Available online at www.sciencedirect.com

SCIENCE dDIHECTa StatiStical
@ Methodology

Official Journal of the International
Indian Statistical Association

Statistical Methodology 3 (2006) 1-16

www.elsever.com/locate/stamet

Error tolerant model for incorporating biological
knowledge with expression data in estimating
gene networks

Seiya Imoté*1, Tomoyuki HiguchP1, Takao Gotd, Satoru Myanc?®

@Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku,
Tokyo 108-8639, Japan
b |nstitute of Satistical Mathematics, 4-6-7, Minami-Azabu, Minato-ku, Tokyo 106-8569, Japan

Received 28 February 2005; received in revised form 16 September 2005; accepted 17 September 2005

Abstract

We propose a novel statistical method for estimating gene networks based on microarray gene expression
data together with information from biological knowledge databases. Although a large amount of gene
regulation information has already been stored in some biological databases, there are still errors and
missing facts due to experimental problems and human errors. Therefore, we cannot blindly use them
for understanding gene regulation and a robust procedure with a statistical model for using such database
information is required. By using gene expression data, we provide a probabilistic framework of a joint
learning model for repairing database information and for estimating a gene network based on dynamic
Bayesian networks, simultaneously. To show the effectiveness of the proposed method, we analyze
Saccharomyces cerevisiae cell-cycle gene expression datagether vith KEGG information.

(© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, a lot of attention has been fdion combining microarrg gene expression
data and other types of genomidaéor estimating gene network3,8,17,21,29,33,34,38]. Var-
ious types of genomic data, such as gene expression, protein—protein interactions, protein—DNA
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interactions and binding site information, hdeen observed systematically. Many relationships
among genes are then collected based on these data and stored in biological databases. However
dueto experimental problems and human errors, databases are stillincomplete and incorrect. We
therefore cannot blindly use them for understanding gene regulatory mechanisms. Like expres-
sion data, the information in biological databadeould therefore be considered as observational

data that contain noise. Hence, development of statistical methods for extracting reliable infor-
mation from such noisy genomic data is considered to be an important problem in bioinformatics.

Various computational methods have been proposed for extracting gene regulation
informationfrom gene expression datd(], such as Boolean network$,27,35,36], ordinary
differential equations4,7] and Bayesian networks12,13,16,18,19,30]. Among them, Bayesian
networks provide a useful probabilistic framework for extracting causal relationships from high-
dimensional noisy data. Imoto et aRl] proposed a general framework for estimating gene
networks by using microarray gene expressitaia together with biological knowledge via
Bayesian networks. Database information is modeled as a Bayesian prior probability of the graph
and hyperparameters included in the prior piuliy control the balance between information
on gene expression data and biological knowledge.

Although Imoto et al.21] succeeded in extracting more reliable information than the previous
methods 18,19 tha are based on gene expression data only, a problem that still remains to be
solved is how we tat errors and missing facts in a biological knowledge database. To solve this
problem, in this paper, we propose an error tolerant model for incorporating biological knowledge
with expression data in estimating gene netvgorkhepurpose of this paper is realized by using
a <lf-repairing system for biological knowledge databases based on information from gene
expression data. Our method can repair database information based on the proposed statistical
model and simultaneously estimate a gene nekwiaBayesian networks. The proposed method
can be easily extended to the dynamic Bayesian networks. The dynamic Bayesian networks
are an extension of the Bayesian networks to find even cyclic causal relations among random
variables lased on time series data.

A simple way to repair database information is to compare the initial database information
with the network estimated from the expression data and the initial database information.
However, it is possible that the estimated network is affected by errors and missing facts of
the database and simple updating possibly leadwérfitting or overlearning to the expression
data. On the other hand, the proposed methqdire the database information based on the
statistical model and re-estimates a gene network based on the updated database information and
expression data.

The proposed method has twara depending on the quality of the database information: for
high-quality database information, since it is utural to revise database information based on
microarray data, the proposed method can automatically add missing information to the database.
On the other hand, for low-quality biological imfoation such as hypotheses, we can test infor-
mation of such databases based on the proposed method. To show the effectiveness of the pro-
posed method, we analyBaccharomyces cerevisiae cell-cycle gene expression data collected
by Spellman et al.37] together vith information of KEGG databas@?] as a eal data example.

2. Error tolerant model
2.1. Probabilistic framework

In this section, we introduce a probabilisticrinawork for the proposed error tolerant model
that includes a self-repairing biological knowledge database system. SuppaXg ithann x p
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gene expression data matrix whasej)th element is the expression value of geneeasured
by ith microarray. For time series gemxpression data, we denote tfie j)th element ofX,

by X;(ti) sothat it should explicitly indicate the time poift sdisfyingt; < --- < tn. Also,
we assume that some information about the ratijuhs among genes is initially known. We then
summarize that information as@ax p matix Ag = (ai(})lfi,jfp as follows: if we know that

geng regulates gene we setaﬂ = 1. On the other hand, if we know gengoes not regulate

geng, we setaﬂ = 2. In addition, we seaﬂ = 0 for edges that are not stored in the database.
Note that the initial database informatiég happens to contain some errors and missing facts.
Also, thenegative data such as gemmes not regulate gepe.e. aio- = 2 usudly are not kept
in the database. However, we may use the information of sub-cellular localization to create a
negative dataly|.

Our aim is to find the optimal grap@ and the optimal updated database informafathat
maximize the conditional joint probability

P(G,A|XnaA0)’ (1)

where the(i, j)th element ofA, ajj, is the updated information froraﬂ. The onditional joint
probability (1) is then rewritten as
P(an Gs A|AO)
P(G,AXn,A0) = —5 >
" P (Xn|Ao)

where P(Xn|Ao) = Y g > a P(G, A XnlAo) is the normalizing constant and does not relate
to the selection ofG and A. Therdore, givenX;,, the maimization of the conditional joint
probability (1) is equivalent to the maximization oP(X,, G, A|Ag). When he database
informationAg is given, the conditional joint probability (X, G, A]Ag) is then decomposed as

P(Xn, G, AlAo) = P(Xn|G)P(G|A)P(AlAo). )

Here, P(Xp|G, A) = P(X;]G) holds in our model. We should note that we could estintate
based orP (G|Xp, Ag) x P(Xn|G)P(G|Ag), whereA is sunmed out. However, this modeling is
sametimes infeasible in practicbecause the computational compty of this marginalization

is 0(392) for simple enumeration. In addition, our interest is not only in the estimati@ bt

also in the update dfg. In the fdlowing sections, we describe statistical models for representing
P(Xn|G), P(G|A) andP(A|Ap).

2.2. Bayesian networks

In the context of Bayesian networks, a gene is regarded as a random variable and the
gene network is modeled as a directed acyclic graph with the first-order Markov relationships
between genes. Le{y, ..., Xp be random variables corresponding to genes. Using the above
assumptions, based on the structure of the directed acyclic graph, the joint probability of all genes
can be decomposed as

p
P(X1,..., Xp) = ]‘[ P(X;IPj),
j=1
wherePj is a random variable vector of direct parent genes of geRer example, if geng and

geng are the direct parents of gegnave haveP; = (Xo, X3)T. Here,a' is the tranpose of the
vectora.
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For time sries gene expression data described in the previous section, we employ dynamic
Bayesiannetwork models 14,28] for computing P(Xn|G). The dynamic Bayesian network
assumes that the states of genes at tirdepend only on those at tinte 1, and the redtionships
between genes are stable at any time points.Xj&tj) be a random variable corresponding to
geng at timet;. Using the above assumptions, the joinbpability of all random variables can
be decomposed as

P n
P(X1(t2), ..., Xp(tn)) = P(X1(t), ..., Xp(t0)) [ [ [ PXj t)IPj 1)),

j=1li=2
whereP; (t) is a andom variable vector of direct parent genes of gextéimet;. For example,
if gene, and gengare the direct parents of ggneve haveP1(tj) = (Xa(ti), Xa(; NT.
In the context of dynamic Bayesian networks, since the expression data take continuous

variables, the likelihood of the expression data for a given graph structur& is expressed
by densties of the form

p n
f(Xnl0, G) = fox(t)100) [T T fi () t)Ipj ti—1), 8)), 3
j=1i=2
wheref = @], ..., 0£)T is the parameter vector amg(t;) is the gene expssion vale vector

of the parents of geneat timet; andx(ty) is the gene expression vectat the first time point.
For conputing P(Xn|G), we take the marginal likelihood that is given by integrating the joint
density ofX, andé over theparamete#:

P(anG)=/ f(Xn,0|G)d0=f f(Xnl|0, G)x(6]1) db, (4)

wheren (#|L) is a prior distributim on theparamete®, and is the hyperparameter vector
that specifies the shape #ff|1). In our modeling, the hyperparameter works as a smoothing
parameter in a nonparametric regression nalggt controls the amount of smoothness of the
fitted curve. h addtion, we can optimie thenumber ofB-splines by using irdrmaion criteria.
However, in this paper, we use Bsplines for constructing each smooth functiojy(-) and
control the smoothness of the fitted curve by the mgpeameter in order to reduce computational
time. This strategy is calleB-spines [11].

Although the proposed method does not depend on the type of dynamic Bayesian network
models, i.e. both discrete and continuous dynamic Bayesian networks can be used, we employ the
dynamic Bayesian network and nonparametric regression modeBasitiines [6,20] proposed
by Kim et al. [24] (see also Km et al. [23]). In our model, the relationship between a gené; )
and its parentpj (ti—1) = (pj1(ti-1), ..., Pj i ti_1))"is represented by

Xj(t) = mja(pjati-1)) + - - + Mjk; (Pjk; (ti—1)) + &ij,
wheresjj depends independently on the normal distribution with mean 0 and var&fnaad

mjk(-) is a snooth function given by using-spines

Mjk
M) = Y 7o), k=1,...k.
m=1
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Here {bgL)(x),...,b,Ejl?kk(x)} is the prescribed set oB-splines. Therefore, the conditional
density fj (xj (ti)|pj (ti—1), @) can be expressed as
!Xj -3 Vb (Pji(ti—1)

fi (xjt)Ipjti—1), 0j) = > exp| — 202

271’GJ- j

whereg) contains;/r;‘k) 's ando2.

Note that the dynamic Bayesian networks enable us to estimate the directed cycles in the
network. Also, our model does not consider the intra-slice connections. Since there are several
instantaneous correlations between genes, this assumption is somewhat strong. As long as the
acyclicity holds in the intra-slice connections, we might construct a dynamic Bayesian network
with intra-slice connections. In addition, a possible improvement of our Bayesian and dynamic
Bayesian network models is to use hidden variables for representing unmeasurable products in
RNA expression data such as protein concentratj degradation, RNA interference and so on,

which are pasibly rehted to gene regulation.
2.3. Prior probability of the graph

For egimating gene networks, Imoto et a2J] proposed the use of biological knowledge as a
prior probability of the graph. According to Imoto et a21], in this section, we explain how we
construct a prior probability of the gragh(G|A) based on the database informatirfirst, we
allocate a valugy to the edge from genéo gene;, if ajj = k. Thatis,sincea;j takesone of three
values, 0, lor 2, we us€p, ¢1 andgz for discriminating biological knowledge on each edge. In
addition, we setp = 0 < ¢1 < ¢2. Theprior probability of the graplG can be expressed as

n(GlA):Zlexp{— > {aj},

(i,)eG

where the surrz(i,j)eG is taken over the existing edges@andZ is the normalizing constant
given by Z = } s gexpl— > i j)ec ¢aj}- Hereg is the set of pesible diected graphs. It
should be noticed that the values and¢, are parameters that need to be optimized, see Imoto
et al. 21]. We optimize the values of1 and¢z by using the criterion, called BNR§g, defined
in Section 2.5

For computing the conditional joint probabilitf1), we reed to calculate the normalizing
constantZ. Although the computation of is intractable even for moderately sized gene
networks based on Bayesian network modelH,[we can compute the exact value Bffor
the dynamic Bayesian network models. In the biological knowledge matrsuppose that the
numbers of 1's, 2’s and O's am, z; andzy, resgectively. Note thagy + 2o + zg = p2 holds. Let
us consider th stuation that, in a grapls, the numbers of1, ¢ and¢p edges are, 8 andy,

respectively. The number of such graphs is t@l) ( ) (2;’) Thus the normalizing constat
can be obtained by

z-203 % (%) (%) exp-acs - pa. )

a=08=0

2
B
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Here we useZ)Z}’:0 (Zyo) = 2%. Note hat, for the Bayesian network models, Imoto et al][

computed an upper and a lower boundzofin practice, the upper bound of Imoto et a21]
works well.

2.4. Database information model

The conditional probability? (A|Ag) represents the transitiomgbability when we update the
database infanation fromAg to A. In this sectbn, we elucidate a statistical model fBXA|Ag)
that is essential to realize a self-repairing system for biological knowledge database. First, we
define the functionl(a) by

_]J1 fora=1or2
d(a)_{O fora=0.

Note that we assume that the edges whose databtatuses are 1 or 2 have almost the same
accuracy. The functiod(a) then categorizes the edges into two groups: one group includes the
edges that are contained in the database tlamdther group isomposed of the edges that are
notcontained in the database. The transition probabitifg (a; )|d(aﬂ )} is then constructed by
using the Bernoulli distribution of the form

P{d(@)ld@))} = P{d(@)} @ (1~ P(d@))t4@.
Therefore, we moddP (A|Ap) by the product of the Bernoulli distributions

P P
P(AlAg) = l_[ l_[ p{d(ai(})}d(aij)[l_ P{d(aﬂ)}]l*d(aij). ©

i=1j=1

We set a high probability foP{d(aﬂ) = 1}, because the information an or ¢ edges is rather
reliable. Inthe last section, we sﬂ{d(aﬂ) =1} = pp = 0.9. On the other hand, since there is
no information abousp edges in the database, we &gt (aﬂ) = 0} = pm = 0.5. Notethat we
donotallow the transition frormﬂ = 1toajj = 2 andvice versa.

If the edge from geneo gene; is stored as &nown relationship in the database, Bg. = 1,
but this elge is not observed from the gene expression data, we remove this edge from the
database, i.e. we changg = 1toaj = O, if it leads to an increase in the conditional joint
probability (2). Also, if the edge from gengto geng is clearly observed byhe expression data,
but thedatabase does not contain this edge@de= 0. We then add this edge to the database,
i.e. we changaﬁ = 0toay = 1, if the conditional joint probability2) increases. In the next
section, we represent our greedy hill-climbing algorithm for the joint learning of the optimal
graphG and simultaneously the optimal updated database informAtion

2.5. Model learning

For learning the grapls and the database informatidnbased orX, andAg, we first define
a aiterion based on the joint probabili{). To construct a criterion, we need to compute the
marginal likelihood of the dat&® (X,|G) given in(4). The Laglace approximationd,25,39] can
solve this poblem analytically. For a functios(f|xn) satisfyings(8|xn) = O(1), we have a
formula

(2 /ny"/2

W expins(@1xn)} {1+ Op(n~h),
n

/exp{ns(0|xn)} de =
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wherex, = (X1, ..., Xn) ", J(@|Xn) = 025(0]xn)/0000", r is the dimension of. Hered is the
mode ofs(8|x,). Rephcings(|xn) by n~1{log f (Xn|6, G)+logx (#|1)}, we defined @riterion,
called BNRG g, as the sare function by taking minus twice the logarithm of the conditional
joint probability (2)

BNRCpg(G. A, ¢1,¢2) =2l0gZ +2 > 5 —rlog2rn™t)
(i,])eG

+ log |3, (81%n)| — 2{log f (Xnl8, G) + logz (1)}

p P
+3 " > [d(aij) log P{d(@})} + {1 — d(aij)} log(1 — P{d(@])}],
i=1j=1

where J,(0|Xn) = n132{log f (Xn|0, G) + logm(8]1)}/20007 and @ is the node of

log f (Xnl0, G) + logm(6|1). The detals of the computation ob and J,.(0|X,) are available

in [19]. We then choose the optimal graghand the optimal updated database informaﬁdwy
minimizing BNRGpg. In practice, the value of BNRgg is computed as the sum of the local
smres for each gene and its direct paretits,details of which are described itg. For finding

G andA, we cannot perform an exhaustive search method due to the computational complexity
of learningG andA. We therefore use a geedy hill-climbing algorithm for findings and A
heuristtally, described as follows:

Initial Step

Step 1 Estimate the grap@® based orX,, and the initial database informatiéq by the greedy
hill-climbing algorithm described below.

Step 2 Make alist of edges that do not agree with the initial database informagiorhe elges
in this list can be considered as candidates for update. We call this list the candidate
edge list.

Learning Step

Step 3 For each edgéi, j) in the candidate edge list, we updaig and estimatés based on
Xn and the updated database informatfon

Step 4 Ifthe update that gives the smallest BNRgin Step 3 causes a reduction of BNRE;,
we accept this change and go to Step 5. Qtliee, no operation is performed fArand
we finish theeaming.

Step 5 Update theeandidate edge list based on the estimated g&aphd the updated database
informationA.

Step 6 Repeat from Step 3 to Step 5 until the learning finishes at Step 4.

In Step 1 and Step 3, we estimate the gr&@based orX, and givenA by using the greedy
hill-climbing algorithm as follows:

Step A Set the valueg; and¢s.

Step B EstimateG by minimizing BNRGyg under the giverg; and¢s:
Step B-1 For each gene, either add or remove a pagame, if it leads to a reduction
in the criterion.
Step B-2 Repeat Step B-1 until the terion reaches a minimum.

Step C Repeat Step A and Step B for the candidate valueg @nde,.

Step D The optimal gene network is found from the candidate networks obtained in Step C.
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g1 =e€1, g2 =.7g1 +¢e2 g5 =.781 +¢s5,
g10 = 1/{1 + exp(—4g3)} + €10 g7 =1.3g7 + &7
—1+4e3 (g1 < —.5) -8g3 + &6 (g3 < —1)
g3 =14 g1+e3 (g1l <-5) 8 =94 (g3 + 1" +e6 (—1 < |gs| <0)

1+e3 (g1 > .5) 1+e6 (g3 >1)

i = g1 +1+ea (lg1] > .3) _J 283 -1+es (83 <.2)
(1 +1)* +ea (1] < .3) l4gs +es (g3 > .2)
g11 = .7g6 + €11, 814 = .76 + €14, 815 = 1/{1 + exp(—4gs)} + €15
_ ) 4e3+1+eo (I3 >.3) _ ) 4es+1+e13 (g6l = -3)
go = " g13 = 2
(g3 +1)"% +e9 (lga] < .3) (g6 + 1)% + €13 (Ig6] < .3)

g6 + €12 (86| < .5) g19 = 1/{1 + exp(—4g10)} + €19

—1+4e12 (86 < —.5) g16 = -888 + €16
g12 =
1+e12 (86 > -5) 820 = 1.1g10 + €20

g1y = .2gs —1+e17 (88 < .2) s = -4gg +1 (lgg] > .3)
1.4gg + €17 (88 > -2) (g8 +1)'? (g8 < .3)

(a) (b)
Fig. 1. True model for Monte Carlo simulations. (a) Adiéil network. (b) Functional structures between nodes.

A gene network is re-estimated in Step 3 by using the candidate updated database information.
Since the database information is upth the prior probaility of the graph,z(G|A), changes.
Therefore, it is possible that the optimal values¢pfand ¢2 change and we could obtain a
different optimal graph compared to the optimal one in the previous step.

We note tha since we use a greedy hill-climbing algorithm to leag®BnandA, it cannot be
guaranteed that the solutio® and A are optimums. To find better solutions, we repeat the
learning step described above 10 times and choose the best GaarafA.

3. Computational experiments
3.1. Example using simulated data

Before we analyze real gene expression data, we conduct Monte Carlo simulations to examine
the properties of the proposed method. We first set an artificial graph showigiri(a)
and the relationships between nodes listedrig. 1(b). The relationships between nodes in
Fig. 1(b) reflect the saturations of gene expressions and some threshold expression values in
gene regulations. We generate 100 observations, which correspond to 100 microarrays, from the
true model. For the informatioof thebiological knowledge database, we assume that we know
the relationships between nodes describedrig. 2(a). We remove three edges out of correct
relationships and switch the direction of three other edges. That is, we consider thé&yes
(3,8) and (3, 10) as missing information and the edgd<, 6), (15, 8) and (19, 10) as errors
in the database information. We apply the proposed method with Bayesian networks to those
simulated data. Since the database informat@nains errors and missing relations, the purpose
of the Monte Carlo simulations is not only to rebuild a gene network, but also to repair the
database information.

Fig. 2b) shows a typical example of the resulting networks in the Monte Carlo simulations.
The black edges agree with the abése information described irig. 2a). The updated
information is shown by blue edges. The term “revise” means that the proposed method
correctly repaired the datalmmformation of the edge. The edges with “add” are added as new
information to the database. The red edges are false positives (incorrectly estimated edges) and
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(a) (b)

Fig. 2. (a) Database information denotedAyy. We renove three edgeout of the correct relationships and switch the
direction of three other edges. (b) An example of the ltegunetwork of the Monte Carlo simulations. The black edges
agree with the database information ciésed in (a). The updated informatios shown by blue edges. The red edges do
not agree with the database informatiég and are not updated.

are not updated. Since the edg#8, 6), (15, 8) and(19, 10) are set as the opposite direction in

the database, we can remove this information from the databas#ig= a% 5 = aJ ;o = 1

are updated t@i26 = aiss = aig10 = 0, and estimate the edges of correct direction by
using expression data. Also, theoposed method added the edd8s6), (3, 8) and (3, 10),

which are missing in the initial database, as new information. However, ffgn2b), the
proposed method added some false positive edgthetdatabase. In addition, we observed that

the proposed method sometimes adds not only correct causal relationships but also false positive
relationships. However, these falsely added relationships could be removed from the database
by using other sets of microarray data or using the bootstrap me®id@.[That is, hcorrectly
updated information may be fixed when the proposed method is applied to other microarray
data. In fact, we observed that almost all false positive updates are removed by using other sets
of simulaed microaray data.

We repeat the Monte Carlo simulation 1000 times, that is we first generate 1000 datasets
and then estimat& andA for each dataseffable 1shows the edges that are updated more
than 100 times out of 1000 repetitiofdg. 3(a) and (b) show the distribution of the numbers of
updates for all 380 possible edges. Note that tiaglg can be represented by the adjacent matrix
and the number of non-diagonal elements is 88®0 node network. The edges with asterisks
are correctly updated edges. Frdurble 1 we observe that theperation “add’is successfully
done with high probability, but there are several false positives. However, the numbers of false
positives, except for§ — o, ae not large and may be acceptable. The reason why the
number of additions of gy — g9 becomes large is the setting of functions between nodes.

In our setting, it is possible that an untrue relationship betwagragd g is observed. On the
other hand, the coverage of the operation “o&af’ is nothigh, but the number of false positives

is very small. This feature is very natural @ur situation, because (1) there is much missing
information in the database; vean add information to the database in a positive way, but (2) the
database information is created based on various kinds of knowledge including protein—protein
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Table 1
The results of update edges in Monte Carlo simulations
Added edges # Removed edges #
* 03— g10 875 * 012 — U6 207
* 93— O 826 * g19 — 010 202
* 03— g 530 * 015 — 08 194
019 — J9 456
910 —> 99 205
019 — 04 185
910 > 94 143
015 — 018 129
910 —> U8 122
g3 — 04 112

This table shows the edges that were updated more 1@ times out of 1000 Monte Carlo experiments. The
Added edges are updated fromaﬂ = 0to&j = 1, and theRemoved edges are from aﬂ = 1todj = 0. The

columns #" indicate the numbers of updateslidO0 Monte Carlo experiments.

(a)

—~
=3
~

o
=
<
o
=
)
&;)-) 3 g_)) §_ 912> Js
g o S
[T 93—> 910 0]
S {7 © 919—> 910
o 5 S
a 3 o«
g - £
= 3 93—>Js 95> 96 = 945> g
! o
2 - 2 54
= E -
o
[Te)
o o
T T T T T T
0 400 6 0 50 100 150 200
The number of updates The number of updates

Fig. 3. The distributions of the numbers of updated edges880 possible edges. (a) The distribution of the numbers
of updates with respect to the added edges. (b) The ditibof the numbers of updates with respect to the removed
edges.

interactions. We thus need to pay much more attention when we remove information from the
database. In this sense, the proposed method can perform reasonable database updates.

The results of the Monte Carlo simulations are summarized as follows: (1) In the case that
there are the opposite direction edges against the true relationships in the database information:
if these wrong relationships are nonlinear, we observed that the proposed method can revise
this information by using gee expression data. We presume one of the reasons is that if
expression data show nonlinear relationships, egpion data might contain the information
about the direction. On the other hand, if the relationships of the error edges are almost linear,
it is difficult to decide the causal direction. However, the directed acyclic graph structure of the
Bayesiametworks could help to decide the causal direction. That is, in the Bayesian networks,
the causal direction of an edge with a linear dependency may be found be considering edges in
the neighborhood and the acyclicity condition. (B)tthe case that some information is missing
from the database: as shown in the example above, we can add such information to the database.
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However, we need to be concerned about false positive updates. We described two ways to
identify the false positive updates above. (3) In the case that we cannot find edges using gene
expression data, but these are stored in the database: although we can remove such informatior
from the database, we need to do this operation very carefully in practice. Gene expression
data consider regulation of the transcriptional level only, while the database information may
be broader. As the conclusion of the Monte Carlo simulations, we observed that the proposed
method works well in practice.

3.2. Example using experimental data

As a real data application, we analy2ecerevisiae cell-cycle gene expression data collected
by Spellman et al.37]. These data contain 77 microarrays and consist of two short time-courses
(cIn3, clb2: two time points) and four time-courses (alpha, cdc15, cdc28 and elu: 18, 24, 17 and
14 time points, respectively). Therefore, we use the dynamic Bayesian network mod@-with
sdine nonparametric regression describediection 2.2We foais on 29 genes that are stored
in KEGG [27 to be acell-cycle subnetwork related to G1 and S phases. The KEGG database
is one of the most well-established databases and the cell-cycle netw8ricérevisiae has
been investigated for ahg time in lology. Also, for estimating cell-cycle networks, we need to
compile microarray data obtained by experimeritsaiing the cell-cycle related genes. In this
sense, using Spellman’s cell-cycle data with information of the KEGG database is suitable for
estimating cell-cycle networks and for evaluating the proposed method. The database information
matiix Ag is constructed by transforming the cell-cycle network in KEGG as follows: we assign
the valuest; and ¢p to the edgeshiat are shown and not shown in the cell-cycle network in
KEGG. Also, for the valug?, we muld regard the edges that show opposite directiogof
edges as known non-regulations and asgjgto them. Of course, all edges that show opposite
diredion of ¢1 edges do not have enough biological evidence for known non-regulation edges.
The proposed method, however, can allow such errors in the database information. It is possible
that those errors are repaired byngsexpression data. As we noted3action 2.1it is possible
that we use sub-cellular localization as a reliable source;foe 2. In addition, there are many
protein complexes in the cell-cycle network in KEGG, such @N1-CDC28". We set¢; for
both directions, CLN1 — CDC28" and “CLN1 < CDC28". Note that, in this analysis, we omit
protein complexes, ORC, MCM, APC and SCF, that consist of many subunits. A method for
treating such protein complexes is describedi.[

In the estimation of a gene network, we use four time series data (alpha, cdc15, cdc28 and elu)
and estimate a gene network from each time series Baja4(a) shows the resulting network
obtained by superposing four estimated networks. We remove edges that are found from only
one estimated network froffig. 4(a). The black and red edges agree and do not agree with the
information of the cell-cycle network in KEGG, respectively. The blue edges also do not agree
with the KEGG information but are added as new information by the proposed method. The
updated edges are listed Tiable 2 Since we usedur time seies data, the column “Data” in
Table 2shows which time series data are used to update. Since the gene networks are generally
condition specific, it is possible that the estimated networks from different sets of microarray data
are not consistent. Therefore, we show edges that appear in two or more estimated networks in
order to extract more reliable information. It should be noted that there are important edges that
appear in only one estimated network. Therefove also need to pay attention to each estimated
network. By removing the red edges frdag. 4(a), Fig. 4b) shows a geneatwork with the
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(b)

Fig. 4. Resulting networks based on the proposed method with a dynamic Bayesian network model. The black and
red edges agree and do not agree with the KEGG informatasmectively. The blue edges also do not agree with the
KEGG information but are added as new information. (a) Resulting network with edges that appear in two or more
estimated networks out of four networks. (b) An informatiework obtained by this analysis. This network is obtained

by removing the red edges from the network in (a).

Table 2

Updated relationships in the cell-cgotene network based on the proposed method

Updated edge Op. Data Updated edge Op. Data
SW4 — CDC20 add 1 CDC45 — CDC6 add 3
CLN1 — CLN3 add 1 PCL1 — CDC6 add 3
CDC20 — PHO5 add 1 CDC6 — PCL2 add 3
CLB6 — CLN1 add 1 DBF4 — CLB3 add 3
PHO5 — PHO81 add 1 PCL2 - PCL1 add 3
CLN2 — CLN1 add 1 FUS3 — PCL1 add 4
CDC45 — CDC20 add 1 CLB5 — CLB4 add 4
CLN2 — CLB4 add 2 CDC6 — PCL1 add 4
FARL — SC1 add 2,3 PHO85 — CLN1 add 4
PHO5 — SC1 add 2 DBF4 — CLB4 add 4
PCL2 — CLN2 add 2,3 DBF4 — CLB5 add 4
CLB5 — CLN2 add 2 CDC45 — CLB4 add 4
PCL2 — CDC45 add 2,3 CLN2 — PCL1 add 4
FAR1 — DBF4 add 3 PHO85 — CLN2 add 4

The olumn “Op.” means which operation is done. The numberPita” represent time series data we used to update
(1: alpha, 2: cdcl5, 3: cdc28, 4: elu).
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black and blue edges, which can be considereghaisformative part of the estimated network
in Fig. 4(a).

The results of this analysare summarized as follows:

An edge ‘CLB6 — CLNL1", which is added as new information, is missing information of
KEGG. In fact, Li and Cai26] indicated this relationship.

In the cell-cycle netork in KEGG, the edges CLN3 — PCL1-PHO85" and

“CLN3 — PCL2-PHO85" are shown as possible but unknown relations. In this analysis, we
used these edges as known relations and could find them in the estimated networks. We may
conclude that the gene expression data support these relationships.

In the cell-cycle network in KEGG, the gené%;102, 4, 5, 80, 81, 85, PCL1, 2 and the other

genes are separated, except for the edges that connect be&dwdrand PCL complexes
mentioned above. However, frofig. 4(a), we observed that there are a lot of interactions
betweerPHO, PCL genes and the other genes.

In Table 2 the rdationdips “PHO85 — CLN1" and “PHO85 — CLN2" are alded

as new information. ActuallyCLN1, CLN2 (cyclin, G1/S-specific) andPHO85 (cydin-
dependent protein kinase) regulate cell-cycle progressionP&@85 is required to start

the cell-cycle in the absence @LN1 and CLN2, seee.g. P]. Therefore, it is natural

that the reléonships amongCLN1, CLN2 and PHO85 are observed from expression
data.

There are several added edges between nodes that are not directly connected. For example
“CLN1 — CLN3", “CLB6 — CLN1", “PHO5 — PHO81", “ FAR1 — S C1” among others

have relatively shorter paths than the edges in the KEGG network.

The proposed method addSDC45 — CDC6” to thedatabase infanaion in Table 2 In fact,

the cell-cycle network in KEGG indicates th@DC6 (cell division control protein) CDC45
(related to chromosomal DNA replication), MCM complex and ORC complex form a protein
complex, butCDC6 andCDC45 are not directly connected. Since we omitted MCM and ORC
complexes in this analysis, we presume the proposed method added the relationship betweer
CDC6 and CDC45 to the database. However, the added informatiG®C45 — CDC6”
suggests that there may be some relationships bet@&&td5 and CDC6 that are partially
correct.

CLB3 (cyclin-dependent protein kinase regulator activity) &4 (cyclin, G2/M-specific)

do not connect to the other genes in the cell-cycle network in KEGG. On the other hand, by
using the proposed method, we observed that some relationships &h83gCLB4 and

other genes, especialGLN2 andCLBS5, are efimated and added as new information. In fact,

in the formation of mitotic spindles, it is known th@LB5 works bgetherwith CLB3 and

CLB4, seee.g. B2].

In this paper, we focus on the transcriptional regulations between genes. However, it is a
possible case that the protein—protein interactions are estimated in our model. Although the
protein—protein interactions are represented as undirected edges rather than directed edges
the estimated edges corresponding to protein—protein interactions could be considered as true
positives.In the 92 stimaed edges ofig. 4a), 23 edges are compileas praein—protein
interactions in the DIP databas#l]. Also, an updated edgd®HO85 — CLNL1" in Table 2is
complied as a protein—protein interaction in DIP.

The all update operations done in this analygese “addition of the candidate relations as
new information to the database”. Since the cell-cycle network in KEGG was established by
collecting highly reliable information, our selts are reasonable and the updated information

in Fig. 4(b) andTable 2could be considered as candidates for new findings.
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4. Discussion

In this paper, we proposed a statistical model for simultaneously learning the database
information and gee networks from gene expression data and a given biological knowledge
database. The proposed method realizes a self-repairing system for biological knowledge
databases that can revise database information by considering information on gene expression
daa. Three models, the Bayesian network model, the prior probability of the graph and the
database information model, are unified as one statistical model based on Bayesian statistics.
As shown in the Monte Carlo simulations and the real data example, the proposed method can
recover the missing information and ciamprove the accuracy of the database.

We aonsider the following topics as our future work: (1) We regarded the database information
as binary data. However, information contained in databases can have a varying degree of
confidence. Therefore, the confidence levebidd be used to construthe prior probability
of the graph. (2) In this paper, we focused on how to use database information for estimating a
gene network. However, how to create database information by using various types of genomic
data such as protein—protein interaction data, binding site information and so on, is a separate
problem. (3) The transition probabilities of the database information model, denotew by
and pnm, in Section 2.4 are actually parameters and are related to the reliability of the database
information. (4) The reliability of the updateformation could be measured by the bootstrap
method P,10]. We could construct statistical criteria to choose them. We would like to discuss
those problems in our future paper.
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