
Adjustment of Sampling Locations in Rail-Geometry Datasets:
Using Dynamic Programming and Nonlinear Filtering

Masako Kamiyama1,2 and Tomoyuki Higuchi3

1Track Technology Division, Railway Technical Research Institute, Kokubunji, 185-8540 Japan

2Department of Statistical Science, The Graduate University for Advanced Studies (Sokendai), Tokyo, 105-8569 Japan

3Department of Statistical Modeling, The Institute of Statistical Mathematics, Research Organization of 
Information and Systems, Tokyo, 106-8569 Japan

SUMMARY

A track inspection car, which measures the shape of
railway tracks (hereafter, rail geometry) while it is running
on rails, discretizes the measurement results at nearly fixed
spatial intervals. However, the distance between the discret-
ized locations (spatial sampling intervals) may shorten or
lengthen locally due to slipping or sliding of the car wheel,
and this prevents the sampling locations from aligning with
those of a dataset obtained with another measuring run. The
authors developed an algorithm for approximately aligning
the sampling locations of the measurement datasets ob-
tained with different runs. First, they considered this prob-
lem as the selection of the series of data corresponding to
each supervised data from a training dataset, which was
constructed by interpolation in order to minimize the evalu-
ation function of a number sequence representing data
points. Next, they used the maximum likelihood method to
identify the unknown parameters contained in the evalu-
ation function. This problem uses two features of the evalu-
ation function. The first is that the evaluation function is
minimized by dynamic programming, and the obtained
optimum sequence is equivalent to a maximum a posteriori
(MAP) estimate in the Bayesian framework. The second is
that by converting the evaluation function to a general state
space representation, the log likelihood of the model that
includes the parameters is obtained by a nonlinear filtering

method. Also, to simplify the search for the identification,
they devised a parameter search procedure for the parame-
ters in the autoregressive (AR) model.  © 2005 Wiley Peri-
odicals, Inc. Syst Comp Jpn, 37(1): 61–70, 2006; Published
online in Wiley InterScience (www.interscience.
wiley.com). DOI 10.1002/scj.20313

Key words: dynamic programming; state space
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1. Introduction

The special train called a track inspection car meas-
ures the shape of railway tracks (rail geometry) regularly
since this geometry varies slightly under the load of daily
passing trains. The measurement results are discretized at
equidistant intervals and stored for processing by comput-
ers. To obtain temporal variations of the rail geometry, the
measurement results ideally should always be discretized
at the same locations on the track. However, since the pulse
signals for specifying the sampling locations are linked
with the rotation of the wheel of the track inspection car as
shown in Fig. 1, the pulse generation locations cannot be
reproduced. Therefore, the sampling locations on the track
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vary for each measuring run. To align two sets of sampling
locations obtained with difference runs, we must estimate
the location gaps from the discretized datasets, but this is
difficult. If the spatial sampling intervals between all of the
data were uniform, these gaps between two sets of the
sampling locations could be easily estimated by calculating
the cross correlation coefficient. However, because the sam-
pling intervals locally shorten or lengthen as shown in Fig.
2 due to the slipping or sliding of the car wheel, this method
cannot be applied. (In Fig. 2, the measurement results are
discretized once per rotation of the wheel to simplify the
explanation.)

Figure 3 shows an example of the measurement re-
sults. The datasets (A) and (B) for the upper two graphs
show the values of the track gauge (spacing between the left
and right rails) for the same railway section measured 1 day

and 8 days later (0 means that the gauge is equal to the
reference value). Both datasets were discretized at equal
intervals (approximately 30 cm; 8 measurements per wheel
rotation). In addition, for both (A) and (B), the location
where the first data was obtained is somewhere within one
sampling interval in the car movement direction of a certain
device that is fixed at a specific location on the track.
Similarly, the data for the 3201st point of (A) and 3197th
point of (B) were also measured within one sampling
interval in the car movement direction from another loca-
tion detection device.

It is known empirically that the gauge hardly varies
over an 8-day period or so, and the waveforms for (A) and
(B), which are shown in the first and second graphs from
the top of Fig. 3, are actually similar. Also, the datasets
close to the 1st data in (A) and (B) are obtained at similar
locations. This is apparent from the difference between
the two waveforms, which is shown in the third graph
from the top of Fig. 3. Similarly, the fourth graph from
the top of Fig. 3 shows that the datasets close to the end data
in (A) and (B) are also obtained at similar locations. In other
words, despite the fact that (A) and (B) are measurement
values of the gauge for the same railway section, the number
of data points constituting (B) is smaller than the number
constituting (A) by 4 points (corresponding to approxi-
mately 1 m). This is because the sampling interval short-
ened or lengthened locally due to slipping or sliding of the
car wheel during one or the other measuring runs.

Fig. 1. Scheme for spatial discretization of measured
railway track geometry according to wheel rotation

pulses.

Fig. 2. Scheme for variations in spatial sampling
intervals accompanying wheel rotation states.

Fig. 3. Example of datasets obtained from two
measurements for the same railway section and results of

adjusting sampling locations.
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We developed an algorithm that uses dynamic pro-
gramming (DP [1]) and nonlinear filtering for a general
state space representation to approximately align the sam-
pling locations for datasets of this kind. The fifth graph in
Fig. 3 shows the results when the sampling locations for
dataset (B) were aligned with those of dataset (A) by using
the proposed algorithm. This paper describes the location
adjustment algorithm in Sections 2 and 3, presents a discus-
sion in Section 4, and presents conclusions in Section 5.

2. Adjustment of Sampling Locations by
Using Dynamic Programming and

Nonlinear Filtering

An overview of the adjustment algorithm that we
developed is presented below:

(1) Model a mechanism to be empirically considered
to yield the nonuniform sampling.

(2) Formulate this model in a nonlinear optimization
problem that can be solved by dynamic programming.
However, since this form contains unknown parameters, the
solution cannot be uniquely obtained.

(3) Represent the above nonlinear form with a general
state space representation and identify the included un-
known parameters through a nonlinear filtering algorithm
based on the maximum likelihood method.

(4) Substitute the estimated parameters to solve the
optimization problem of step (2).

(End)
These steps are explained in detail below.

2.1. Modeling the problem

We decided to consider this location adjustment prob-
lem as a problem for selecting the most suitable data points
corresponding to individual supervised data {Y1, Y2, . . . ,
YT−1, YT} (where T is the number of the supervised data)
from the training dataset that was interpolated so that the
number of points was a multiple of α as shown in Fig. 4.
Since the gauge dataset is smoothed by an analog low-pass
filter before the spatial discretization, the original training
dataset is discretized so that the original spatial frequency
component does not change. The spatial frequency charac-
teristic of this filter varies with time, since this characteristic
changes with the speed of the inspection car. The interpo-
lated dataset hereafter is called the “training dataset {X1, X2,
. . . , XN−1, XN}.” Note that N (≈ αT) is the number of training
data after interpolation.

To distinguish between the dataset as a set and the
individual data, we hereafter denote {Y1, Y2, . . . , YT−1, YT}
collectively as Y1:T. The other variables are denoted in a
similar manner.

Let nt
g be a data point index of the training set selected

to match the t-th supervised data Yt; the value of the corre-
sponding data is Xnt

g. This problem becomes a problem of
finding the optimal number sequence (this is denoted as
n1:T) from among the feasible number sequences n1:T

g . Also,
let Yt − Xnt

 be denoted by et (et ~ N(0, τ2)).
Next, we discuss the characteristics of n1:T. Although

the accurate distribution of the sampling interval is un-
known, the running distance due to slipping or sliding is
empirically determined to be approximately 0.1% of the
total distance or less. Therefore, we assume that
∆nt =

def
 nt − nt−1 of n1:T, which corresponds to the sampling

interval, is α for almost every t. Also, for the range of values
of ∆nt, this article employs 1 ≤ ∆nt ≤ 2α − 1. This is based
on the empirical knowledge that was obtained from conven-
tional running experiments. Add to this assumption, we
decide that the probability distribution of ∆nt would be
constant for all values other than α.

We also assume that the second-order difference
∆2nt =

def
 nt − 2nt−1 + nt−2 of n1:T is 0 for almost every t. This is

because ∆2nt = 0 is naturally zero when the wheel rotates
regularly; ∆nt = ∆nt−1 = α. Similarly, even when the wheel
slips or slides, the wheel in the course of slipping or sliding
seems to continue rotating at the same rate (∆2nt = 0), or to
recover normal rotation (∆nt = α).

2.2. Adjusting the location by using dynamic
programming

From the discussion above, we model the charac-
teristics of the number sequence n1:T indicating the optimal
sequence of the data points as follows:

• ∆nt =
def

 nt − nt−1 is α for almost every t.
• ∆2nt =

def
 nt − 2nt−1 + nt−2 is 0 for almost every t.

Fig. 4. Scheme for the basic idea for adjusting the
discretized location gaps.
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• et ~ N(0, τ2) (where et = Yt − Xnt
).

At this time, n1:T is obtained by optimizing the fol-
lowing evaluation function ∑ F(nt

g
 ):

where

The factors µ1 ≥ 0 and µ2 ≥ 0 are penalties that are added to
the evaluation function when ∆nt

g ≠ α and ∆2nt
g ≠ 0 respec-

tively.
In addition, as mentioned above, the data points at

both ends of the supervised and training datasets are always
measured within a fixed distance from specific locations on
the track. Therefore, the boundary conditions for  n1:T are as
follows:

Assume that both the penalties n1 and nT have uniform
distributions.

For obtaining the n1:T that satisfies the conditions
shown in (1) to (4), “dynamic programming” (DP) can be
applied [1], since this optimization problem observes the
principle of optimality. Substitute xt

g =
def

 [nt
gnt−1

g ]T (where T
represents transpose) in Eq. (1) and let

then g(xt
g) =def

 Σj=1
t F(nj

g) can be replaced by the following
recursive formulation:

(1) Calculate g(xt
g
 ) = min[g(xt−1

g ) + f (xt
g, xt−1

g ) | xt−1
g  ∈

St−1] for each element xt
g  ∈ St (where min[⋅] represents the

minimum value of the elements within [⋅]).
(2) Increment t by 1 and return to step (1).

where St =
def

 [St St−1]
T. When g(xt

g
 ) is regarded as a state that

transitions as t increases, the value of g(xt
g
 ) depends only

on g(xt−1
g ), xt

g , and xt−1
g alone.

(End)
Since n1:T varies with the values of parameters µ1 and

µ2, we should carefully determine the parameter values.

2.3. Dynamic programming and MAP
estimation in the Bayesian framework

To determine the values of µ1 and µ2, n1:T, which was
obtained in the previous section, should be interpreted
statistically. Assume that et = Yt − Xnt

 is a normal random
variable with a zero mean and a standard deviation τ. By
multiplying (1) by –1/(2τ2) and exponentiating it, we
obtain

The former term of the right side (first { }) can be
interpreted as a certain multiple of the conditional den-
sity p(Y1:T | n1:T

g ) of the supervised dataset Y1:T assuming
normality when all n1:T

g  are given. Similarly, the latter term
(second { }) can also be interpreted as a certain multiple of
the prior distribution p(n1:T

g ) of n1:T
g  in the Bayesian frame-

work. Therefore, Eq. (1) can be interpreted as a search
for the n1:T that maximizes the posterior distribution
p(n1:T

g
 | Y1:T) ∝ p(Y1:T | n1:T

g )p(n1:T
g ) [this is called the maxi-

mum a posteriori (MAP) estimate]. Therefore, µ1, µ2, and
τ2 are hyperparameters (in the Bayesian framework) that
give the prior distribution [2]. Optimal solutions that are
obtained by dynamic programming, not just for this prob-
lem, can be interpreted as MAP estimates [3].

Hence, the hyperparameter values can be evaluated
using the log likelihood LL(µ1, µ2, τ2) =def

 log p(Y1:T|µ1, µ2,
τ2) of Y1:T. In other words, the hyperparameters for maxi-
mizing LL (denoted by µ~1, µ

~
2, and τ~ 

2) are interpreted as the
optimal hyperparameters within the maximum likelihood
method. The method for computing LL is described in the
next section.

(1)

(2)

(4)

(3)

(5)
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2.4. Estimating hyperparameters by the
maximum likelihood method

Log likelihood LL(µ1, µ2, τ2) is obtained as the fol-
lowing sum of conditional probability distributions:

Therefore, to obtain the LL,  we should obtain
p(Yt | Y1:t−1, µ1, µ2, τ2) for all t ∈ {1, 2, . . . , T}.

Next, to obtain p(Yt | Y1:t−1, µ1, µ2, τ2), we transform
the statistical model (5) into a generalized state space
representation [4]. By letting xt =

def
 [ntnt−1] and yt =

def
 Yt, we

can obtain the statistical model as follows.

[Observation model]

where et ~ N(0, τ2).

[System model]

where vt ~ q(⋅ | xt−1, µ1, µ2, τ2) and the distribution of
q(⋅ | xt−1, µ1, µ2, τ2) is as follows.

• When nt−1 − nt−2 = α, then

where

since ∑ q(vt) = 1.

• When nt−1 − nt−2 ≠ α, then

where

since ∑ q(vt) = 1. Figure 5 shows sample distributions for
q(⋅).

If we assume that et and vt are white noises, we can
define the prediction and filtering operations as follows.
The p(yt | y1:t−1) values (where t = 1, 2, . . . , T – 1, T) are
obtained as the by-product of the computation for
p(n1:T | y1:T), and the log likelihood LL is obtained as the sum
of their logarithms [4]. Since ∂Yt / ∂yt = 1, p(yt | y1:t−1) is
equal to p(Yt | Y1:t−1).

[Prediction]

Fig. 5. Typical distribution q(⋅) for system noise vt

when α = 5, µ1 = 1, µ2 = 2, and τ2 = 1.
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[Filtering]

p(x1|y0:0) is a uniform distribution from 1 to (2α – 1).
Some filtering operations in a generalized state space

representation involve complicated numerical integration.
However, since the system vector xt consists of discrete
values, while yt are continuous real values in this model,
p(yt | y1:t−1) can be computed arithmetically without integra-
tion. Note that we used a grid search to maximize LL(µ1,
µ2, τ2).

We now substitute (µ~1, µ
~

2, and τ~2) in Eq. (1) and
denote the n1:T obtained by using dynamic programming to
optimize that equation by n~1:T hereafter.

2.5. Results and discussion

Table 1 shows the parameters that were estimated by
the algorithm described above when the actual measure-
ment values for (A) shown in Fig. 3 were taken as the
supervised dataset and the values for (B) were taken as the
training dataset (before adjustment). (Note that α = 5 is used
in this paper.) Also, n~1:T that was estimated by dynamic
programming is shown as (Y1:T − Xn~1:T

 ) in the fifth graph
and as ∆n~t in the sixth graph from the top of Fig. 3. From
the sixth graph, it is apparent that if it is assumed that the
track inspection car did not slip or slide during the meas-
urement run for dataset (A), then it is assumed to have slid
for a distance corresponding to four points (approximately
1 m) near t = 1900 during the measurement run for dataset
(B). Also, the track inspection car’s running speed when
measuring dataset (B), which is shown in the bottom graph
in Fig. 3 (this is calculated back from the number of distance
pulses generated within a unit time and normally cannot be
referred), reveals that the train’s speed dropped unnaturally
in the vicinity of where the train was assumed to have slid
and suggests that it is highly likely that the wheel actually
slid and the generation of distance pulses was temporarily
reduced.

Next, Fig. 6 shows the results when p(xt | y1:T) is
obtained by fixed-interval smoothing as follows:

and then the following is obtained as the marginal smooth-
ing distribution:

It is apparent that the marginal smoothing distribution does
not converge and the reliability of n~1:T is low.

The major cause is that e1:T is assumed to be a
Gaussian white noise sequence even though an analog
low-pass filter has smoothed the actual measurement data.
As shown in Fig. 7, the autocorrelation of e~1:T =def

 Yt − Xn~t
 is

high. Therefore, to improve the model, we apply an autore-
gressive (AR) model to e1:T in the next section.

Fig. 6. Fixed-interval smoothing distributions p(nt|y1:T)
(closeup view of t ≈ 520) (characterizing the differences

e~1:T as a Gaussian white noise sequence).

Fig. 7. Autocorrelation coefficients of a difference
sequence e~1:T (characterizing e~1:T as a Gaussian white

noise sequence).

Table 1. Estimated parameters obtained using the actual
measurement values in Fig. 3 (characterizing the

differences e~1:T as a Gaussian white noise sequence)
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3. Remodeling the Difference Sequence

3.1. Introduction of an autoregressive (AR)
model

Assume that the difference component et = Yt − Xnt
 is

colored noise that can be described as follows using an
autoregressive model:

(wt ~ N(0, σ2) and k is the order of the autoregressive model,
which is appropriately determined). If we substitute the
following for the ∑t=1

T (Yt − Xnt
g)2 in Eq. (1),

and then optimize it using dynamic programming, n1:T is
obtained where xt

g =
def

 [nt
gnt−1

g  ⋅ ⋅ ⋅ nt−k
g ]T. This model can be

transformed into a generalized state space representation by
letting yt =

def
 Yt − ∑i=1

k aiYt−i and Xnt≤0 = 0, and the maximum
likelihood of the parameters can be estimated in a similar
manner as in the previous section. LL to be maximized to
estimate the parameters is LL(µ1, µ2, a1:k, σ2). Hereafter, the
estimated parameters are denoted by (µ~1, µ

~
2, a

~
1:k, σ

~2).
Table 2 shows the estimated parameters when the

above algorithm was applied to datasets (A) and (B), which
were shown in Fig. 3 when k = 1 was assumed. It is apparent
that by introducing the autoregressive model, the log like-
lihood LL increased significantly from 608 to 3294 and that
the reliability of the estimates improved. Next, Fig. 8 shows
the autocorrelation coefficients of the residual sequence
w~ t =

def
 Xn~t

 − a~1Xn~t−1
. This is closer to a white noise autocorre-

lation than in Fig. 7. However, by introducing the autore-
gressive model, the number of points at which ∆n~t ≠ α
increased from 4 to 42 (figure is omitted). In other words,
although introducing the autoregressive model increased
the likelihood, an implausible n~1:T based on conventional
knowledge was obtained.

Also, by introducing the autoregressive model, the
time required for the (µ~1, µ

~
2, a

~
1, σ

~2) search increased. If

(G1, G2, Ga, Gσ) denote the grid counts that were set for
(µ1, µ2, a1, σ2), respectively, the required time is a
G1G2GaGσ multiple of the time for calculating the LL value
once. In our environment (Pentium 4 1800 MHz), since it
took approximately 100 seconds per LL calculation (when
T = 3201), when all grid point counts were set to 5, intro-
ducing the autoregressive model increased the calculation
time from approximately 3.5 hours to 17.4 hours. However,
gauge geometry datasets are massive depending on the
track length (hundreds of kilometers), and fast location
adjustments are desirable.

3.2. Improvement of the estimation algorithm

As we have seen in the previous section, it is apparent
that the algorithm must be improved so that an n~1:T that
conforms to conventional knowledge is obtained and pa-
rameters having high likelihood can be estimated. There-
fore, we used the fact that (a~1:k,σ

~2) are autoregressive
parameters representing the difference sequence e~t to de-
velop the following algorithm.

(1) Set the initial value a1:k
(0) of a1:k to 0.

(2) Maximize the log likelihood LL(µ1, µ2,
σ2|a1:k = a1:k

(0)) according to a grid search to obtain provi-
sional values of µ~1 and µ~2 (which are described as µ1

(0) and
µ2

(0), respectively). In addition, use (µ1
(0), µ2

(0), a1:k
(0))  to esti-

mate n~1:T according to dynamic programming.
(3) Use the Yule–Walker method to estimate a~1:k and

σ~2 from the estimated difference sequence e~1:k (these are
described as a1:k

(1) and σ2(1)) [5].
(4) Substitute (a1:k

(1), σ2(1)) and maximize the log like-
lihood LL again to obtain (µ1

(1), µ2
(1)), and estimate n~1:T

according to dynamic programming.
(5) Compare the newly obtained n~1:T with the one

obtained previously and end the calculation if all entries are
equal. If any entries differ, return to step (3).

(End of the algorithm)

Table 2. Estimated parameters obtained using the actual
measurement values in Fig. 3 (characterizing the

differences e~1:T as a first-order autoregressive process)

Fig. 8. Autocorrelation coefficients of a residual
sequence w~1:T (characterizing e~1:T as a first-order

autoregressive process).
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Hereafter, this algorithm is termed the “alternate estimate
algorithm.”

Note that the (µ~1, µ
~

2, a
~

1:k, σ
~2) that are obtained by the

alternate estimate algorithm are not maximum likelihood
estimates. (µ~1, µ

~
2) are maximum likelihood estimates when

(a~1:k, σ
~2) are already known.
As a result of applying the alternate estimate algo-

rithm to the datasets (A) and (B) shown in Fig. 3, the same
n~1:T was obtained as before the autoregressive model was
introduced. Table 3 shows transitions in estimates for the
hyperparameters (µ~1, µ

~
2, a

~
1:k, σ

~2). Although the log likeli-
hood was reduced to 3247 from the 3294 of Table 2, a higher
level is maintained than the 608 of Table 1. Additionally,
the second graph from the bottom of Fig. 3 shows the
obtained residual sequence w~ t =

def
 Xn~t

 − a~1Xn~t−1
. The autocor-

relation coefficients of this residual sequence are nearly the
same as those in Fig. 8. The marginal smoothing distribu-
tion of this shown in Fig. 9 also converges better than the
distribution in Fig. 6.

Now, we discuss the required time for the grid search.
If the alternate estimate algorithm is repeated M times, the
sum total of the required times is 100[G1G2Gα + (M –
1)G1G2]. Since M = 2 for the calculations in Table 3, when
all grid point counts were set to 5, the calculation time was
reduced to approximately 4.2 hours from 17.4 hours. Note
that M changed from 2 to approximately 5.

Therefore, the alternate estimate algorithm seems
practical for obtaining n~1:T from the target data.

4. Discussion

To verify the alternate estimate algorithm, we per-
formed the following simulation.

(1) Establish fictional gauge geometry and slipping
or sliding to create data sequences for the supervised and
training datasets (before the interpolation). Let n1:T

∗ denote
true values of the data points.

(2) Independently create two white noise sequences
as realization from the same normal distribution to simulate
measurement noise and add them respectively to the two
data sequences that were created in step (1).

(3) Create Z1:T, the sum of the supervised gauge
geometry and the noise. Then sequentially calculate Y1 =
Z1, Yt = Zt + a*Yt−1 (2 ≤ t ≤ T) to create the supervised dataset
Y1:T. Also create the training dataset in a similar manner.
(These sequences are shown in the top two graphs in Fig.
10.) Note that in this paper, a* = 0.8.

(4) Estimate parameters (µ~1, µ
~

2, a
~

1, σ
~2) and use those

parameters to estimate n~1:T.
(End)

The two results, obtained by the maximum likelihood
estimation and by alternate estimate algorithm (see Table
4), are equal, and, therefore, the n~1:T were also both the
same. In addition, a~1 and σ~2 are both close to the true values.

Table 3. Transitions of parameter estimates using the actual measurements shown in Fig. 3 (characterizing
differences e~1:T as a first-order autoregressive process and applying the alternate estimate algorithm)

Maximum likelihood
estimates of 
µ1

(0) and µ2
(0)

Estimates of σ(1) and 
a1

(1) by dynamic
programming

Maximum likelihood
estimates of µ1

(1) 
and µ2

(1) 

Estimates of σ(2)

and a1
(2) by 

dynamic 
programming

µ~1 0.42 0.42 0.012 0.012
µ~2 0.43 0.43 0.10 0.10

LL 608 — 3247 —

a~1 0 (fixed) 0.910 0.910 0.910
σ~2 — 0.00806 0.00806 0.00806

Remark Estimation ended

Fig. 9. Fixed-interval smoothing distribution p(nt | y1:T)
(closeup view of t ≈ 520, modeling the differences e~1:T as

a first-order autoregressive process and applying the
alternate estimate algorithm).
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We believe that this is because e1:T has been modeled
correctly. However, as Fig. 10 shows, n~1:T ≠ n1:T

∗ .
The results of the parameter estimations using actual

measurement data differed for maximum likelihood estima-
tion and the alternate estimate algorithm as shown in Tables
2 and 3. We believe that this is because e1:T cannot be
described accurately by a first-order autoregressive model
for the following reasons. That is, the main causes are that
the measurement data contains irregular noise (for example,
in the neighborhood of t = 2300) as is apparent from Fig. 3
and the filter that is actually applied is an analog low-pass
filter that varies with time.

5. Conclusions

The sampling locations of two measurement datasets
of a track geometry obtained with different runs of a track
inspection car can be approximately aligned by dynamic
programming if we model the wheel rotation and location
detection pulse. Also, using the fact that the optimal solu-
tion according to dynamic programming is a MAP estimate
in the Bayesian framework enables unknown parameters
included in the model to be estimated by using the maxi-
mum likelihood method. When a low-pass filter is em-
ployed to represent the measurement datasets, its effect can
be reduced if an autoregressive (AR) model is applied to
the difference sequence.
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