
Marketing Letters 15:1, 37–60, 2004
 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Statistical Inference Using Stochastic Switching
Models for the Discrimination of Unobserved
Display Promotion from POS Data

TADAHIKO SATO ∗ t.sato@dei.or.jp
Department of Statistical Science, The Graduate University for Advanced Studies, Distribution Economics
Institute, TOC Bldg., Nishi-Gotanda Shinagawa-ku, Tokyo 141-0031, Japan

TOMOYUKI HIGUCHI higuchi@ism.ac.jp
Prediction and Knowledge Discovery Center, The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu,
Minato-ku, Tokyo 106-8569, Japan

GENSHIRO KITAGAWA kitagawa@ism.ac.jp
The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-ku, Tokyo 106-8569, Japan

Abstract

The execution of price and/or display promotion has a significant effect on the sales of a brand sold in a super-
market. Information on price and/or sales is available from POS data. However, unless an investigator collects
information on the execution of display promotions from every retail store, such information is unavailable. This
paper presents a method of identifying whether display promotion has been executed without having to visit in-
dividual stores. We treat the execution/non-execution of a display promotion as a state variable. An unknown
stationary probability matrix is assumed to describe the probability of a transition between states. Each state is
characterized by a different stationary time series model with unknown parameters. The objective of the analysis
is to identify the model and to assign a probability model for each state at each time instant. Finally, we provide a
high precision estimator of a past execution/non-execution of a display promotion based on the proposed model.

Keywords: display promotion, POS data, Markov switching model, non-Gaussian filter/smoothing

The paper begins by describing Japanese consumer purchase behavior. The shopper for
a Japanese household usually visits the supermarket about 3 times per week. A super-
market in Japan corresponds to a combined grocery and drug store in the United States.
A Japanese homemaker has to buy many items to satisfy the different members of the
family because, for example, family members have different tastes in food. Homemakers
visit the supermarket frequently and purchase many items. As a result, the non-planned
purchase rate in a store is very high, about 70% (Tajima, 1989). The non-planned pur-
chase rate is the percentage of purchased goods that were not decided before visiting the
store. Moreover, in Bucklin and Lattin (1991), the extensive documentation of planned
versus non-planned purchasing and its heterogeneity across consumers provided both logi-
cal and empirical support for their distinction between planned and opportunistic shopping
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modes. For effective and efficient sales, marketing activities in a store are very important,
for example temporary price cut, display, Point Of Purchase (POP). To attain effective and
efficient sales, suppliers need to measure the effect of those marketing activities from data.

Price promotion has significant effects on increasing sales volume (see for example
(Neslin, 2002)). Information on price promotion can be acquired easily from POS data.
POS data contains information on the number of units, sales and visitors of a store. This
enables suppliers to decide their price strategy based on the effect of price promotion.
Although suppliers are aware that execution of a display promotion in a store causes an
increase in sales, suppliers usually cannot acquire information on the display promotion at
each store. This means that they cannot measure the effect of execution of a display pro-
motion. If a supplier wants to collect information on the execution of display promotion
data by conducting field research, in the case of Japan, they have to pay about 4 million yen
per year per store. Although this amount is an approximation, it is obviously too expensive
to carry this out in many stores. As a result, effective and efficient sales with display pro-
motion have not been realized at most stores. Therefore, if the execution/non-execution of
display promotion could be inferred from POS data, this would be useful for suppliers to
enhance the effectiveness and efficiency of their marketing activity.

Since temporary price cuts and other marketing promotions are important, marketing
manager and academics have conducted many studies from various perspectives since the
1970’s. Blattberg et al. (1981), Gupta (1988), and Neslin et al. (1985) found evidence that
promotions are associated with purchase acceleration in terms of an increase in quantity
purchased and decreased interpurchase time. Researchers studying the brand choice deci-
sion – for example, Guadagni and Little (1983) and Gupta (1988) – found that promotions
are associated with brand switching. Montgomery (1971) and Webster (1965) found that
promotion-prone households were associated with lower levels of brand loyalty. While
these researches used household level scanner panel data or field research data, an alterna-
tive approach using store level POS data exits. Blattberg and Wisniewski (1987) developed
a statistical model for measuring the effect of sales promotions. The model incorporates
many variables for promotion activities. Another model has been developed by Wittink et
al. (1987) using store level POS data and promotional data. The promotion data used in
these researches, was obtained by field research in a limited number of stores. However,
price strategies and display promotions differ according to variables such as geographical
location, demographic features of consumers, and so forth. As a result, consumer deci-
sions, which are made in response to these strategies, differ. For this reason, suppliers
want to obtain POS data and promotional data for individual stores to enable them to pro-
mote efficient and effective sales. However, while store level POS data is easily obtained,
promotional data cannot be obtained unless retailers, manufacturers or third-parties con-
duct an actual marketing survey on every store.

To meet this need, we constructed a model for discriminating between the execution and
non-execution of display promotion from POS data without supervised data (data obtained
by an in-store marketing survey). In considering the problem of identifying whether a dis-
play promotion has been conducted, we treated the execution/non-execution of a display
promotion as an unobserved state variable. First, we built models in an attempt to estimate
state probabilities of the execution/non-execution of a display promotion from POS data,
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and then determined how to discriminate the execution/non-execution of display promotion
based on these state probabilities. Our estimation procedure can be regarded as unsuper-
vised learning. The model can be formulated within the framework of a general state space
model. A general state space model is constructed by two stochastic equations: a system
model, and an observation model (Kitagawa and Gersch, 1996). This general state space
model includes a wide variety of important time series models. Examples include the lin-
ear state space model with non-Gaussian white noise processes, the nonlinear model such
as the Chaos process, the discrete process, and so forth (Higuchi and Kitagawa, 2000). For
state estimation in the general state space model, we need to evaluate conditional distrib-
utions, which are in general non-Gaussian. Therefore, we need to employ non-Gaussian
filtering and smoothing algorithms (Kitagawa, 1987) to evaluate conditional distributions.
A statistical problem in this study is how to identify the model and assign a probability
for each state at each time instant. The proposed procedure is evaluated by an observed
display promotion data, i.e. supervised data, for model validation.

Generalization of the preceding time series model to include the possibility of transition
changes occurring over time has been achieved by allowing changes in the error covariance
(Harrison and Stevens, 1976; Gordon and Smith, 1988, 1990) or by assuming mixture
distributions in the observation errors (Pena and Guttman, 1988). Changes can also be
modeled in the classical regression case by allowing switches in the design matrices, as in
Quandt (1972). Switching via a stationary Markov chain with independent observations
has been developed by Goldfeld and Quandt (1973). Markov Switching for dependent
data has been applied by Hamilton (1989) to detect changes between positive and negative
growth periods in the economy.

Our paper consists of 4 sections. In the first section, Markov switching models are
presented for discrimination between execution and non-execution of display promotion.
Furthermore, for the state estimation, the non-Gaussian filtering and smoothing algorithms
are briefly described. Our proposed model is evaluated in Section 2 with its application to
actual POS data. Section 3 is devoted to the discussion on implication. The concluding
remarks are given in Section 4.

1. Markov Switching Model

In this section, we introduce the general state space model, which generalizes linear
Gaussian state space modeling to deal with non-Gaussian system noise and a non-Gaussian
observation noise state space modeling. Here, we show that Markov switching models can
be expressed in the general state space model form. A state estimation of the general state
space model can be achieved by non-Gaussian filtering and smoothing algorithms (Kita-
gawa, 1987).

1.1. General State Space Model

Consider the system described by a general state space model,

system equation Zn ∼ q(Zn|Zn−1), (1)
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observation equation Rn ∼ r(Rn|Zn), (2)

where Rn is the observed time series and Zn is the unknown state vector at discrete time n.
q and r are conditional distribution of Zn given Zn−1 and of Rn given Zn, respectively.
The initial state vector Z0 is distributed according to the distribution p(Z0|R0) (Kitagawa
and Gersch, 1996).

1.2. Markov Switching Model

In our research, we focus on price and unit sales which are common variables in a wide
variety of POS data. The time series data of price and unit sales are indicated by xn and yn
(n = 1, . . . , N), in this study, respectively.

Markov Switching Distribution Model: MSD Model We assume that at time n, an ob-
served time series xn is generated by one of the k distribution models, where the choice
of the distribution model is specified by the state. That is, denote a set of states by
l = {1, . . . , k} and a discrete state variable at time n by Sn. We assume that when Sn = i,
the distribution of xn is given as follows:

g
(
xn|Sn = i, ψx

n−1

) = gi(xn), (3)

where ψx
n−1 = {x1, . . . , xn−1}. A superscript x stands for the observation of x, explicitly.

Furthermore, we assume that switching of state Sn follows a Markov chain with transition
matrix given by

P = (pij ) =


p11 . . . p1k
...

. . .
...

pk1 . . . pkk


 , (4)

where pij = Pr(Sn = j |Sn−1 = i) with a constraint
∑k

i=1 pij = 1. In this case, the MSD
model can be represented by the general state space form since equation (4) is a system
model and equation (3) is an observation model.

Markov Switching Regression Model: MSR Model We assume that at time n, the ob-
served time series yn is generated by one of the k regression models, where the specification
of the regression model is given by a discrete state variables. That is, we assume that when
Sn = i, the distribution of yn is given as follows:

f
(
yn|Sn = i, ψ

y

n−1, xn
) = fi

(
yn|µi(xn, Sn = i)

)
, (5)

where ψ
y

n−1 = {y1, . . . , yn−1} and xn is treated as an exogenous variable. Furthermore,
we assume that µi(xn, Sn = i) is a parameter vector for describing distribution fi , and
an expectation which is constructed according to the Generalized Linear Model (GLM)
(McCullagh and Nelder, 1989). Since equations (4) and (5) can be interpreted as a system
model and observation model, respectively, the MSR model can be represented by the
general state space form.
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Markov Switching Bivariate Model: MSB Model We assume that at time n, an observed
bivariate time series, Yn = (xn, yn), is generated by one of the k bivariate models, where
the choice of the bivariate model is specified by a discrete state variable. In addition, we
assume that when Sn = i, a bivariate distribution of Yn can be factorized as follows.

h
(
xn, yn|Sn = i, ψ

xy

n−1

) = f
(
yn|Sn = i, ψ

xy

n−1, xn
)
g
(
xn|Sn = i, ψ

xy

n−1

)
= fi

(
yn|µi(xn, Sn = i)

)
gi(xn), (6)

where ψxy

n−1 = {Y1, . . . , Yn−1}. A combination of (6) with equation (4) allows us to repre-
sent the MSB model by the general state space model.

When bivariate time series data (xn, yn) is given, the three models mentioned above rely
on only the distribution information of variable xn, of variable yn and of both variables,
respectively. Correspondingly, Rn in equation (2) is Rn = {xn}, Rn = {yn}, and Rn =
{xn, yn}, respectively.

In the three Markov switching models (MSD, MSR and MSB models), stationary prob-
ability is easily calculated since the switching mechanism is independent of the observed
time series data. Denote the probability that a state is in i at time n by qi,n. According to
equation (4), we can obtain the following equation,


q1,n
...

qk,n


 =



p11 . . . pk1
...

. . .
...

p1k . . . pkk






q1,n−1

...

qk,n−1


 , (7)

where q1,j + · · · + qk,j = 1. The stationary probability, Pr(Sj = i) = qi is calculated
from equation (7) given qi = qi,n = qi,n−1.

Phenomenon in which latent probability structure changes can be easily modeled using
three Markov switching models with an arbitrary distribution form of f and g. A general
state space model form allows for a useful recursive formula for state estimation, non-
Gaussian filtering and smoothing algorithms (Kitagawa, 1987). Here a problem of state
estimation is to evaluate the conditional distribution Pr(Sn|�m) which is the probability
of Sn given the observation �m = {R1, . . . , Rm}. Here the state prediction, filtering and
smoothing problems respectively refer to the situations in which, m < n, m = n and
m > n. We give a brief summary of recursive formulas.

• One step ahead prediction

Pr(Sn = i|�n−1) =
k∑

j=1

Pr(Sn = i, Sn−1 = j |�n−1)

=
k∑

j=1

Pr(Sn = i|Sn−1 = j)Pr(Sn−1 = j |�n−1)

=
k∑

j=1

pjiPr(Sn−1 = j |�n−1), (8)
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• Filtering

Pr(Sn = i|�n) = Pr(Sn = i|�n−1, Rn)

= p(Rn|Sn = i,�n−1)Pr(Sn = i|�n−1)

p(Rn|�n−1)
, (9)

where p(Rn|�n−1) is obtained through p(Rn|�n−1) = ∑k
i=1 p(Rn|Sn = i,�n−1) ×

Pr(Sn = i|�n−1).
• Smoothing

Pr(Sn = i|�N) =
k∑

j=1

Pr(Sn+1 = j |�N)Pr(Sn = i|Sn+1 = j,�N)

=
k∑

j=1

Pr(Sn+1 = j |�N)Pr(Sn = i|Sn+1 = j,�n)

=
k∑

j=1

Pr(Sn+1 = j |�N)
Pr(Sn = i|�n)Pr(Sn+1 = j |Sn = i,�n)

Pr(Sn+1 = j |�n)

= Pr(Sn = i|�n)

k∑
j=1

Pr(Sn+1 = j |�N)Pr(Sn+1 = j |Sn = i)

Pr(Sn+1 = j |Sn = i)
. (10)

Here the second line in equation (10) is obtained by the fact such that P(Sn = i|Sn+1 =
j,�N) = P(Sn = i|Sn+1 = j,�n) for the general state space model. Pr(Sn|�m) is
generally non-Gaussian; its estimation should be made by numerical methods. However,
for a discrete state space model, the numerical method is not required, because a state
variable requires a finite number of integers.

When the general state space model generally has an unknown parameter vector θ , our
parameter estimation is carried out by maximizing the log-likelihood defined by

l(θ |y) =
N∑
n=1

log
(
p(Rn|�n−1)

)
. (11)

Note that p(Rn|�n−1) appears as the denominator in (9). Therefore, the log-likelihood is
obtained as the by-product of the non-Gaussian filter.

When there exist competing models with a different number of parameters, we can select
the model by Akaike’s Information Criterion (AIC) (Akaike, 1974; Kitagawa, 1987),

AIC = −2 max
(
l
(
θ̂
)) + 2(number of free parameters), (12)

or Bayesian Information Criterion (BIC) (Schwarz, 1978),

BIC = −2 max
(
l
(
θ̂
)) + (number of free parameters) · log(N). (13)
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2. Data Analysis

In this section, we apply the three Markov switching models to an analysis of brand in an
instant coffee category. We examine weekly, store level, POS data and attempt to estimate
the execution/non-execution of display promotion in a store using only POS data. Further-
more, we use the supervised data to check the estimation result, where the supervised data
is data obtained by an actual marketing survey of the execution/non-execution of display
promotion in a store.

2.1. Data

We investigate stochastic switching models using a subset of the DEI1 weekly POS data.
Information on weekly units and weekly sales for each brand and on the weekly number of
visitors to the store were available. The method presented was applied to about six and a
half year’s instant coffee data for the period of 24 April 1995 to 1 December 2001 from one
store of a well-known Japanese supermarket chain in Tokyo. The total number N is 345.
Unfortunately, the chain and brand name cannot be shown clearly in this paper because of
the data use contract. Average sales of groceries and the number of visitors per day of the
store are about seven million yen and three thousand, respectively. The store is located in
a closed trading area, and there are no competing stores. There are 77 items in the instant
coffee category. The accumulated share of the top 10 units sold in this category is 67%.
The target brand is a national brand, which gets a top share in the store of 16% during the
period. The size attribute of the brand is 250 g. Prices of the brand ranged from 535 yen
(∼= $4.5) to 1498 yen (∼= $12.5). The brand was displayed in the store, on average, about
every two weeks and was shown on the flyer about every seven weeks. When the brand
was shown on the flyer, the display promotion of the brand was executed with an extremely
high possibility (about 98%).

In our analysis, we analyze two variables, Purchase Incidence (PI) and normalized price.
Purchase incidence, yn is obtained by

yn = UNITn × 1000

CUSTOMERn

, (14)

where UNITn and CUSTOMERn denote unit sales and visitors to a store at time n, respec-
tively. Here, equation (14) indicates the unit sales of 1000 visitors to a store at time n. The
normalized price, xn is given by

xn = 0.001 + (PRICEn − PRICEmin)

(PRICEmax − PRICEmin)
(0.999 − 0.001), (15)

where PRICEn indicates the price at time n and PRICEmin and PRICEmax denote the min-
imum and maximum prices during the data period, respectively. For the sake of con-
venience, the values of 0.001 and 0.999 are introduced to fit the beta distribution to the
distribution of normalized price.

In this paragraph, we define states. Here, we introduce a dummy variable φn (Table 1) to
indicate the execution/non-execution of display promotion in a store at time n (execution 1,
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Table 1. Features of Models

Number of regime Regime Display promotion Number of parameter
MSB MSR MSB

Type 1 (2-states) Sn = 1 Regime 1 φn = 0 6 8 12
Sn = 2 Regime 2 φn = 1

Type 2 (3-states) Sn = 1 Regime 1 φn = 0 9 12 18
Sn = 2 Regime 2 φn−1 = 0 φn = 1
Sn = 3 Regime 3 φn−1 = 1 φn = 1

Type 3 (4-states) Sn = 1 Regime 1 φn−1 = 0 φn = 0 12 16 24
Sn = 2 Regime 2 φn−1 = 0 φn = 1
Sn = 3 Regime 3 φn−1 = 1 φn = 0
Sn = 4 Regime 4 φn−1 = 1 φn = 1

Figure 1. Time Series of Purchase Incidence and Normalized Price.

non-execution 0). A state can be defined by information on φn and/or φn−1. In the case
of four states (= Type 3), the definition of state is as follows. Regime 1 represents the
state where display promotion was not executed in the last week nor in this week (φn =
φn−1 = 0). The other three regimes for Type 3 are defined in Table 1.

For preliminary analysis, we first investigate POS data with supervised data. Figure 1
shows the time series of purchase incidence and normalized price. Figure 2 shows his-
tograms of normalized price for every regime in the case of four states (= Type 3). The
upper row in Figure 2 corresponds to the non-execution of display promotion in this week,
and the lower rows correspond to the execution of display promotion in this week. The
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difference between upper and lower distributions is obvious in this figure. For example,
the upper distributions are skewed to high price; in contrast, the lower ones are skewed to
low price. Figure 3 shows a scatter plot of normalized price against purchase incidence
for every regime of Type 3. The definition of regime is the same as in Figure 2. In upper
distributions, the normalized price is mostly distributed between 0.5 and 1.0, and the vari-
ance of purchase incidence is small. On the contrary, in lower distributions, the normalized
price is mostly distributed between 0.2 and 0.6, and the variance of purchase incidence is
large. As this prior analysis showed, it turns out that there is a difference in a consumer’s
response to price, and the price strategy of a supplier side for every regime.

Table 2 demonstrates a switching matrix to specify whether the execution/non-execution
of display promotion switches or not between last and this week. When the display pro-
motion was not executed in the last week, the display promotion tends to be in the non-
execution state (78%). On the other hand, when the display promotion was conducted in
the last week, the display promotion is likely to be in the execution state (73%). This fact
shows that the execution/non-execution of display promotion follows a dynamic mecha-
nism, as shown above. It is therefore useful to take these dynamics into account in the
statistical modeling.

2.2. Assumptions and Concept

Based on visual inspections in the previous subsection, we assume the following for mod-
eling. Three assumptions are made for that purpose. First, we regard past unobserved
display promotion as states, previously defined. Each state variable evolves according to
an unknown transition probability matrix between states. Second, the purchase incidence
is influenced by normalized price and the relation between purchase incidence and nor-
malized price is different in every regime. Third, the distribution of normalized price is
different in every regime.

Figure 4 illustrates the concept of our proposed model for Type 3. Here, we consider a
hidden 4-states stochastic switching model. Sn is a latent variable which corresponds to a
regime previously defined. When Sn is equal to 1, then it means regime 1, and so forth.
If Sn−1 exists in regime 1, then Sn will exist in regime 1 with probability p or moves to
regime 2 with probability 1 − p. But if Sn−1 exists in regime 1, then Sn cannot exist in
regime 3 and regime 4. As shown in this figure, other regimes are specified similarly. This
system model shows the latent evolving mechanism of display promotion.

Moreover, we assume that at any time n, the observed time series is generated by one of
three types of observation models for each regime: Markov Switching Distribution model,
Markov Switching Regression model, or Markov Switching Bivariate model. These obser-
vation models indicate the observed characteristic for each regime.

2.3. Model Specification

In this section, we apply the three Markov switching models (MSD, MSR and MSB mod-
els) to POS data for the three types of regime definitions, listed in Table 1 (Types 1, 2
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Table 2. Dynamic Features of Display

This week Last week
Non-execution Execution

Non-execution 0.7801 0.2662
Execution 0.2199 0.7338

Figure 4. Conceptual Model.

and 3). Then, nine models in this study are applied to the same data set. However, the
supervised data is not used for estimating these models. We explain the observation and
system models for every type of regime definition.

Observation Model: MSD Model xn is assumed to follow a beta distribution:

g
(
xn|Sn = i, ψx

n−1

) = gi(xn) = x
γi−1
n (1 − xn)

δi−1

B(γi, δi)
, i = 1, . . . , k, (16)

where B(γi, δi ) shows a beta function. We set b1,i = log(γi), b2,i = log(δi) for parame-
trization. The distribution of normalized price, gi(xn) depends on each regime.
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Observation Model: MSR Model For the MSR model, we adopt the following model:

f
(
yn|Sn = i, ψ

y

n−1, xn
) = fi(yn|µi)

= 1√
2πσ 2

i

exp

{
− 1

2σ 2
i

(yn − µi)
2
}
, i = 1, . . . , k, (17)

where µi is assumed in the linear combination as µi = βi0 + βi1xn. We set ai = log(σ 2
i ).

It should be noted that yn is an observation and xn is treated as an exogenous variable.

Observation Model: MSB Model For the MSB model, we use the following model:

h
(
xn, yn|Sn = i, ψ

xy
n−1

)
= f

(
yn|Sn = i, ψ

xy
n−1, xn

)
g
(
xn|Sn = i, ψ

xy
n−1

) = fi(yn|µi)gi(xn)

= 1√
2πσ 2

i

exp

{
− 1

2σ 2
i

(yn − µi)
2
}
x
γi−1
n (1 − xn)

δi−1

B(γi, δi)
, i = 1, . . . , k. (18)

A set of xn and yn is treated as an observation. The MSB model is a model that is obtained
by multiplication of the MSD model by the MSR model.

From a marketing perspective, the MSD model can be interpreted to represent the dis-
tribution of the price strategy of a supplier. On the other hand, the MSR model aims at
describing the distribution of consumer’s response. Finally, the MSB model deals with
both the distribution of supplier’s price strategy and consumer’s response.

A system model for each type of regime definition is given as follows:

• System Model: Type 1 = 2-States

P =
(

p 1 − q

1 − p q

)
. (19)

• System Model: Type 2 = 3-States

P =

 p 1 − q 1 − r

1 − p 0 0
0 q r


 . (20)

• System Model: Type 3 = 4-States

P =




p 0 1 − r 0
1 − p 0 r 0

0 q 0 1 − s

0 1 − q 0 s


 . (21)

In addition, transition probabilities are parameterized with c1, c2, c3, and c4 as follows:

p = exp(c1)

1 + exp(c1)
,
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Table 3. Estimated Parameter (2-States Models)

Parameters MSD MSR MSB
Parameter S.E. Parameter S.E. Parameter S.E.

a1 – −1.68721 (0.1359)a −2.52719 (0.149)
a2 – 2.28862 (0.1523) 2.10848 (0.1202)
b1,1 0.35558 (0.1523) – 0.83904 (0.1691)
b2,1 −1.00860 (0.1044) – −0.73378 (0.1899)
b1,2 1.68678 (0.1219) – 1.43575 (0.745)
b2,2 1.91547 (0.1365) – 1.87633 (1.7878)
c1 −0.19372 (0.2837) −0.27769 (0.1787) −0.30138 (0.1364)
c2 −0.14297 (0.2405) −0.62212 (0.2215) −0.28803 (0.0904)
β1,0 – 3.23569 (0.1357) 2.38257 (0.1095)
β1,1 – −3.01601 (0.1675) −2.08213 (0.1158)
β2,0 – 11.52666 (1.2462) 11.51955 (0.1912)
β2,1 – −15.49725 (3.2826) −17.80411 (0.2072)

aStandard Error in parentheses.

q = exp(c2)

1 + exp(c2)
,

r = exp(c3)

1 + exp(c3)
,

s = exp(c4)

1 + exp(c4)
.

In the 4-states MSB model, for example, unknown parameters are θ = {β1,0,β1,1,a1, . . .,
β4,0, β4,1, a4, b1,1, b2,1, . . . , b1,4, b2,4, c1, c2, c3, c4}.

2.4. Model Comparison

Estimated parameter values for nine models in Table 1 are listed in Tables 3, 4 and 5.
Tables 3, 4 and 5 correspond to the results of 2-states, 3-states and 4-states models, respec-
tively.

Table 6 shows the log-likelihood, AIC and BIC for nine models listed in Table 1. AIC
prefers the 4-states model irrespective of the observation model. However, the result ob-
tained by BIC differs from that by AIC for the MSD and MSB models. In the MSR model,
AIC and BIC give the same results. Whereas in the MSD model, BIC prefers the 2-states
model, it prefers the 3-state model in the MSB model. Since likelihood functions for MSD,
MSR and MSB models are defined on normalized price, purchase incidence and a set of
both, respectively, neither AIC nor BIC can be applied to compare the MSD, MSR and
MSB models. Therefore, we consider the model’s misclassification rate of nine models for
choosing the best model among the nine models.

Although the 3- and 4-states model give the state probability against each of the three
and four regimes, respectively, we focus on discrimination between the execution and non-
execution of display promotion in this week. Therefore, we employ the smoothed marginal
probability of 3- and 4-states probability given as follows:
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Table 4. Estimated Parameter (3-States Models)

Parameters MSD MSR MSB
Parameter S.E. Parameter S.E. Parameter S.E.

a1 – −1.71108 (0.1263)a −2.17151 (0.1124)
a2 – 1.98255 (0.2424) 1.98295 (0.2203)
a3 – 1.83153 (0.1817) 1.63884 (0.1283)
b1,1 0.43306 (0.1661) – 0.79387 (0.1547)
b2,1 −1.03100 (0.1004) – −0.69129 (0.1795)
b1,2 0.78352 (0.4426) – 0.72705 (1.0972)
b2,2 0.83439 (0.612) – 1.31214 (2.7733)
b1,3 1.72553 (0.056) – 2.10561 (0.781)
b2,3 1.95467 (0.0551) – 2.58054 (2.0041)
c1 1.45398 (0.2627) −0.25168 (0.1891) −0.27922 (0.124)
c2 12.06047 (0.0958) −0.52433 (0.4557) −0.44599 (0.0891)
c3 1.76364 (0.2366) −0.44857 (0.3585) −0.27334 (0.1365)
β1,0 – 3.27439 (0.1192) 2.76762 (0.1587)
β1,1 – −3.05738 (0.1502) −2.48795 (0.1437)
β2,0 – 14.38064 (0.9759) 15.45288 (0.1496)
β2,1 – −17.56026 (2.5852) −21.21243 (0.1995)
β3,0 – 7.72835 (0.924) 9.40106 (0.3762)
β3,1 – −9.88791 (2.2203) −15.24700 (0.2228)

aStandard Error in parentheses.

• Smoothed Marginal Probability: 3-States

Pr(φn = 0|ψN) = Pr(Sn = 1|ψN), (22)

Pr(φn = 1|ψN) = Pr(Sn = 2|ψN) + Pr(Sn = 3|ψN). (23)

• Smoothed Marginal Probability: 4-States

Pr(φn = 0|ψN) = Pr(Sn = 1|ψN) + Pr(Sn = 3|ψN), (24)

Pr(φn = 1|ψN) = Pr(Sn = 2|ψN) + Pr(Sn = 4|ψN). (25)

Here, equations (22) (or (24)) and (23) (or (25)) indicate the smoothed marginal proba-
bility that display promotion does not execute, and does execute in this week, respectively.
Figure 5 shows the smoothed marginal probability for each observation model of 4-states.
The MSR model generates many switches between regimes, but the MSD model tends to
keep on the same regime. The MSB model has a middle-aspect between the MSD and
MSR model. 2-and 3-states models also have the same tendency as the 4-states case.

According to this smoothed marginal probability, we discriminate between the execution
and non-execution of display promotion. The discrimination formula is defined by

Dn =
{

1, if P(φn = 1|ψN) � 0.5 (execution),
0, if P(φn = 1|ψN) < 0.5 (non-execution).

(26)

The rate of coincidence between the estimator, Dn and the observation of supervised data
On (execution 1, non-execution 0) is evaluated by
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Table 5. Estimated Parameter (4-States Models)

Parameters MSB MSR MSB
Parameter S.E. Parameter S.E. Parameter S.E.

a1 – −2.47575 (0.0432)a −2.39169 (0.1361)
a2 – 2.20030 (0.2157) 1.97702 (0.2152)
a3 – −1.79541 (0.3191) −0.86141 (0.3214)
a4 – 1.79641 (0.1925) 1.24302 (0.1489)
b1,1 0.39123 (0.1795) – 0.92184 (0.0596)
b2,1 −1.12950 (0.1128) – −0.79233 (0.0678)
b1,2 0.95104 0.3771) – 0.74219 (0.4362)
b2,2 1.17083 (0.4786) – 1.30097 (0.3777)
b1,3 1.50459 (0.4927) – 0.73845 (0.4964)
b2,3 0.02445 (0.2977) – −0.00342 (0.5946)
b1,4 1.70109 (0.0867) – 2.21203 (0.2626)
b2,4 1.93580 (0.0969) – 2.67877 (0.5232)
c1 1.25619 (0.2677) −0.37702 (0.1995) −0.34454 (0.1588)
c2 −15.51731 (1.6045) −0.83723 (0.4125) −0.84561 (0.0943)
c3 −12.07878 (0.0506) −1.47991 (0.4706) −1.54099 (0.2005)
c4 1.80848 (0.2335) −0.57269 (0.4058) −0.31497 (0.2396)
β1,0 – 2.29514 (0.1494) 2.47824 (0.2041)
β1,1 – −1.99052 (0.178) −2.18049 (0.2546)
β2,0 – 13.38754 (0.6779) 15.98382 (0.1268)
β2,1 – −16.57720 (1.177) −22.47007 (0.1346)
β3,0 – 4.15266 (0.2262) 2.93693 (0.2092)
β3,1 – −4.02592 (0.3347) −2.60365 (0.3397)
β4,0 – 7.81625 (0.6093) 8.35476 (0.4344)
β4,1 – −10.09200 (1.4669) −12.88299 (0.2375)

a Standard Error in parentheses.

Table 6. Log-likelihood, AIC and BIC

Number MSD MSR MSB
of state l(θ) AIC BIC l(θ) AIC BIC l(θ) AIC BIC

2 173.49 −334.97 −311.91 −572.46 1160.92 1191.67 −360.95 745.91 792.03
3 175.98 −333.95 −299.36 −560.31 1144.61 1190.73 −325.39 686.78 755.96
4 182.31 −340.62 −294.50 −545.09 1122.18 1183.67 −312.08 672.17 764.41

RC =
∑N

n=1 I (On = Dn)

N
, (27)

where N is sample size and I (·) is defined by,

I (·) =
{

1, if On = Dn,

0, if On = Dn.
(28)

Table 7 summarizes the misclassification rate and model selection results by AIC and
BIC for all models. In MSD, MSR and MSB models, the minimum misclassification mod-
els are 2-states, 4-states and 3-states models, respectively. The model with the minimum
misclassification rate among all models is the 3-states MSB model.
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Figure 5. Marginal Smoothed Probability.

Here,we consider the relation between the misclassification rate and information crite-
rion (i.e. AIC and BIC). As shown in Table 7, the minimum AIC model for MSD and MSB
models does not correspond to the minimum misclassification rate model. The minimum
BIC model for MSD, MSR and MSB models corresponds to the minimum misclassifica-
tion rate model. Therefore, it is suggested that BIC is appropriate for discrimination using
Markov switching models in this analysis. Thus, we focus on the minimum BIC models in
subsequent discussion.
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Table 7. Misclassification Rate (All Models)

Model Variable Non-execution Execution Total

2-States Misclassification rate 0.35 0.10 0.24
MSD(B)b Number of misclassification sample 67 16 83
3-States Misclassification rate 0.38 0.07 0.24
MSD Number of misclassification sample 72 11 83
4-States Misclassification rate 0.38 0.09 0.25
MSD(A)a Number of misclassification sample 73 14 87

2-States Misclassification rate 0.06 0.42 0.22
MSR Number of misclassification sample 12 65 77
3-States Misclassification rate 0.08 0.36 0.21
MSR Number of misclassification sample 15 56 71
4-States Misclassification rate 0.11 0.31 0.20
MSR(A),(B) Number of misclassification sample 21 48 69

2-States Misclassification rate 0.17 0.11 0.14
MSB Number of misclassification sample 33 17 50
3-States Misclassification rate 0.14 0.11 0.13
MSB(B) Number of misclassification sample 27 17 44
4-States Misclassification rate 0.16 0.21 0.18
MSB(A) Number of misclassification sample 30 32 62

a(A) indicates the minimum AIC model.
b(B) indicates the minimum BIC model.

Figure 6 shows a scatter plot after the discrimination of two regimes for three min-
imum BIC models. The upper, middle and lower panels correspond to 2-states MSD,
4-states MSR and 3-states MSB models, respectively. In the 2-states MSD model, the
non-execution samples, the normalized price of which is between 0.5 and 0.7, tend to be
misclassified as the execution samples. The 4-states MSR model can identify these sam-
ples correctly, but the execution samples with purchase incidence between 2 and 4 are
likely to be misclassified as the non-execution samples. The 3-states MSB model shows
higher performance than 2-states MSD and 4-states MSR models in terms of discrimina-
tion.

3. Implication and Discussion

As we stated in previous sections, the execution/non-execution of display promotion was
discriminated by Markov switching models without the supervised data. First, we showed
that the MSB model is better than MSD and MSR models for all three types (2-, 3- and
4-states models) based on the results of the minimum misclassification rate. Next, we
demonstrated that the 3-states MSB model among the three types of MSB models is the
best in terms of the minimum misclassification rate (0.13). The misclassification rate,
however, cannot be used for model selection, because the supervised data is not usually
available. Therefore, another model selection procedure is required for that purpose. We
showed that BIC can be used instead of the minimum misclassification rate.
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We provide here more detailed analysis of the application result. Since the 3-states
MSB model allows us to discriminate a display promotion correctly using only POS data,
the effect of display promotion can be measured in the same manner as in prior literature,
such as Blattberg et al. (1981), Neslin (2002). Once the effects of display promotion are
obtained, suppliers can perform effective display promotion and price strategy at individual
stores.

The fact that the 3-states MSB model was selected, implies that three typical patterns
(regimes) exist for describing the relation between purchase incidence and normalized
price. Similarly, the distribution of normalized price depends on each regimes. From the
marketing perspective, it is suggested that both consumer’s response to price (i.e. price sen-
sitivity) and the supplier’s price strategy differ among the three regimes. The price sensitiv-
ity in regime 1 is the lowest in the three regimes (β1,1 = −2.48795). On the other hand, the
price sensitivity in regime 2 is the highest in the three regimes (β2,1 = −21.21243). The
price sensitivity in regime 3 is in the middle of regime 1 and regime 2 (β3,1 = −15.24700).
Since β1,1,w.s., β2,1,w.s., and β3,1,w.s.

2 are −2.22981, −22.11850 and −13.77000, the
price sensitivity for each regime can be accurately identified by our model-based ap-
proach. Therefore, accurate demand forecasting can be realized for individual stores us-
ing only POS data. There is a difference in the supplier’s price strategy among the three
regimes. The estimated average of normalized price in regime 1, regime 2 and regime 3 is
0.8154, 0.3578 and 0.38345, respectively. True values of these averages for every regime,
which are calculated with the supervised data, are 0.7751, 0.3333 and 0.4121, respectively.
A good agreement between the estimated and actual values indicates that the 3-states MSB
model was able to detect the supplier’s price strategy adequately.

To show the merit of our model-based approach, we compare the Radial Basis Function
(RBF) network’s3 discrimination accuracy with that of the 3-states MSB model. Although
details of the RBF networks are omitted in this paper, it is one of the most powerful non-
linear discriminant methods (Yee and Haykin, 2001). For this analysis, we divided our
data into two parts. The RBF was learned by first half data (supervised data), and was
evaluated by the misclassification rate of second half data. On the other hand, the 3-states
MSB model was fitted to the second half data and the misclassification rate was calculated.
Then, we compared the RBF’s misclassification rate with that of the 3-states MSB model.

The misclassification rates of the RBF network and the 3-states MSB model are shown
in Table 8. The 3-states MSB model’s misclassification rate is lower than that of the RBF
network. This result is very interesting, because while the RBF network needs the su-
pervised data, our model-based approach does not. This empirical result clearly shows a
benefit of incorporating the dynamic mechanism in a model-based approach.

Table 8. Misclassification Rate of RBF and 3-States MSB Model

Model Variable Non-execution Execution Total

RBF Misclassification rate 0.15 0.19 0.17
Number of misclassification sample 0.15 14 29

3-states Misclassification rate 0.07 0.23 0.14
MSB Number of misclassification sample 7 17 24
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Figure 6. Scatter Plot of Discrimination Result.

Here, we mention three possibilities to reduce the misclassification rate. The first is
associated with the sales units and price strategy of competing brands. From a marketing
perspective, it is usually thought that two or more brands are competing. In our proposed
model, however, since that information is not included, some samples may be misclassi-
fied according to influence due to competing brands. One way to deal with this problem is
to develop a stochastic switching multivariate model that deals with a competing brand’s
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Figure 6. (Continued).

POS data simultaneously. The second way is to extend our linear observation model to a
non-linear model. When these approaches are employed, many parameters must be op-
timized, which requires a reliable and robust method to estimate many parameters sta-
bly.

The third way is related to the structure of our used POS data. In our research, we apply
Markov switching models to six and a half year’s instant coffee data. The data structure
itself may be changing even within this data period. When there is a structural change of
the data, our proposed models cannot respond to accommodate such change. This issue
can be dealt with by the framework of the time varying parameter model (Kitagawa and
Gersch, 1985; West and Harrison, 1997; Kim and Nelson, 1999). Our proposed model can
be extended in the same manner as these prior literatures assuming a gradual change in
parameters.

We want to discuss the applicability of the Markov switching model proposed in this
paper for various marketing issues. First, for example, we consider category management,
which is one of the main issues in marketing. The important thing in this issue is to
recognize whether the trend of a category is in expansion or recession terms. If the trend
is treated as latent variables which switch between the expansion and recession states, this
phenomenon can be formulized in the modeling framework of our proposed model.

Our model-based approach is also applicable to consumer segmentation. Usually, in the
consumer segmentation carried out in marketing, each consumer belongs only to one seg-
ment throughout all time. However, it may be natural to suppose that a consumer switches
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between two or more segments in response to changes in a supplier’s marketing activity
or a consumer’s own taste at some time. If a consumer segment as a stochastic time-
dependent latent variable switches between latent segments, this dynamic segmentation
can be realized in the framework of our proposed model.

4. Concluding Remarks

This paper considered the problem of identifying unobserved display promotions using
only POS data. For that purpose, we first investigated POS data with supervised data,
which has information on the execution/non-execution of in-store display promotions, and
attempted to identify the dependency of an execution/non-execution of a display promotion
on two quantities in POS data. Integration of this analysis with prior information could be
realized by stochastic switching models with unknown state variables. The state estima-
tion was carried out with non-Gaussian filtering and smoothing algorithms. We applied the
proposed models to POS data without the supervised data, and obtained a highly accurate
estimator of unobserved display promotion. The performance of our proposed model was
tested by comparing it with RBF (supervised learning) and MSB (unsupervised learning).
Our approach is attractive for the marketing field, because the unobserved display promo-
tion was correctly discriminated without the supervised data. This feature can be realized
by incorporating prior information that characterizes the dynamic behavior of unknown
state variables.

The Markov switching model usually assumes an explicit dependency of a state on the
observation value. For an example, previous works (cf. Blattberg and Wisniewski (1987),
Wittink et al. (1987)) often assume an explicit analytical form or algorithmic rule for de-
scribing the relation between purchase incidence and parameters of the execution/non-
execution of display promotion. Meanwhile, our model has a simple structure where the
switches arise independently of the observation. However, our model-based approach can
extract information on the relation between the state and observation, as a result of appli-
cations. Namely, our approach is capable of discriminating latent states effectively without
assuming the explicit dependency.

In conclusions, the analysis of POS data with a time series model is effective for ex-
tracting marketing information, which indicates that model-based time series analysis is an
important marketing tool. It should be noted that since the state variable takes a discrete
value, the computational burden could be reduced much more than in a continuous case.
These points are useful features of our model-based approach.
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Notes

1. The Distribution Economics Institute was established in 1963 as a voluntary group. In 1966, under the guid-
ance of the Ministry of International Trade and Industry (now Ministry of Economy, Trade and Industry), DEI
was transformed into a nonprofit research organization, http://www.dei.or.jp/

2. These values were obtained through the linear regression model using the POS data with supervised data for
each of the three regimes, w.s. stands for an analysis result with the supervised data.

3. The supervised learning.
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