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Abstract

Wepropose a novel statistical method for estimating gene networks based on microarray gene expression
data together with information from biological knowledge databases. Although a large amount of gene
regulation information has already been stored in some biological databases, there are still errors and
missing facts due to experimental problems and human errors. Therefore, we cannot blindly use them
for understanding gene regulation and a robust procedure with a statistical model for using such database
information is required. By using gene expression data, we provide a probabilistic framework of a joint
learning model for repairing database information and for estimating a gene network based on dynamic
Bayesian networks, simultaneously. To show the effectiveness of the proposed method, we analyze
Saccharomyces cerevisiae cell-cycle gene expression data together with KEGG information.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, a lot of attention has been focused on combining microarray gene expression
data and other types of genomic data for estimating gene networks [3,8,17,21,29,33,34,38]. Var-
ious types of genomic data, such as gene expression, protein–protein interactions, protein–DNA
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interactions and binding site information, havebeen observed systematically. Many relationships
among genes are then collected based on these data and stored in biological databases. However,
dueto experimental problems and human errors, databases are still incomplete and incorrect. We
therefore cannot blindly use them for understanding gene regulatory mechanisms. Like expres-
sion data, the information in biological databases should therefore be considered as observational
data that contain noise. Hence, development of statistical methods for extracting reliable infor-
mation from such noisy genomic data is considered to be an important problem in bioinformatics.

Various computational methods have been proposed for extracting gene regulation
informationfrom gene expression data [40], such as Boolean networks [1,27,35,36], ordinary
differential equations [4,7] and Bayesian networks [12,13,16,18,19,30]. Among them, Bayesian
networks provide a useful probabilistic framework for extracting causal relationships from high-
dimensional noisy data. Imoto et al. [21] proposed a general framework for estimating gene
networks by using microarray gene expressiondata together with biological knowledge via
Bayesian networks. Database information is modeled as a Bayesian prior probability of the graph
and hyperparameters included in the prior probability control the balance between information
on gene expression data and biological knowledge.

Although Imoto et al. [21] succeeded in extracting more reliable information than the previous
methods [18,19] that are based on gene expression data only, a problem that still remains to be
solved is how we treat errors and missing facts in a biological knowledge database. To solve this
problem, in this paper, we propose an error tolerant model for incorporating biological knowledge
with expression data in estimating gene networks. Thepurpose of this paper is realized by using
a self-repairing system for biological knowledge databases based on information from gene
expression data. Our method can repair database information based on the proposed statistical
model and simultaneously estimate a gene network via Bayesian networks. The proposed method
can be easily extended to the dynamic Bayesian networks. The dynamic Bayesian networks
are an extension of the Bayesian networks to find even cyclic causal relations among random
variables based on time series data.

A simple way to repair database information is to compare the initial database information
with the network estimated from the expression data and the initial database information.
However, it is possible that the estimated network is affected by errors and missing facts of
the database and simple updating possibly leads to overfitting or overlearning to the expression
data. On the other hand, the proposed method repairs the database information based on the
statistical model and re-estimates a gene network based on the updated database information and
expression data.

The proposed method has two aims depending on the quality of the database information: for
high-quality database information, since it is unnatural to revise database information based on
microarray data, the proposed method can automatically add missing information to the database.
On the other hand, for low-quality biological information such as hypotheses, we can test infor-
mation of such databases based on the proposed method. To show the effectiveness of the pro-
posed method, we analyzeSaccharomyces cerevisiae cell-cycle gene expression data collected
by Spellman et al. [37] together with information of KEGG database [22] as a real data example.

2. Error tolerant model

2.1. Probabilistic framework

In this section, we introduce a probabilistic framework for the proposed error tolerant model
that includes a self-repairing biological knowledge database system. Suppose thatXn is ann× p
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gene expression data matrix whose(i, j)th element is the expression value of genej measured
by i th microarray. For time series gene expression data, we denote the(i, j)th element ofXn

by x j (ti ) so that it should explicitly indicate the time pointti , satisfying t1 < · · · < tn . Also,
we assume that some information about the regulations among genes is initially known. We then
summarize that information as ap × p matrix A0 = (a0

i j )1≤i, j≤p as follows: if we know that

genei regulates genej , we seta0
i j = 1. On the other hand, if we know genei does not regulate

genej , we seta0
i j = 2. In addition, we seta0

i j = 0 for edges that are not stored in the database.
Note that the initial database informationA0 happens to contain some errors and missing facts.
Also, thenegative data such as genei does not regulate genej , i.e. a0

i j = 2 usually are not kept
in the database. However, we may use the information of sub-cellular localization to create a
negative data [15].

Our aim is to find the optimal grapĥG and the optimal updated database informationÂ that
maximize the conditional joint probability

P(G, A|Xn , A0), (1)

where the(i, j)th element ofA, ai j , is the updated information froma0
i j . The conditional joint

probability (1) is then rewritten as

P(G, A|Xn , A0) = P(Xn, G, A|A0)

P(Xn |A0)
,

where P(Xn |A0) = ∑
G

∑
A P(G, A, Xn |A0) is the normalizing constant and does not relate

to the selection ofG and A. Therefore, givenXn , the maximization of the conditional joint
probability (1) is equivalent to the maximization ofP(Xn, G, A|A0). When the database
informationA0 is given, the conditional joint probabilityP(Xn, G, A|A0) is then decomposed as

P(Xn , G, A|A0) = P(Xn |G)P(G|A)P(A|A0). (2)

Here, P(Xn |G, A) = P(Xn |G) holds in our model. We should note that we could estimateG
based onP(G|Xn , A0) ∝ P(Xn |G)P(G|A0), whereA is summed out. However, this modeling is
sometimes infeasible in practice,because the computational complexity of this marginalization
is O(3p2

) for simple enumeration. In addition, our interest is not only in the estimation ofG, but
also in the update ofA0. In the following sections, we describe statistical models for representing
P(Xn |G), P(G|A) andP(A|A0).

2.2. Bayesian networks

In the context of Bayesian networks, a gene is regarded as a random variable and the
gene network is modeled as a directed acyclic graph with the first-order Markov relationships
between genes. LetX1, . . . , X p be random variables corresponding to genes. Using the above
assumptions, based on the structure of the directed acyclic graph, the joint probability of all genes
can be decomposed as

P(X1, . . . , X p) =
p∏

j=1

P(X j |P j ),

whereP j is a random variable vector of direct parent genes of genej . For example, if gene2 and
gene3 are the direct parents of gene1, we haveP1 = (X2, X3)

T. Here,aT is the transpose of the
vectora.
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For time series gene expression data described in the previous section, we employ dynamic
Bayesiannetwork models [14,28] for computing P(Xn |G). The dynamic Bayesian network
assumes that the states of genes at timeti depend only on those at timeti−1, and the relationships
between genes are stable at any time points. LetX j (ti ) be a random variable corresponding to
genej at timeti . Using the above assumptions, the joint probability of all random variables can
be decomposed as

P(X1(t1), . . . , X p(tn)) = P(X1(t1), . . . , X p(t1))
p∏

j=1

n∏
i=2

P(X j (ti )|P j (ti−1)),

whereP j (ti ) is a random variable vector of direct parent genes of genej at timeti . For example,
if gene2 and gene3 are the direct parents of gene1, we haveP1(ti ) = (X2(ti ), X3(ti ))T.

In the context of dynamic Bayesian networks, since the expression data take continuous
variables, the likelihood of the expression dataXn for a given graph structureG is expressed
by densities of the form

f (Xn|θ , G) = f0(x(t1)|θ0)

p∏
j=1

n∏
i=2

f j (x j (ti )|p j (ti−1), θ j ), (3)

whereθ = (θT
0, . . . , θT

p)
T is the parameter vector andp j (ti ) is the gene expression value vector

of the parents of genej at timeti andx(t1) is the gene expression vector at the first time point.
For computing P(Xn |G), we take the marginal likelihood that is given by integrating the joint
density ofXn andθ over theparameterθ :

P(Xn |G) =
∫

f (Xn, θ |G) dθ =
∫

f (Xn |θ , G)π(θ |λ) dθ, (4)

whereπ(θ |λ) is a prior distribution on theparameterθ , andλ is the hyperparameter vector
that specifies the shape ofπ(θ |λ). In our modeling, the hyperparameter works as a smoothing
parameter in a nonparametric regression model that controls the amount of smoothness of the
fitted curve. In addition, we can optimize thenumber ofB-splines by using information criteria.
However, in this paper, we use 20B-splines for constructing each smooth functionm jk(·) and
control the smoothness of the fitted curve by the hyperparameter in order to reduce computational
time. This strategy is calledP-splines [11].

Although the proposed method does not depend on the type of dynamic Bayesian network
models, i.e. both discrete and continuous dynamic Bayesian networks can be used, we employ the
dynamic Bayesian network and nonparametric regression model withB-splines [6,20] proposed
by Kim et al. [24] (see also Kim et al. [23]). In our model, the relationship between a genex j (ti )
and its parentsp j (ti−1) = (p j1(ti−1), . . . , p jk j (ti−1))

T is represented by

x j (ti ) = m j1(p j1(ti−1))+ · · · + m jk j (p jk j (ti−1))+ εi j ,

whereεi j depends independently on the normal distribution with mean 0 and varianceσ 2
j and

m jk(·) is a smooth function given by usingB-splines

m jk(x) =
M jk∑
m=1

γ
( j )
mk b( j )

mk (x), k = 1, . . . , k j .
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Here {b( j )
1k (x), . . . , b( j )

M jkk(x)} is the prescribed set ofB-splines. Therefore, the conditional
density f j (x j (ti )|p j (ti−1), θ j ) can be expressed as

f j (x j (ti )|p j (ti−1), θ j ) = 1√
2πσ 2

j

exp


−

{
x j (ti )− ∑

k,m
γ

( j )
mk b( j )

mk(p jk(ti−1))

}

2σ 2
j

2 ,

whereθ j containsγ ( j )
mk ’s andσ 2

j .
Note that the dynamic Bayesian networks enable us to estimate the directed cycles in the

network. Also, our model does not consider the intra-slice connections. Since there are several
instantaneous correlations between genes, this assumption is somewhat strong. As long as the
acyclicity holds in the intra-slice connections, we might construct a dynamic Bayesian network
with intra-slice connections. In addition, a possible improvement of our Bayesian and dynamic
Bayesian network models is to use hidden variables for representing unmeasurable products in
RNA expression data such as protein concentrations, degradation, RNA interference and so on,
which are possibly related to gene regulation.

2.3. Prior probability of the graph

For estimating gene networks, Imoto et al. [21] proposed the use of biological knowledge as a
prior probability of the graph. According to Imoto et al. [21], in this section, we explain how we
construct a prior probability of the graphP(G|A) based on the database informationA. First, we
allocate a valueζk to the edge from genei to genej , if ai j = k. That is,sinceai j takesone of three
values, 0, 1or 2, we useζ0, ζ1 andζ2 for discriminating biological knowledge on each edge. In
addition, we setζ0 = 0 < ζ1 < ζ2. Theprior probability of the graphG can be expressed as

π(G|A) = Z−1 exp

{
−

∑
(i, j )∈G

ζai j

}
,

where the sum
∑

(i, j )∈G is taken over the existing edges inG andZ is the normalizing constant

given by Z = ∑
G∈G exp{−∑

(i, j )∈G ζai j }. HereG is the set of possible directed graphs. It
should be noticed that the valuesζ1 andζ2 are parameters that need to be optimized, see Imoto
et al. [21]. We optimize the values ofζ1 andζ2 by using the criterion, called BNRCD B, defined
in Section 2.5.

For computing the conditional joint probability(1), we need to calculate the normalizing
constantZ . Although the computation ofZ is intractable even for moderately sized gene
networks based on Bayesian network models [21], we can compute the exact value ofZ for
the dynamic Bayesian network models. In the biological knowledge matrixA, suppose that the
numbers of 1’s, 2’s and 0’s arez1, z2 andz0, respectively. Note thatz1+ z2+ z0 = p2 holds. Let
us consider the situation that, in a graphG, thenumbers ofζ1, ζ2 andζ0 edges areα, β andγ ,

respectively. The number of such graphs is then
(

z1
α

) (
z2
β

) (
z0
γ

)
. Thus the normalizing constantZ

can be obtained by

Z = 2z0

z1∑
α=0

z2∑
β=0

(
z1
α

) (
z2
β

)
exp(−αζ1− βζ2). (5)
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Here we use
∑z0

γ=0

(
z0
γ

)
= 2z0. Note that, for the Bayesian network models, Imoto et al. [21]

computed an upper and a lower bound ofZ . In practice, the upper bound of Imoto et al. [21]
works well.

2.4. Database information model

The conditional probabilityP(A|A0) represents the transition probability when we update the
database information fromA0 to A. In this section, we elucidate a statistical model forP(A|A0)

that is essential to realize a self-repairing system for biological knowledge database. First, we
define the functiond(a) by

d(a) =
{

1 for a = 1 or 2,
0 for a = 0.

Note that we assume that the edges whose database statuses are 1 or 2 have almost the same
accuracy. The functiond(a) then categorizes the edges into two groups: one group includes the
edges that are contained in the database, andthe other group iscomposed of the edges that are
notcontained in the database. The transition probabilityP{d(ai j )|d(a0

i j )} is then constructed by
using the Bernoulli distribution of the form

P{d(ai j )|d(a0
i j )} = P{d(a0

i j )}d(ai j )[1− P{d(a0
i j )}]1−d(ai j ).

Therefore, we modelP(A|A0) by the product of the Bernoulli distributions

P(A|A0) =
p∏

i=1

p∏
j=1

P{d(a0
i j )}d(ai j )[1− P{d(a0

i j )}]1−d(ai j ). (6)

We set a high probability forP{d(a0
i j ) = 1}, because the information onζ1 or ζ2 edges is rather

reliable. Inthe last section, we setP{d(a0
i j ) = 1} = ph = 0.9. On the other hand, since there is

no information aboutζ0 edges in the database, we setP{d(a0
i j ) = 0} = pm = 0.5. Notethat we

donotallow the transition froma0
i j = 1 to ai j = 2 andvice versa.

If the edge from genei to genej is stored as aknown relationship in the database, i.e.a0
i j = 1,

but this edge is not observed from the gene expression data, we remove this edge from the
database, i.e. we changea0

i j = 1 to ai j = 0, if it leads to an increase in the conditional joint
probability (2). Also, if the edge from genek to genel is clearly observed by the expression data,
but thedatabase does not contain this edge, i.e.a0

kl = 0. We then add this edge to the database,
i.e. we changea0

kl = 0 to akl = 1, if the conditional joint probability(2) increases. In the next
section, we represent our greedy hill-climbing algorithm for the joint learning of the optimal
graphĜ and simultaneously the optimal updated database informationÂ.

2.5. Model learning

For learning the graphG and the database informationA based onXn andA0, we first define
a criterion based on the joint probability(2). To construct a criterion, we need to compute the
marginal likelihood of the dataP(Xn |G) given in(4). The Laplace approximation [5,25,39] can
solve this problem analytically. For a functions(θ |xn) satisfyings(θ |xn) = O(1), we have a
formula∫

exp{ns(θ |xn)} dθ = (2π/n)r/2

|J (θ̂ |xn)|1/2
exp{ns(θ̂ |xn)}{1+ Op(n−1)},
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wherexn = (x1, . . . , xn)
T, J (θ |xn) = ∂2s(θ |xn)/∂θ∂θT, r is the dimension ofθ . Hereθ̂ is the

mode ofs(θ |xn). Replacings(θ |xn) by n−1{log f (Xn |θ , G)+logπ(θ |λ)}, we defined acriterion,
called BNRCD B, as the score function by taking minus twice the logarithm of the conditional
joint probability(2)

BNRCD B(G, A, ζ1, ζ2) = 2 logZ + 2
∑

(i, j )∈G

ζai j − r log(2πn−1)

+ log |Jλ(θ̂ |Xn)| − 2{log f (Xn |θ̂, G)+ logπ(θ̂ |λ)}
+

p∑
i=1

p∑
j=1

[d(ai j ) log P{d(a0
i j )} + {1− d(ai j )} log(1− P{d(a0

i j )})],

where Jλ(θ |Xn) = n−1∂2{log f (Xn |θ , G) + logπ(θ |λ)}/∂θ∂θT and θ̂ is the mode of
log f (Xn|θ , G) + logπ(θ |λ). The details of the computation of̂θ and Jλ(θ |Xn) are available
in [19]. We then choose the optimal graphĜ and the optimal updated database informationÂ by
minimizing BNRCD B . In practice, the value of BNRCD B is computed as the sum of the local
scores for each gene and its direct parents,the details of which are described in [18]. For finding
Ĝ andÂ, we cannot perform an exhaustive search method due to the computational complexity
of learningG andA. We therefore use a greedy hill-climbing algorithm for findingĜ and Â
heuristically, described as follows:

Initial Step

Step 1 Estimate the graphG based onXn and the initial database informationA0 by the greedy
hill-climbing algorithm described below.

Step 2 Make a list of edges that do not agree with the initial database informationA0. The edges
in this list can be considered as candidates for update. We call this list the candidate
edge list.

Learning Step

Step 3 For each edge(i, j) in the candidate edge list, we updateai j and estimateG based on
Xn and the updated database informationA.

Step 4 If the update that gives the smallest BNRCD B in Step 3 causes a reduction of BNRCD B,
we accept this change and go to Step 5. Otherwise, no operation is performed forA and
we finish thelearning.

Step 5 Update thecandidate edge list based on the estimated graphG and the updated database
informationA.

Step 6 Repeat from Step 3 to Step 5 until the learning finishes at Step 4.

In Step 1 and Step 3, we estimate the graphG based onXn and givenA by using the greedy
hill-climbing algorithm as follows:

Step A Set the valuesζ1 andζ2.
Step B EstimateG by minimizing BNRCD B under the givenζ1 andζ2:

Step B-1 For each gene, either add or remove a parent gene, if it leads to a reduction
in the criterion.
Step B-2 Repeat Step B-1 until the criterion reaches a minimum.

Step C Repeat Step A and Step B for the candidate values ofζ1 andζ2.
Step D The optimal gene network is found from the candidate networks obtained in Step C.
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Fig. 1. True model for Monte Carlo simulations. (a) Artificial network. (b) Functional structures between nodes.

A gene network is re-estimated in Step 3 by using the candidate updated database information.
Since the database information is updated, the prior probability of the graph,π(G|A), changes.
Therefore, it is possible that the optimal values ofζ1 and ζ2 change and we could obtain a
different optimal graph compared to the optimal one in the previous step.

We note that since we use a greedy hill-climbing algorithm to learnG andA, it cannot be
guaranteed that the solutionŝG and Â are optimums. To find better solutions, we repeat the
learning step described above 10 times and choose the best pair ofĜ andÂ.

3. Computational experiments

3.1. Example using simulated data

Before we analyze real gene expression data, we conduct Monte Carlo simulations to examine
the properties of the proposed method. We first set an artificial graph shown inFig. 1(a)
and the relationships between nodes listed inFig. 1(b). The relationships between nodes in
Fig. 1(b) reflect the saturations of gene expressions and some threshold expression values in
gene regulations. We generate 100 observations, which correspond to 100 microarrays, from the
true model. For the information of thebiological knowledge database, we assume that we know
the relationships between nodes described inFig. 2(a). We remove three edges out of correct
relationships and switch the direction of three other edges. That is, we consider the edges(3, 6),
(3, 8) and(3, 10) as missing information and the edges(12, 6), (15, 8) and(19, 10) as errors
in the database information. We apply the proposed method with Bayesian networks to those
simulated data. Since the database information contains errors and missing relations, the purpose
of the Monte Carlo simulations is not only to rebuild a gene network, but also to repair the
database information.

Fig. 2(b) shows a typical example of the resulting networks in the Monte Carlo simulations.
The black edges agree with the database information described inFig. 2(a). The updated
information is shown by blue edges. The term “revise” means that the proposed method
correctly repaired the database information of the edge. The edges with “add” are added as new
information to the database. The red edges are false positives (incorrectly estimated edges) and
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Fig. 2. (a) Database information denoted byA0. We remove three edges out of the correct relationships and switch the
direction of three other edges. (b) An example of the resulting network of the Monte Carlo simulations. The black edges
agree with the database information described in (a). The updated information is shown by blue edges. The red edges do
not agree with the database informationA0 and are not updated.

are not updated. Since the edges(12, 6), (15, 8) and(19, 10) are set as the opposite direction in
the database, we can remove this information from the database, i.e.a0

12,6 = a0
15,8 = a0

19,10 = 1
are updated toa12,6 = a15,8 = a19,10 = 0, and estimate the edges of correct direction by
using expression data. Also, the proposed method added the edges(3, 6), (3, 8) and (3, 10),
which are missing in the initial database, as new information. However, fromFig. 2(b), the
proposed method added some false positive edges to the database. In addition, we observed that
the proposed method sometimes adds not only correct causal relationships but also false positive
relationships. However, these falsely added relationships could be removed from the database
by using other sets of microarray data or using the bootstrap method [9,10]. That is, incorrectly
updated information may be fixed when the proposed method is applied to other microarray
data. In fact, we observed that almost all false positive updates are removed by using other sets
of simulated microarray data.

We repeat the Monte Carlo simulation 1000 times, that is we first generate 1000 datasets
and then estimatêG and Â for each dataset.Table 1shows the edges that are updated more
than 100 times out of 1000 repetitions.Fig. 3(a) and (b) show the distribution of the numbers of
updates for all 380 possible edges. Note that the graph can be represented by the adjacent matrix
and the number of non-diagonal elements is 380for 20 node network. The edges with asterisks
are correctly updated edges. FromTable 1, we observe that theoperation “add”is successfully
done with high probability, but there are several false positives. However, the numbers of false
positives, except for g19 → g9, are not large and may be acceptable. The reason why the
number of additions of g19 → g9 becomes large is the setting of functions between nodes.
In our setting, it is possible that an untrue relationship between g19 and g9 is observed. On the
other hand, the coverage of the operation “remove” is nothigh, but the number of false positives
is very small. This feature is very natural inour situation, because (1) there is much missing
information in the database; wecan add information to the database in a positive way, but (2) the
database information is created based on various kinds of knowledge including protein–protein
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Table 1
The results of update edges in Monte Carlo simulations

Added edges # Removed edges #

* g3→ g10 875 * g12→ g6 207
* g3→ g6 826 * g19→ g10 202
* g3→ g8 530 * g15→ g8 194

g19→ g9 456
g10→ g9 205
g19→ g4 185
g10→ g4 143
g15→ g18 129
g10→ g8 122
g3→ g4 112

This table shows the edges that were updated more than 100 times out of 1000 Monte Carlo experiments. The
Added edges are updated froma0

i j = 0 to âi j = 1, and theRemoved edges are from a0
i j = 1 to âi j = 0. The

columns “#” i ndicate the numbers of updates in1000 Monte Carlo experiments.

Fig. 3. The distributions of the numbers of updated edges for 380 possible edges. (a) The distribution of the numbers
of updates with respect to the added edges. (b) The distribution of the numbers of updates with respect to the removed
edges.

interactions. We thus need to pay much more attention when we remove information from the
database. In this sense, the proposed method can perform reasonable database updates.

The results of the Monte Carlo simulations are summarized as follows: (1) In the case that
there are the opposite direction edges against the true relationships in the database information:
if these wrong relationships are nonlinear, we observed that the proposed method can revise
this information by using gene expression data. We presume one of the reasons is that if
expression data show nonlinear relationships, expression data might contain the information
about the direction. On the other hand, if the relationships of the error edges are almost linear,
it is difficult to decide the causal direction. However, the directed acyclic graph structure of the
Bayesiannetworks could help to decide the causal direction. That is, in the Bayesian networks,
the causal direction of an edge with a linear dependency may be found be considering edges in
the neighborhood and the acyclicity condition. (2) In the case that some information is missing
from the database: as shown in the example above, we can add such information to the database.
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However, we need to be concerned about false positive updates. We described two ways to
identify the false positive updates above. (3) In the case that we cannot find edges using gene
expression data, but these are stored in the database: although we can remove such information
from the database, we need to do this operation very carefully in practice. Gene expression
data consider regulation of the transcriptional level only, while the database information may
be broader. As the conclusion of the Monte Carlo simulations, we observed that the proposed
method works well in practice.

3.2. Example using experimental data

As a real data application, we analyzeS. cerevisiae cell-cycle gene expression data collected
by Spellman et al. [37]. These data contain 77 microarrays and consist of two short time-courses
(cln3, clb2: two time points) and four time-courses (alpha, cdc15, cdc28 and elu: 18, 24, 17 and
14 time points, respectively). Therefore, we use the dynamic Bayesian network model withB-
spline nonparametric regression described inSection 2.2. We focus on 29 genes that are stored
in KEGG [22] to be acell-cycle subnetwork related to G1 and S phases. The KEGG database
is one of the most well-established databases and the cell-cycle network inS. cerevisiae has
been investigated for a long time in biology. Also, for estimating cell-cycle networks, we need to
compile microarray data obtained by experiments affecting the cell-cycle related genes. In this
sense, using Spellman’s cell-cycle data with information of the KEGG database is suitable for
estimating cell-cycle networks and for evaluating the proposed method. The database information
matrix A0 is constructed by transforming the cell-cycle network in KEGG as follows: we assign
the valuesζ1 and ζ0 to the edges that are shown and not shown in the cell-cycle network in
KEGG. Also, for the valueζ2, we could regard the edges that show opposite direction ofζ1
edges as known non-regulations and assignζ2 to them. Of course, all edges that show opposite
direction of ζ1 edges do not have enough biological evidence for known non-regulation edges.
The proposed method, however, can allow such errors in the database information. It is possible
that those errors are repaired by using expression data. As we noted inSection 2.1, it is possible
that we use sub-cellular localization as a reliable source forai j = 2. In addition, there are many
protein complexes in the cell-cycle network in KEGG, such as “CLN1–CDC28”. We setζ1 for
both directions, “CLN1→ CDC28” and “CLN1← CDC28”. Note that, in this analysis, we omit
protein complexes, ORC, MCM, APC and SCF, that consist of many subunits. A method for
treating such protein complexes is described in [29].

In the estimation of a gene network, we use four time series data (alpha, cdc15, cdc28 and elu)
and estimate a gene network from each time series data.Fig. 4(a) shows the resulting network
obtained by superposing four estimated networks. We remove edges that are found from only
one estimated network fromFig. 4(a). The black and red edges agree and do not agree with the
information of the cell-cycle network in KEGG, respectively. The blue edges also do not agree
with the KEGG information but are added as new information by the proposed method. The
updated edges are listed inTable 2. Since we use four time series data, the column “Data” in
Table 2shows which time series data are used to update. Since the gene networks are generally
condition specific, it is possible that the estimated networks from different sets of microarray data
are not consistent. Therefore, we show edges that appear in two or more estimated networks in
order to extract more reliable information. It should be noted that there are important edges that
appear in only one estimated network. Therefore, we also need to pay attention to each estimated
network. By removing the red edges fromFig. 4(a), Fig. 4(b) shows a gene network with the
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Fig. 4. Resulting networks based on the proposed method with a dynamic Bayesian network model. The black and
red edges agree and do not agree with the KEGG information,respectively. The blue edges also do not agree with the
KEGG information but are added as new information. (a) Resulting network with edges that appear in two or more
estimated networks out of four networks. (b) An informative network obtained by this analysis. This network is obtained
by removing the red edges from the network in (a).

Table 2
Updated relationships in the cell-cycle gene network based on the proposed method

Updated edge Op. Data Updated edge Op. Data

SWI4→ CDC20 add 1 CDC45→ CDC6 add 3
CLN1→ CLN3 add 1 PCL1→ CDC6 add 3
CDC20→ PHO5 add 1 CDC6→ PCL2 add 3
CLB6→ CLN1 add 1 DBF4→ CLB3 add 3
PHO5→ PHO81 add 1 PCL2→ PCL1 add 3
CLN2→ CLN1 add 1 FUS3→ PCL1 add 4
CDC45→ CDC20 add 1 CLB5→ CLB4 add 4
CLN2→ CLB4 add 2 CDC6→ PCL1 add 4
FAR1→ SIC1 add 2,3 PHO85→ CLN1 add 4
PHO5→ SIC1 add 2 DBF4→ CLB4 add 4
PCL2→ CLN2 add 2,3 DBF4→ CLB5 add 4
CLB5→ CLN2 add 2 CDC45→ CLB4 add 4
PCL2→ CDC45 add 2,3 CLN2→ PCL1 add 4
FAR1→ DBF4 add 3 PHO85→ CLN2 add 4

The column “Op.” means which operation is done. The numbers in“Data” represent time series data we used to update
(1: alpha, 2: cdc15, 3: cdc28, 4: elu).
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black and blue edges, which can be considered asan informative part of the estimated network
in Fig. 4(a).

The results of this analysisare summarized as follows:
• An edge “CLB6 → CLN1”, which is added as new information, is missing information of

KEGG. In fact, Li and Cai [26] indicated this relationship.
• In the cell-cycle network in KEGG, the edges “CLN3 → PCL1-PHO85” and

“CLN3→ PCL2-PHO85” are shown as possible but unknown relations. In this analysis, we
used these edges as known relations and could find them in the estimated networks. We may
conclude that the gene expression data support these relationships.
• In the cell-cycle network in KEGG, the genes,PHO2, 4, 5, 80, 81, 85, PCL1, 2 and the other

genes are separated, except for the edges that connect betweenCLN3 andPCL complexes
mentioned above. However, fromFig. 4(a), we observed that there are a lot of interactions
betweenPHO, PCL genes and the other genes.
• In Table 2, the relationships “PHO85 → CLN1” and “PHO85 → CLN2” are added

as new information. Actually,CLN1, CLN2 (cyclin, G1/S-specific) andPHO85 (cyclin-
dependent protein kinase) regulate cell-cycle progression andPHO85 is required to start
the cell-cycle in the absence ofCLN1 and CLN2, seee.g. [2]. Therefore, it is natural
that the relationships amongCLN1, CLN2 and PHO85 are observed from expression
data.
• There are several added edges between nodes that are not directly connected. For example,

“CLN1→ CLN3”, “ CLB6 → CLN1”, “ PHO5→ PHO81”, “ FAR1→ SIC1” among others
have relatively shorter paths than the edges in the KEGG network.
• The proposed method adds “CDC45→ CDC6” to thedatabase information in Table 2. In fact,

the cell-cycle network in KEGG indicates thatCDC6 (cell division control protein),CDC45
(related to chromosomal DNA replication), MCM complex and ORC complex form a protein
complex, butCDC6 andCDC45 are not directly connected. Since we omitted MCM and ORC
complexes in this analysis, we presume the proposed method added the relationship between
CDC6 and CDC45 to the database. However, the added information “CDC45 → CDC6”
suggests that there may be some relationships betweenCDC45 andCDC6 that are partially
correct.
• CLB3 (cyclin-dependent protein kinase regulator activity) andCLB4 (cyclin, G2/M-specific)

do not connect to the other genes in the cell-cycle network in KEGG. On the other hand, by
using the proposed method, we observed that some relationships amongCLB3, CLB4 and
other genes, especiallyCLN2 andCLB5, are estimated and added as new information. In fact,
in the formation of mitotic spindles, it is known thatCLB5 works togetherwith CLB3 and
CLB4, seee.g. [32].
• In this paper, we focus on the transcriptional regulations between genes. However, it is a

possible case that the protein–protein interactions are estimated in our model. Although the
protein–protein interactions are represented as undirected edges rather than directed edges,
the estimated edges corresponding to protein–protein interactions could be considered as true
positives.In the 92 estimated edges ofFig. 4(a), 23 edges are compiled as protein–protein
interactions in the DIP database [31]. Also, an updated edge “PHO85→ CLN1” in Table 2is
complied as a protein–protein interaction in DIP.
• The all update operations done in this analysiswere “addition of the candidate relations as

new information to the database”. Since the cell-cycle network in KEGG was established by
collecting highly reliable information, our results are reasonable and the updated information
in Fig. 4(b) andTable 2could be considered as candidates for new findings.
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4. Discussion

In this paper, we proposed a statistical model for simultaneously learning the database
information and gene networks from gene expression data and a given biological knowledge
database. The proposed method realizes a self-repairing system for biological knowledge
databases that can revise database information by considering information on gene expression
data. Three models, the Bayesian network model, the prior probability of the graph and the
database information model, are unified as one statistical model based on Bayesian statistics.
As shown in the Monte Carlo simulations and the real data example, the proposed method can
recover the missing information and canimprove the accuracy of the database.

We consider the following topics as our future work: (1) We regarded the database information
as binary data. However, information contained in databases can have a varying degree of
confidence. Therefore, the confidence level should be used to construct the prior probability
of the graph. (2) In this paper, we focused on how to use database information for estimating a
gene network. However, how to create database information by using various types of genomic
data such as protein–protein interaction data, binding site information and so on, is a separate
problem. (3) The transition probabilities of the database information model, denoted byph

and pm in Section 2.4, are actually parameters and are related to the reliability of the database
information. (4) The reliability of the update information could be measured by the bootstrap
method [9,10]. We could construct statistical criteria to choose them. We would like to discuss
those problems in our future paper.
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