameter

vector optimized in parallel is � = [�
[1]
1 ; �

[2]
1 ; �

[1]
2 ; �

[2]
2 ]0.

This model can be formulated to the evolutionary state

space model with

zt = [�t; log10 Q
[1]
t ; log

10
Q

[2]
t ; log

10
R

[1]
t ;

log
10
R

[2]
t ; I1t ; I

2
t ]: (8)

When we focus on a simpler one based on this model,

for example, the model with constant Q[k] and R[k], it

can be reduced to be the simplest model among the

models called switching Gaussian state space model [5,

12] or modi�cation of the Jump Markov linear system

[2].

3.2 Switching trend model

The function form appearing the system model men-

tioned above, f
I=It

(�), is independent of the latent



switching variable. Here we consider three di�erent

system model each of which are labeled with I1t :

for I1t = 1: �rst order di�erence (D1) model

�t = �t�1 + vt; v
[1]
t � N(0; Q

[1]
t ) (9)

for I1t = 2: second order di�erence (D2) model

�t = 2�t�1 � �t�2 + v
[2]
t ; vt � N(0; Q

[2]
t ) (10)

for I1t = 3: heavy tailed non-Gaussian noise model

�t = �t�1 + v
[3]
t ; v

[3]
t � C(0; Q

[3]
t ); (11)

where C(0; Q
[3]
t ) is the Cauchy distribution with the

centered at 0 and dispersion parameter Q
[3]
t . We call

the third model C1 model hereafter. An employment

of the heavy tailed Non-Gaussian distribution such as

a Cauchy distribution for a system noise distribution

is aimed at detecting the very large jumps of the trend

component which shows a smooth behavior except for

the jump points [13]. As in the previous model, we as-

sume that all parameters appearing in a description of

system noise distribution, Q
[1]
t , Q

[2]
t , and Q

[3]
t , evolves

with time:

log
10
Q

[k]
t = log

10
Q

[k]
t�1 + "

[k]

Q;t;

"
[k]

Q;t � N(0; �
[k]
1 ) for k = 1; 2; 3 (12)

We assume that in addition to a simple descrip-

tion for the observation model of yt = �t + wt, wt �

N(0; Rt), the time dependence of Rt can be simply

described by

log
10
Rt = log

10
Rt�1 + "R;t;

"R;t � N(0; �2): (13)

Then K = 1 and M = m1 = 3. This model can be

formulated to the evolutionary state space model with

zt = [�t; �t�1; log10 Q
[1]
t ; log

10
Q

[2]
t ;

log
10
Q

[3]
t ; log

10
Rt; I

1
t ]: (14)

The function forms F � are properly de�ned according

to the system models Eq.(9{13). The parameter vector

optimized in parallel is � = [�
[1]
1 ; �

[2]
1 ; �

[3]
1 ; �2]

0.

3.3 Switching seasonal variation model

Usually, an analysis of the seasonal time series is car-

ried out in terms of the procedure called seasonal ad-

justment which is designed to decompose a time series

yt into multi-factors: a trend component �t, seasonal

component st, observation noise component wt, and so

on. We consider a model by which yt is decomposed

into three factors: yt = �t + st + wt. The decompo-

sition can be achieved by assuming the stochastically

perturbed linear di�erence equation on each compo-

nent [9, 13, 20]. We consider two type of the trend

model used in Section 3.1. Namely we use the D1 and

D2 models:

for I1t = 1: D1 model

�t = �t�1 + v
[1]
1;t; v

[1]
1;t � N(0; Q

[1]
1;t)

for I1t = 2: D2 model

�t = 2�t�1 � �t�2 + v
[2]
1;t; v

[2]
1;t � N(0; Q

[2]
1;t)

log
10
Q

[k]
1;t = log

10
Q

[k]
1;t�1 + "

[k]

Q1;t;

"
[k]

Q1;t � N(0; �
[k]
1 ) for k = 1; 2: (15)

When we analyze a quarterly data yt, there are

several ways to de�ne a structure of the seasonal vari-

ation of st as a system model. The �rst way, which

is labeled by I2t = 1, is a simple representation such

as st = st�4 + v
[1]
2;t, v

[1]
2;t � N(0; Q

[1]
2;t). An alternative

choice is the model which is frequently adopted in the

standard basic structural model (BSM) [4, 9, 10]: st =

�(st�1 + st�2 + st�3) + v
[2]
2;t, where v

[2]
2;t � N(0; Q

[2]
2;t).

Of course, a time dependency of both Q
[1]
2;t and Q

[2]
2;t is

again introduced as follows:

for I2t = 1: Di� model

st = st�4 + v
[1]
2;t; v

[1]
2;t � N(0; Q

[1]
2;t)

for I1t = 1 and I2t = 2: Sum model

st = �(st�1 + st�2 + st�3) + v
[2]
2;t;

v2;t � N(0; Q
[2]
2;t)

log
10
Q

[k]
2;t = log

10
Q

[k]
2;t�1 + "

[k]

Q2;t;

"
[k]

Q2;t � N(0; �
[k]
2 ) for k = 1; 2: (16)

This model has K = 2 and m1 = m2 = 2 and can be

formulated to the evolutionary state space model with

zt = [�t; �t�1; st; st�1; st�2; st�3; log10 Q
[1]
1;t;

log
10
Q

[2]
1;t; log10 Q

[1]
2;t; log10 Q

[2]
2;t; I

1
t ; I

2
t ]
0: (17)

The function forms F � are properly de�ned according

to the system models Eq.(15,16). The parameter vec-

tor optimized in parallel is � = [�
[1]
1 ; �

[2]
1 ; �

[1]
2 ; �

[2]
2 ]0.

4 Calculation

4.1 Recursive calculation [9, 13]

The SOSSM exploits the useful recursive formulas for

estimating conditional probability distribution of the

state vector zi given data y1:j � [y1; y2; : : : ; yj ], p(zijy1:j)

[9, 13]. The recursive formulas are given by a set of the

following two steps at each time t: prediction and �l-

tering .

(1) prediction: Assuming knowledge of the posterior

distribution for the state vector at time t� 1,



p(zt�1jy1:t�1), compute the one{step{ahead predictive
distribution at time t, p(ztjy1:t�1), by

p(ztjy1:t�1) =

Z
p(zt�1jy1:t�1) � p(ztjzt�1)dzt�1: (18)

(2) �ltering: Based on the obtained distribution,
p(ztjy1:t�1), compute the posterior distribution at time
t, p(ztjy1:t), by

p(ztjy1:t) =
r(ytjzt) � p(ztjy1:t�1)

p(ytjy1:t�1)

=
r(ytjzt) � p(ztjy1:t�1)R
r(ytjzt) � p(ztjy1:t�1)dzt

: (19)

These recursive formulas still demand the repeated
necessary integrations over a state space which increases
enormously with respect to the state dimension nz.
A sequential Monte Carlo method [3] for �ltering and
smoothing, called \Monte Carlo �lter" (MCF) [14] or
\bootstrap �lter" [7] has been proposed to overcome
this computational problem.

4.2 Monte Carlo �lter (MCF)[7, 11, 14]

To review MCF, suppose that p(ztjy1:t�1) and
p(ztjy1:t) are approximated by the N realizations,

Ztjt�1 � fz
(i)

tjt�1
ji = 1; : : : ; Ng and (20)

Ztjt � fz
(i)

tjt
ji = 1; : : : ; Ng; (21)

respectively. It can be shown that these particles can
be generated recursively by the following algorithm:

1. For i = 1; : : : ; N generate nz-dimensional ran-

dom number z
(i)

0j0
� p(z0).

2. Repeat the following steps for t = 1; : : : ; T . For
(a){(d), repeat N times independently for i =
1; : : : ; N .

(a) Get I
(i)
t by I

(i)
t = h(I

(i)
t�1).

(b) Generate n"-dimensional system random num-

ber "
(i)
t � �("j�) and nv-dimensional sys-

tem random number v
(i)
t � q(vj�

(i)
t ).

(c) Compute z
(i)

tjt�1
= F

�(z
(i)

t�1jt�1
;u

(i)
t ), where

u
(i)
t = [v0(i)

t ; "
0(i)
t ]0.

(d) Compute ew(i)
t = r

I=It
(ytjzt = z

(i)

tjt�1
).

(e) Obtain Ztjt by the sampling with replace-
ment from Ztjt�1 with sampling probabili-

ties proportional to ew(1)
t ; � � � ; ew(N)

t .

This �ltering algorithm can be extended to the smooth-
ing by storing the past particles and resampling the

vector of particles (z0
(i)

tjt�1
; z

0(i)

t�1jt�1
; : : :, z0

(i)

t�Ljt�1
) rather

than the single particle z
(i)

tjt�1
.

Once the Monte Carlo smoothing is performed to
the evolutionary time series model, the log likelihood
in MCF, lMCF(�), is given by

log p(y1:T j�) =

TX
t=1

log p(ytjy1:t�1; �)

�=

TX
t=1

log

 
NX
i=1

ew(i)
t

!
� T logN

= l
MCF(�); (22)

where

p(ytjy1:t�1; �) =

Z
r
I=It

(ytjzt)p(ztjy1:t�1; �)dzt

�=
1

N

NX
i=1

ew(i)
t : (23)

The posterior distribution of the state vector xt is
de�ned by a marginal posterior distribution given by

p(xtjy1:T ) =

Z
p(ztjy1:T )d�tdIt: (24)

Based on p(ztjy1:T ), we can calculate the probabilities
Pr(Ikt = `jy1:T ), ` = 1; : : : ;mk which are estimated
from a marginal posterior distribution by:

cPr(Ikt = `jy1:T ) =

1

N
#fz

(i)

tj1:T
with I

k
t = `ji = 1; : : : ; Ng; (25)

where z
(i)

tj1:T
is a particle of which distribution approxi-

mates to p(ztjy1:T ). Actually, p(ztjy1:T ) is determined
by the �xed interval smoother explained in this section.

A successful usage of the parameter estimation pro-
cedure relies on how to set its initial distribution, p(�0).
Usually, it is recommended to adopt a uniform distri-
bution of which range covers a possible range of �. On
the contrary, the initial distribution of I0 does not af-
fect an estimation seriously, and then it is enough to
give an equal probability on all discrete values for any
k:

Pr(Ik0 = `) =
1

mk
: (26)

4.3 Grid search for an optimal � with

parallel computing

As mentioned in Section 2, a parameter vector to be
optimized is only � of which dimension is expected to
take less than 5. Many numerical experiences suggests
that � need not require a �ne tuning, because it pro-
duces insigni�cant change in a behavior of the esti-
mated �t in time domain. Hence we conduct a grid
search for an optimization of �. For example, when
� is a scaler variable, we choose an optimal � among
three candidates: � = 10�2, 10�3, and 10�4.
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and It is simulated as a 2-state Markov chain with
transition matrix � given by Eq.(6). The simulated
data yt is denoted by a thin line in Figure 1. The sim-
ulated �t, �

true
t , is shown by a thick line in this �gure.

The black portion of a bar exhibited in the bottom
corresponds to the points with I

1
t = 2; namely, �truet is

contaminated at these points with larger observation
noise. Figure 1(b) demonstrates the estimated trend
component, b�t. For this problem, we give the following

initial distribution: p(�0) = N(0; 0:01), p(log
10
Q

[1]
0 ) =

U([�3:5;�2:5]), p(log
10
Q

[2]
0 ) = U([�1:5;�0:5]),

p(log
10
R

[1]
0 ) = U([�2:5;�1:5)), and p(log

10
R

[2]
0 ) =

U((�1:5;�0:5]). We use N = 50; 000 particles for this
analysis. �

true
t is again superposed in this �gure by

a thick line. A bar exhibited in this �gure is iden-
tical to one in Figure 1(a). It is clearly shown thatb�t has a good agreement with �

true
t except for around

t = 50. To illustrate this good agreement, we calcu-
late Pr(I2t = 2jy1:T ). Figure 2 shows Pr(I2t = 2jy1:T )
against the simulated It (a black/white bar). It is seen
in this �gure that the data points with It = 2 is clearly
detected by an evolutionary time series model.
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Figure 3: (a) Simulated data (thin line) and estimated
trend component (thick line). (b) Ratio of the proba-
bilities of each model among three trend models.
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Figure 4: (a) Simulated data (thin line) and estimated
trend component (thick line). (b) Ratio of the proba-
bilities of each trend model.

5.2 Estimation of the trend component

with discontinuities in both its level

and slope

We consider the data of length T = 200 which is gen-
erated from the following model: yt = �

true
t + wt;

wt � N(0; 0:01), where �truet is a piece-wise liner func-
tion denoted by a thin line in Figure 3(a). There are
the discontinuities in its level at t = 101 and t = 181.
The intervals of t = 41 � 60, and 131 � 180 have a
�nite value of the slope. Except for these intervals,
�
true
t has a constant level. We apply the switching

trend model explained in Section 3.2 to this time se-
ries. N = 10; 000 particles are used for this problem.
The estimated trend component, b�t, is superposed on
this �gure by the thick line. Since we have a good
agreement between b�t and �

true
t , a discrepancy be-

tween them is invisible.
The satisfactory results that we have obtained are

most easily communicated graphically. Figure 3(b) il-
lustrates a ratio of each model among three models;
D1, D2, and C1 models. The two curves drawn are
de�ned by:

Upper line: cPr(I1t = 1jy1:T ) +cPr(I1t = 2jy1:T )

Lower line: cPr(I1t = 1jy1:T ):



Accordingly, a ratio of the length of three portions
(three arrows in Figure 3(b)) separated by these two
lines for each time represents to what extent each model
among three trend models is employed as a function of
time. As mentioned previously, only the C1 model can
account for an abrupt change in the level. Figure 3
clearly shows that this expectation is realized by the
evolutionary time series model. It is obvious that the
D2 model is appropriate when there is a �nite value of
the slope. Actually, for the intervals of the slope be-
ing a �nite, the D2 model has a majority among three
trend models. In short, the evolutionary time series
model can accommodate itself to the observations.

We apply the same evolutionary time series model
to other simulated time series with a di�erent obser-
vation noise sequences: wt � N(0; 0:25). A stan-
dard deviation of this noise process is 5 times larger
than that for the time series analyzed previously. Fig-
ure 4(a) demonstrates the simulated data yt and esti-
mated trend component that are obtained. The esti-
mated trend component is denoted by the thick line.
A presence of larger observation noise in comparison
with that in previous �gure produces larger discrep-
ancy of b�t from �

true
t . However, the time series model

can also detect a sharp drop in the level at t = 101 as
well as reasonable smoothing elsewhere. Figure 4(b)
demonstrates a ratio of each model. In contrast to Fig-
ure 3(b), the C1 model keeps to account for at least
one third of the probabilities throughout a time. A re-
placement of the trend model in response to �

true
t are

made slowly owing to larger observation noise.

6 Application to seasonal adjust-

ment of GDP data

For further illustration we analyze the Japanese Gross
Domestic Product (GDP) data from second quarter,
1955 to �rst quarter, 1995. The GDP data is a quar-
terly data. We apply the evolutionary time series model
explained in Section 3.3 to the logarithmically trans-
formed GDP data which is shown in Figure 5(a). The
reason of applying the log transformation is that a lin-
ear decomposition suits for the logarithmically trans-
formed GDP rather than the original one. Of course,
an alternative transformation through such as the Box-
Cox transformation is available (a square root trans-
formation is better), but a detailed investigation re-
garding to a way of transformation is not essential for
discussion.

N = 100; 000 particles are used for this problem.
The estimated trend component b�t is indicated by a
thick line. A thin line in Figure 5(b) shows the prob-

abilities cPr(I1t = 1jy1:T ) as a function of time. The
thick line connects the �rst di�erence of b�t normalized

by its maximum value:

��;t =
b�t+1 � b�t

max.fb�t+1 � b�tg : (29)

It is seen in Figure 5(b) that ��;t takes zero and smaller
values for the intervals of the probability being nearly
to one. This tendency is visually demonstrated by
making a scatter plot of cPr(I1t = 1) versus ��;t shown
in Figure 6. An extremely smaller percentage of the
D1 model for the initial several data points seen in
Figure 5(b) is owing to poor adjustments of the ini-
tial distribution for x0. Figure 7(a) shows the esti-
mated seasonal component, bst. Figure 7(b) connects
the probabilities of the Di� model being appropriate
as a function of time, cPr(I2t = 1jy1:T ).
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Figure 5: Analysis of the log GDP data (quarterly
data). (a) Given data and estimated trend compo-
nent, b�t (thick line). (b) The probabilities of the
D1 model being appropriate as a function of time,cPr(I1t = 1jy1:T ). A thin line connects the �rst dif-
ference of the estimated trend component normalized
by its maximum value.
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