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1 Introduction

1.1 Generalized state space model

The generalized state space model (GSSM) that we deal with in this study is
defined by a set of two equations

system model x; = f(xi-1,v4), and (1.1)

observation model ve ~ r( - X 00s), (1.2)

where x; is an n, X 1 vector of unobserved sate variables, and y; is an n,
dimensional vector observation. f: R™ xR"™ — R"* is a given function. {v:}
is an independent and identically distributed (i.i.d.) random process with
Vi ~ q(V|0sys). 1 is the conditional distribution of y; given x;. ¢(+|-) and r(-|-)
are, in general, non-Gaussian densities specified by the unknown parameter
vectors, Oy, and 0, respectively. In this study, we set 8 = [6/,,, 0., ]'. The
initial state xq is distributed according to the density po(x).

The GSSM includes the nonlinear non-Gaussian state space model (Kita-
gawa 1987, Kitagawa 1991, Tanizaki 1993, Gordon, Salmond and Smith 1993)

as a special case

system model x: = f(x¢eo1,Ve) (1.3)

observation model yi = h(x:e), (1.4

where {e;} is an i.i.d. random process that follows e; ~ r(e|@us). h :
R™ x R™ — R™ is a given function. The simplest version described by
the nonlinear non-Gaussian state space model is reduced to the well-known
state space model (Anderson and Moore 1979) given by:

system model x; = Fxi1+Gvy, vi~N(0,Q) (1.5)
observation model y: = Hx;+e, e~ N(,R) (1.6)

where F', GG, and H are n, X ng, n, X n,, and n, X n, matrices, respectively.
() and R are the variance covariance matrix of v and e, respectively.

The GSSM also includes a model which is frequently used for the analysis
of discrete valued time series (West, Harrison and Migon 1985, Kitagawa
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1987, Kitagawa 1991, Kitagawa and Gersch 1996, West and Harrison 1997,
Higuchi 1999):

system model X, = Fxi_14+Gvyy v~ N(0,Q) (1.7)
observation model yi ~ exp(ayy: —blay) + e(ys)), o = Hxy, (1.8)

where F, (G, and H are properly defined matrices, () is the variance covariance
matrix, and b(-) and ¢(-) are properly defined functions. This type of distri-
bution, called the exponential family of distributions, can cover a broad class
of distributions frequently used in statistical analysis, such as the Poisson
distribution and the binomial distribution. The model specified by (1.7) and
(1.8) is called the Dynamic Generalized Linear Model (DGLM) (West et al.
1985, West and Harrison 1997). For DGLM, several computationally efficient
and precise methods for state estimation were proposed. This type of model
has the favourable property that the filter distribution is unimodal and close
to symmetric and by utilizing these properties and by properly treating the
difference from the normal distribution, computationally efficient and precise
estimators have been proposed (West et al. 1985, Fahrmeir 1992, Schnatter
1986, Frithwirth-Schnatter 1994, Durbin and Koopman 1997).

1.2 Monte Carlo filter

The GSSM is very flexible and suitable for a wide variety of time series, and its
usefulness is revealed by the fact that it allows the use of recursive formulas for
estimating the state vector given observations (Kitagawa 1987). However we
have to solve computational problems due to the repeated necessary integra-
tions over a state space, which increases enormously with respect to the state
dimension n, (Carlin, Polson and Stoffer 1992, Fahrmeir 1992, Frihwirth-
Schnatter 1994, Schnatter 1986). A Monte Carlo method for filtering and
smoothing, called Monte Carlo Filter (MCF) has been proposed (Kitagawa
1996) to overcome this numerical problem. The “bootstrap filter” (Gordon
et al. 1993, Doucet, Barat and Duvaut 1995) is a similar algorithm.

To review MCF, suppose that p(x:|y1..—1) and p(x:|y1.) are approximated
by the N realizations,

X = {x(_li=1,....N} and (1.9)
Xpoo= {=li=1,... N} (1.10)

respectively. It can be shown that these particles can be generated recursively
by the following algorithm:

(1)

1. Fort=1,...,N generate n,-dimensional random number Xopo ™ Po(X).

2. Repeat the following steps for t = 1,... ,T. For (a), (b) and (c), repeat
N times independently for : = 1,... , N.
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(1)

Generate n,-dimensional system random number v;”’ ~ ¢(v|@ys).

Compute x!)_ = f(X(i) V,Ei)).

tlt—1 t—1]t—1°

~(1)

Compute wy; = r(yt|Xt = x§|2 1> Oobs)-

pling probabilities proportional to @il), e ,@iN).
A significant advantage of this Monte Carlo filter is that it can be applied to
almost any type of high dimensional nonlinear and non-Gaussian state space
models. This filtering algorithm can be extended to smoothing by storing

<0

the past particles and resample the vector of particles (x ® MASTRINTEED

Xife—17
XEZ_)th_L) rather than the single particle tht L
can be refferred to (Clapp and Godsill 1999).

Incidentally, in this Monte Carlo filter the likelihood is computed by

Other smoothing algorithms

p(yt|Y1:t—170) :/T(Yt|xt7eobs)p(xt|y1:t—17 dXt = Zwt . 111

Then the log likelihood in the MCF, [™°"(8), is given by

log p(y1.7|0) = Z log p(y¢|y1:t-1,0)

t=1
T N '

~ Y log (Z w,ﬁ”) — Tlog N = [M(0). (1.12)
=1 =1

The log-likelihood calculated by MCF, ™" suffers from an error inherent in
the Monte Carlo approximation, giving rise to difficulties in parameter esti-
mation which is usually accomplished via maximization of the log-likelihood.
This error problem somewhat reduces the applicability of MCF in practical
data analysis, and an alternative procedure for estimating a parameter vector
is now required unless a vary large number of particles are used or an average
of the approximated log-likelihoods is computed by the massive parallel use
of many Monte Carlo filters.

The organization of this paper is as follows. In Section 2, we explain two
types of self-organizing time series model which can diminish the difficulties
associated with parameter estimation. One is a Genetic algorithm filter which
is based on a strong parallelism of the Monte Carlo filter to a Genetic algo-
rithm (GA). The other one is a self-organizing state space model that is an
extension of the GSSM. In Section 3, we discuss a resampling procedure which
plays an important role in the filtering of the MCF. It is shown in Section 2
that the resampling is identical to the selection procedure in GA that has a
variety of methods to implement it on a computer. The typical three selection
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methods are realized in the filtering of the MCF, and then each performance
is discussed by applying them to a smoothing problem of a time series. In Sec-
tion 4, we demonstrate an example of applying the self-organizing state space
model. In this study, we focus on estimation of a time-dependent frequency
which changes rapidly over a relatively short interval. In particular, we deal
with an analysis of the small count time series for which a time-dependent
mean exhibits a wavy behaviour whose frequency evolves in time. For this
case, conventional methods of identifying a time-varying frequency are inca-
pable of estimating it precisely. A benefit of considering the self-organizing
state space model for this problem is illustrated by applying it to actual data.
Finally, we conclude in Section 5.

2 Self-organizing time series model

2.1 Genetic algorithm filter
2.1.1 Parallelism to genetic algorithm

The Genetic Algorithm (GA) is the adaptive search procedure inspired by
evolution and one of the most popular amongst the population-based op-
timization techniques (Holland 1975, Goldberg 1989, Davis 1991, Whitley
1994). GA is characterized by keeping the N candidates for optimal solution
at each iteration composed of three steps: crossover, mutation, and selection
(or reproduction). Each candidate at the ¢—th iteration is called a string at
t—th generation. It has been pointed out that there exists a close relationship
between MCF and GA and that an essential structure involved in MCF is
quite similar to that in GA (Higuchi 1997). The correspondence between
MCF’s and GA’s terminology is summarized in Table 1. Here we give a brief
explanation of the strong parallelism of MCF to GA.

EQ—1 and XE? identified as particles in the MCF are considered as the
strings in GA. The filtering procedure of MCF exactly corresponds to the
selection of GA by regarding r(+|0.55)/N as the evaluation function in GA.

Accordingly in the GA, the importance weight wiz) = r(yt|xgl?_1, 0.15)/ Eﬁ\le

r(yt|X£|]2_1,0055) can be called the fitness of the string XEQ_I. It should be
noticed that whereas r(yt|xil?_1, 0.:5)/N is obviously dependent on time due
to the presence of data y;, the evaluation function in GA without any modi-
fication such as a scaling (stretching) (e.g., (Goldberg 1989)) is independent
(%) (%)

t=1]i-1 tt—1

(1)

X

are regarded as the parent and offspring, respectively,

because Xt2—1|t—1 EQ—1 which undergoes selection. The maximum like-
lihood principle is interpreted as a rule to choose the model that maximizes

the family fitness under a circumstance of given data y;.r.

of t. x and x

creates x

The crossover and mutation in GA may be interpreted from the Bayesian
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Monte Carlo Filter (MCF) <= Genetic Algorithm (GA)

t: time —  generation
XE‘Q—l and Xifz particle —  string
f(,vi=0) —  genetic drift
system noise =~ —  crossover, mutation
filtering —  selection
r(yi|Xs,005)/N —  evaluation function
wii) —  fitness
p(yily1:-1,8) —  population fitness
p(y1.r|@) —  family fitness
y¢: observation —  environment
yi.7: data  —  history of environment

Table 1. Analogy between the MCF and the GA

point of view. In particular, a fluctuation caused by a mutation is exactly
regarded as the system noise which stems from a non—Gaussian probability
density function. When we represent a model using a binary code and use the
canonical GA, a closed form of this density function can be obtained easily.
In the MCF there exists an apparent movement of the population at each
step which results from the systematic behaviour of the particle driven by a
nonlinear function f with v; = 0 in the system model. The GA penalises
any such drift in model space that is independent of any performance of
optimization, called genetic drift.

2.1.2 GA filter

Based on the close relationship between MCF and GA, a new algorithm, in
which prediction step in MCF is replaced by the mutation and crossover oper-
ators in GA, has been proposed to avoid an estimation of 8, involved in the
system model via maximization of [M°"(@). While within MCF a stochastic
behaviour of particles is determined by an outer force independent of particle,
the crossover yields strong interactions between particles and a description
of the resulting stochastic behaviour cannot take a simple form as in MCF.
Namely, there may occur a gradual change in inertial force driving the popu-
lation through the crossover. This means that the time series model involving
the genetic operators is no longer the same model as one expressed in terms of
GSSM. We therefore call the GSSM involving these genetic operators GA fil-

ter. Examples of applications of the GA filter including a seasonal adjustment
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can be found (Higuchi 1997).

2.2 Self-organizing state space model

As explained in Section 1.2, the parameter estimation of @ via maximization
of the likelihood happens to be made impractical by the sampling error of
[M°F(0). To mitigate such difficulty, a self-organizing state space model has
been proposed (Kitagawa 1998). The general form of the self-organizing state
space model is obtained by augmenting the state vector x; with the parameter
vector 8 as z; = [x},0)]. The state space model for this augmented state
vector z; is given by

system model z: = F*(zi-1,ve)

observation model ye ~ r(-|z),

where the nonlinear function ™ is defined by

F(z,v) = [ Jx,v) ] . (2.3)

0

f and r are given in (1.1) and (1.2), respectively. Another approach to deal
with such a problem of learning about time-varying state vectors and fixed
model parameters is discussed (Liu and West 2000).

Here we consider Bayesian estimation of € instead of using the maximum
likelihood method. Once Monte Carlo smoothing is performed for this self-
organizing state space model, the posterior distribution of 6, p(8|yi.r), is
simply approximated by p(@lyi.r) = [ p(zr|yir)dxr. Similarly, the pos-
terior distribution of the state vector x; is defined by a marginal posterior
distribution given by p(x:|y1.7) = [ p(z:|y1.7)d6;.

When we need to define an optimal 8, several methods are available based
on p(@|y1.7). In this study, the optimal @ is determined by calculating a me-
dian of the marginal distribution of p(@|y.7) for each variable. A successful
usage of this parameter estimation procedure relies on how to set its initial
distribution, po(@). Usually, it is recommended to adopt a uniform distribu-
tion over a range which covers the possible values of an optimal 8. For the
cases with available prior information, the distribution can be tailored to each
application.

For the model with time-varying parameter, 8 = 6;, a model for time-
changes of the parameter 6, is necessary. For example, we may use the random

walk model 8, = 0,_; + &;, where €; is a white noise with density function
o(e|€). For this case, the nonlinear function F* is defined by

f(Xt—h Vt)

, 2.4
01+ & (24)

F*(z4_1,u4) = [
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where the system noise is defined by u, = [v},&}]’. Therefore, there is no

formal difference between the generalized state space model and the self-

organizing state space model. The essential difference is that the self-organizing
state space model contains the parameter in the state vector. In the self-

organizing state space models, the parameter vector, 8, is automatically

determined as the estimate of the state vector. The parameter to be esti-

mated by the maximum likelihood method, &, is anticipated to be a one or

two dimensional vector.

3 Resampling scheme of the filtering

3.1 Selection scheme

As mentioned above, the resampling form appearing in the filtering of the
MCF is identical to one in the selection procedure of the GA. Consequently
we can choose the resampling scheme best suited for estimating the log—
likelihood, from the several different ways to do selection (Goldberg 1989,
Whitley 1994). Here we compare three typical selection methods among
selection alternatives classified by Brindle (Brindle 1981):

1. Stochastic sampling with replacement (Roulette wheel selection)
2. Remainder stochastic sampling with replacement

3. Deterministic sampling

To explain them, we imagine a roulette wheel where each particle XE‘Q—l is
represented by a space that proportionally corresponds to wiz). The stochas-
tic sampling is very simple such that we choose N particles by repeatedly
spinning this roulette wheel. The remainder stochastic sampling begins with
calculating the integer and fractional portions of wa), kii) and fii), respec-
tively. We denote the sum of kii) by Nip: = Efvzl k;i). Secondly, we get kii)
copies of XE‘Q—l for each particle. Finally, we choose the Ny,,. = N — N;,; par-
ticles by repeatedly spinning the “remainder” roulette wheel where each par-
ticle has a space in proportion to ffl). This sampling method can be realized
in an efficient way by adopting the resampling method known as stochastic
universal sampling (Baker 1987). Deterministic sampling does not employ

this roulette wheel but instead chooses the Ny,,. particles in a deterministic

way such that we order f,fz) and take the Ny, largest particles.

3.2 Comparison of performance: Simulation study

We discuss three resampling methods by considering a problem of smoothing a
time series. Figure 1(a) shows the artificially generated data which is obtained
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Figure 1. (a) Data and smoothed data by KFS. (b) log likelihood
P(yelyri-1)-

by adding i.i.d. Gaussian white noise with a variance of 0.1 to the step
function with a jump of 1 at ¢ = 51, where T" = 100. To smooth the given
data, we consider the simplest model defined by

system model p; = i1 vy, vy~ N(0,7%) (3.1)

observation model vy, = + ey e, ~ N(0,0%)

where p; is a trend component at time ¢, thereby setting the 1-dimensional
state vector x; = [u], and vy is the 1- dimensional white noise sequences.
For this case, the Kalman filter yields a “true” value of the likelihood. The
true value of the log-likelihood based on the Kalman filter is specified by (™€
henceforth in which we omit @ for simplicity. In this case, the maximum like-
lihood estimate 8* = [¢**, 72*]' can be easily obtained, because the likelihood
function has a very simple form as a function of A? = 72/0?, the ratio of the
variance of the system noise to that of the observation noise. The solid curve

is obtained by applying the fixed interval smoother with A\2* = 0.25.

Figure 1(b) shows the log-likelihood of y; for the model with A\*™, log p(y+|
Yii-1,0%), which is denoted by ™€, Tt is seen that [!"™¢ takes a minimum
value at ¢ = 51, indicated by the arrow, where there is a discontinuous change
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’

in the given trend. An approximation by MCF to [{™¢ is denoted by [,
where [j] indicates the jth trial.

(a) DeterministicC) (b) Roulette WheelO (c) Stochastic Universal(
| bt ‘:p: L)

0.40
0.40
0.40

0.20
0.20
0.20

diff p(y_51]y_1:50)0]

-0.20 0.00
diff p(y_51|y_1:50)0

-0.20 0.00
diff p(y_51]y_1:50)01
0.20 0.00

-0.40
-0.40
-0.40 -0..

-20 -10 oo 10 20 -20 -10 oo 10 20 -20 -10 oo 10 20
diff I(Y_100)C] diff I(Y_100)0) diff I(Y_100)0J

Figure 2. Plots of N, = 5,000 trials of A/l versus Algﬂ for
(a) deterministic, (b) roulette wheel, and (c) stochastic universal
sampling methods.

We concentrate on the discrepancy of Prenll from (e AL as well as
Algl] = ZEAICF’[]] — [t The reason why we pay special attention to Algl] is that
(1)

4 51[50 4
of ZEAICF’[]] to [f"¢. Figure 2(a) shows a distribution of (Al[j],Algl]) for a case
where the deterministic sampling is adopted to implement the resampling

in the filtering procedure of MCF. The number of trials is N, = 5,000 and
the particle number is fixed N = 1,000 for each trial. The vertical and

horizontal lines indicate the mean values of A/l and Alg}, ALl and Alg},

respectively. We call Al the bias. An apparent positive correlation seen

a sparse distribution of x around ys; could result in poor approximation

in this figure (correlation coefficient p = 0.737) supports our conjecture that
the poor approximation of the MCF to "¢ is significant in controlling AV,
The straight line obtained by the least squares fit to these plots has a slope of
0.265. ;From the positive value of slope smaller than 1, it suggests that there
remains a systematic error in approximation of [;i°F for 51 < #'. Namely X550

with negative Algﬂ may lead X551 to give negative Alg through Xsqs5;.
Figures 2(b) and (c¢) demonstrate a distribution of (Al[j],AlgE) for the

roulette wheel selection and for the stochastic universal sampling, respec-
tively. As in Figure 2(a), we can see the same tendency that AUl depends

mainly on Algl]. Whereas the sign of the bias is common to three cases
(ALl <0), its magnitude for the deterministic sampling is apparently larger

than others. It is clearly seen that plots of (Al Algﬂ) for the roulette wheel
selection show a broader distribution compared with plots for the stochastic
universal sampling. Table 2 summarizes the bias, standard deviation of A1,
correlation coefficient, and slope of the line using a least squares fit, for each
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resampling scheme. Based on these statistics, we suggest that the stochas-
tic universal sampling is the most suitable for the resampling in the filtering

procedure of the MCF.

Sampling Scheme Al s.d. of Al p slope
Deterministic -0.344 0.392 0.737  0.265
Roulette wheel -0.127 0.496 0.723  0.234
stochastic universal -0.095 0.455 0.776  0.249

Table 2. Comparison of selection schemes: N, = 5,000 trials

A reduction of standard deviation can be achieved by using the resampling
suitable for the filtering, but Figure 2 demonstrates that there still remains
a larger variance unfavourable for choosing an optimal parameter value. Of
course, we can make a drastic reduction of variance by increasing the particle
number N as much as the computer memory space permits. Even an increase
in N only for the predictive distribution p(x:|y1.—1) would lead to a significant
reduction of variance (Gordon et al. 1993). There are interesting resampling
schemes designed to reduce a variance (Crisan, Moral and Lyons 1999, Crisan

and Grunwald 1999).

4 Application

4.1 Time-varying frequency wave in small count data

In this article we are concerned with an analysis of the nearly cyclic (wave—
like) signal which can be characterized by repeating a similar pattern suc-
cessively with a gradual change in its wave form in the time domain. Most
of the attention in actual data analysis is usually paid to an estimation of a
time—dependence of its frequency (or equivalently, wavelength) and /or ampli-
tude among quantities specifying its time—dependent structure. In particular,
when the wave-like signal seems to consist of a sinusoid corrupted by obser-
vation noise, a good estimation of time-dependence of frequency may lead
to further insights into a system which generates the cyclic behaviour. For
example, such kind of a task to investigate the time-varying structure of a
power spectrum with a few peaks plays an important role in a destructive test
of the wing of the airplane in the laboratory, because an eigen oscillation of
the wing shows a different behaviour as the wind velocity increases towards
making a wing destructive (Ikoma 1996). In this study we deal with such
kind of a monotonic sinusoidal wave whose frequency changes as time goes.

In general, an attempt to estimate the time-varying frequency of the time-
varying frequency wave is achieved by searching a significant peak over an
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instantaneous power spectra (IPS) of which the concept can be realized in
different ways. One of the useful methods for calculating IPS is to fit the time-
varying coefficient AR model (TVCAR) to data, giving IPS that is based on
the relationship between a stationary AR process and the theoretical spec-
trum of the process (Kitagawa and Gersch 1985, Gersch and Kitagawa 1988).
One of the motivations to develop a method for an analysis of the time-varying
frequency wave is that when an identification of the time-varying frequency
wave is difficult due to significant observation noise, TVCAR is likely to pro-
vide no peak in IPS. This occurs even in a case where a signature of the
time-varying frequency wave can be obviously detected by visual inspection
of plots of data. Another motivation comes from a demand such that we
treat the time—varying frequency as the state variable (Ikoma 1996), because
a linear increase or decrease in the time—varying frequency is very frequently
discussed in data analysis and theory.

Our attention here is focused on the time series involving small counts
which are frequently obtained in many fields such as the biomedical statistics
(for example, monthly numbers of Polio incidences (Zeger 1988)) and astro-
physics. Recent progress in instruments for measuring faint light from star
brightness such as CCD camera has led to a drastic change in the obtained
data form from light intensity, which is usually allowed to take a continuous
value, to a photon count number. When we want to investigate a behaviour
of targets with a small time scale, the sampling time within which photons
arriving at the instrument are counted is shortened and results in giving us
the small count data time series. Thus it is important to model a small count
data in astrophysics.

The reason why we deal with small count data in terms of a statistical
view point is that the time series involving relatively larger counts can be
well analyzed by means of a time series model without regarding the fact that
an observed data follows a discrete distribution, and does not require more
sophisticated models in practice. Actually recent Bayesian approaches for a
time series model have paid considerable interest to an analysis of small count
data as an example to illustrate their applications (West et al. 1985, Fahrmeir
1992, Fruhwirth-Schnatter 1994, Chan and Ledolter 1995, Kashiwagi and
Yanagimoto 1992, Higuchi 1999). A practical example of the applications
of the Monte Calro filter to various non-linear problems have been found in

(Carpenter, Clifford and Fearnhead 1999).

4.2 Self-organizing state space model for time-varying
frequency wave

We assume that the observation is generated from a Poisson distribution
with time-varying mean A;: y; ~ Poisson(A;). log A; is in this study decom-
posed into two factors: a trend component p;, and time—varying frequency
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wave component s;, log Ay = p; + s;. In other words, we deal with the non—
stationary Poisson model in which the time—varying mean is expressed as the
multiplicative form given by Ay = exp(p) exp(s;).

We assume that p; follows a first order trend model given by p; = pri—1 +
Ve s Ve ~ C(0,77), where C'(0,77) represents the Cauchy distribution con-
centrated around 0 with dispersion parameter 7'3. As mentioned above, we
want to estimate the time—varying frequency. Accordingly we denote the
time-varying frequency at time ¢ by f; and treat it as the state variable. The
time—varying frequency wave component, s;, with a time-varying frequency
fi, 1s described by the second order difference equation

st = 2c0s (27 f;) S$1—1 — S4—2. (4.1)

Since f; is allowed to take a value between 0 to 1/2, a nonlinear transforma-
tion based on a sigmoid function, f; = 0.5/(1 +exp(—/3;)) (—o0 < B < +00),
is performed and (3; is used as a state variable instead of f;. We assume that
B follows a first order trend model given by 3 = Bi_1 +vig, v ~ N(0,75).
The parameter vector, [log,77,log, 7'52]’, is also included in the state vector
to optimize it by means of the self-organizing state space model. Then these
models can be represented by the state space model form:

system model

by i1+ v,
S¢ 2 cos <m> St—1 — St—2
X, = St—1 _ St—1 7 (4.2)
Bt Bi—1 + v p
log, th,u log, Tt2—1,u
| log,g th,ﬁ i i log, g Tt2—1,ﬁ i

Where Utyﬂ« ~ 0(07 Tt%u) and Ut,ﬁ ~ ]\/Y(O7 th,ﬁ)'

4.3 Result

To demonstrate the applicability of our method to the small count time-
varying frequency wave data, a simple test is performed on a simulated data
set. f; is beforehand given to show a linear increase and decrease during a rel-
atively short interval. A dotted line in Figure 3(b) indicates this dependency
of given f; on time. The next step to generate simulated data is to define an
amplitude and phase in s;. A phase is determined by integrating given f;. The
time-varying amplitude is taken to present a gradual increase and decrease
as indicated by the the dotted line in Figure 3(a). The given fixed value of
pe (exp(pe) = 20) together with given s; produces Ay by Ay = exp(u: + s¢).
Finally y; is obtained by drawing a random number from Poisson(A;). The
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total data number is T' = 100. The solid straight line in Figure 3(a) shows
simulated data obtained by the aforementioned procedure.

To illustrate good performance of our model in terms of an accuracy of
estimation of the time-varying frequency, the TVCAR procedure is first of
all applied to attempt to get a spectral peak frequency within a frequency
range of f =0 ~ 0.2 from IPS. The TVCAR with varying Mg in a range
of Mar = 2,4,...,10 for Nys = 1,2,5,10,20 is applied in this study, where
Magr and N, are the numbers of the AR coeflicients and of successive data
points for which the time-varying AR coefficients are set to be constant (for
detail, see (Kitagawa and Gersch 1985, Gersch and Kitagawa 1988)). In fact,
any combination of (Nys, Mar) fails to define any peak frequency due to
absence of peak in IPS.

Figure 3. Simulation results. (a) Given data and estimated
At = exp(ps + s¢). The thick line shows the estimated exp(ji).
(b) Estimated f; and its confidence interval +o.

We apply the self-organizing state space model explained in Section 4.2
to this data set. For the initial state xq, it is assumed, for example, that
po ~ N(2.56,1), sy ~ N(0,0.5), so ~ (0,0.5), By ~ U([—2.60,—0.81]),
logio 75, = U([=7,—4]), logio 755 = U([-3,0]), where U([ , ]) denotes the

uniform distribution. The initial range of 3y corresponds to the range of
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fo between 0.0346 and 0.154, which is inferred from a visual inspection of
the given data. The self-organizing state space model estimates the val-
ues of log,, 77 , and log,, 77 5: log,( 77, = —5.36(—5.99, —4.48), log,, 77 5 =
—1.83(—2.14, —1.48). The two values in the parentheses indicate the confi-
dence interval +o.

The obtained optimal values for ?i and ?52 allow us to conduct the MCF
for the generalized state space model which is simply defined by setting Ti =
10753 and 7'52 = 107"% and taking x; = [y, 8¢, 8t_1, B¢)" as the state vector.
The marginal posterior distribution of fi, p(fi|y1.7), is determined through
p(x¢|y1.7), and its median is shown by a thick line in Figure 3(b) as well as its
confidence interval +o (two thin lines). Of course, the self-organizing state
space model can produce the posterior distribution of f;, p(fi|y1.r), which
can be obtained from the marginal posterior distribution of 3;, p(B:|y1.7),
but we are interested in examining how much of a difference arises between
the two estimates. In fact, the estimate obtained by the generalized state
space model is only shown in this study, because the difference between the
two estimates is invisible.

The estimated A\; = exp(p: + s¢) and exp(yu;) are in Figure 3(a) denoted by
the thin and thick lines, respectively. While a good agreement of the estimate
with the given true curve of A; can be seen for the interval between ¢ = 20 and
80, a significant discrepancy is found for the outside intervals where the given
amplitude is smaller than that for the middle interval. A poor agreement of
the estimated A; to the given one for those intervals turns out to be made
apparent by a comparison of the estimated f; to the given one (dotted straight
line) in Figure 3(b). Such poor performance is explained by two reasons. One
is due to the fact that the given amplitude for those intervals is smaller than
that for the middle interval. The other one is inherent in the system model
(4.1) which becomes close to the second order trend model as f; decreases.
Therefore, an estimation of the time-varying frequency is intrinsically difficult
by means of the system model (4.1) for a case with cos(27 f;) ~ 1.

Here we show one example of an application of the above mentioned proce-
dure to an actual data set. The data set which will be used for an illustration
of our method is the signature of the spiral density waves obtained by the Voy-
ager photopolarimeter (PPS) during a stellar occultation of Saturn’s rings.
The original Voyager PPS data is also a small count time series. The discus-
sion of instruments and operation of Voyager PPS data can be seen in (Horn,
Showalter and Russell 1996). In fact, we use the simulated data, shown in
Figure 4(a), which is generated to resemble the typical density wave, named
Prometheus 7:6. The reason why we have not used the original data is that
the data set we have at hand has already undergone the detrending procedure,
and then is no longer a count data. The simulated data is obtained by taking
an average over every three points of the original data and quantizing it in
an attempt to generate a count data. The behaviour displayed in this figure
is one of the strongest density waves and the signature of the time-varying
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Figure 4. Analysis of the Voyager PPS data. (a) Given data and
estimated A, = exp(u; + s¢). The thick line shows the estimated
exp(e). (b) Estimated f; and its confidence interval +£o. The
dotted line indicates the given f;.

frequency wave is clearly visible in the data. Voyager data has revealed a
wide variety of ring structure of Saturn; waves and wakes. Understanding of
this structure plays an important role in studying a generation of planetary
ring structure. A detail explanation of the spiral density waves is referred to

e.g., (Horn et al. 1996).

It has been reported that a theory of the spiral density wave suggests a
linear increase in f; (Horn et al. 1996). We apply the self-organizing state
space model as used in the simulated data set. The solid and thick lines in
Figure 4(a) indicate the estimated A; and exp(u.), respectively, which are
based on the marginal posterior distribution p(x:|y1.7). Figure 4(b) shows an
estimated f; and its confidence interval 0. The tendency of a linear increase
in f;, which is expected from a theoretical model based approach, is clearly

identified.
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5 Conclusions

In this study, we introduced two types of self-organizing time series models:
the Genetic algorithm filter and the self-organizing state space model. The
former has been developed on a basis of the strong parallelism between the Ge-
netic algorithm and the MCF. The latter is an extension of the GSSM which
is formed by augmenting the state vector with a parameter vector. Both
methods mitigate the difficulty of parameter estimation via maximization of
the likelihood associated with the sampling error. Namely, the self-organizing
time series model makes a model selection procedure practical and facilitates
the automatic processing of time series data. Obviously, the required amount
of computation to realize the self-organizing time series model increases con-
siderably. However, by considering the rapid progress of the computing ability
and the laborious human intervention becoming unnecessary by the develop-
ment of automatic procedure, it clearly reveals the direction of the future
development of time series modeling.
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